
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

5-2010

Naked Object File System (NOFS): A Framework
to Expose an Object-Oriented Domain Model as a
File System
Joseph P. Kaylor

Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

This Technical Report is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2010 Joseph P. Kaylor, Konstantin Läufer, and George K. Thiruvathukal

Recommended Citation
J. Kaylor, K. Läufer, and G. Thiruvathukal, “Naked Object File System (NOFS): A Framework to Expose an Object-Oriented Domain
Model as a File System,” May 2010.

http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Naked Object File System (NOFS): A Framework to Expose an
Object-Oriented Domain Model as a File System

Joe Kaylor
Loyola University Chicago

joekaylor@gmail.com

George K. Thiruvathukal
Loyola University Chicago

gkt@cs.luc.edu

Konstantin Läufer
Loyola University Chicago

laufer@cs.luc.edu

Abstract

We present Naked Objects File System (NOFS), a novel
framework that allows a developer to expose a domain
model as a file system by leveraging the Naked Objects
design principle. NOFS allows a developer to construct
a file system without having to understand or implement
all details related to normal file systems development.
In this paper we explore file systems frameworks and
object-oriented frameworks in a historical context and
present an example domain model using the framework.
This paper is based on a fully-functional implementation
that is distributed as free/open source software, includ-
ing virtual machine images to demonstrate and study the
referenced example file systems.

1 Introduction

Kernel mode file systems require a complex understand-
ing of systems programming, systems programming lan-
guages, and the underlying operating system. There are
fewer people who have this skill set as object-oriented
frameworks and languages are becoming more and more
popular. For businesses with core skill sets in applica-
tions and enterprise development, it is becoming more
difficult to find developers with systems skill sets to im-
plement file systems, yet the need for systems exper-
tise has not diminished at all, evidenced by simultane-
ous growing interest in embedded platforms. There is
also much code that has already been developed using
the patterns available and common to enterprise applica-
tion frameworks that either cannot be used or are diffi-
cult to reuse in systems development. What is needed
is a framework that allows enterprise development tech-
niques and patterns to be applied to file systems devel-
opment (not to mention systems programming in gen-
eral). NOFS is our attempt to provide such a framework.
Further, we believe that the file system itself provides a
structured interface to the user and that it can be thought

of as a natural object-oriented user interface that is com-
mon among Naked Object frameworks.

2 Background and Related Work

In very early systems, development of new file systems
code was a challenge because of high coupling with stor-
age device architecture and kernel code.

In the 1970s, with the introduction of MULTICS,
UNIX, and other systems of the time, more structured
systems with separated layers became more common.
UNIX used a concept of i-nodes[?], which where a com-
mon data structure that described structures on the file
system. Different file system implementations could
share the same i-node structure. This included on-disk
file systems and network file systems. Early UNIX op-
erating systems shared a common disc and file system
cache and other structures related to making calls to the
I/O layer that managed the discs and network interfaces.

With newer UNIX-like systems such as 4.2 BSD and
SunOS, an updated architecture was developed called vn-
odes [?]. The goal of vnodes was to split file system
independent functionality in the kernel from the file sys-
tem dependent functionality. Things like path parsing,
buffer cache, i-node tables, and other structures became
more shareable. Also, operations with vnodes became
reentrant which made it possible for new behavior to be
stacked on top of other file system code or to modify
existing behavior. Vnodes also helped to simplify file
systems design and make file systems implementations
more portable to other UNIX-like systems. Many mod-
ern UNIX-like systems have a vnodes like layer in their
file systems code.

With the advent of micro-kernel architectures, file sys-
tems being built as user mode applications became more
common and popular even in operating systems with
monolithic kernel architectures. Several systems with
different design philosophies have been built. We de-
scribe three of these systems that are most closely related

to NOFS: FUSE, ELFS, and Frigate.
The Extensible File System (ELFS hereafter) is an

object-oriented framework built on top of the file sys-
tem that is used to simplify and enhance the performance
of the interaction between applications and the file sys-
tem [?]. ELFS uses class definitions to generate code
that takes advantage of pre-fetching and caching tech-
niques. ELFS also allows developers to automatically
take advantage of parallel storage systems by using mul-
tiple worker threads to perform reads and writes. Also,
since ELFS has the definition of the data structures, it
can build efficient read and write plans. The novelty of
ELFS is that the developer can use an object-oriented ar-
chitecture and allow ELFS to take care of the details.

Frigate is a framework that allows developers to in-
ject behavioral changes into the file system code of an
operating system [?]. Modules built in frigate are run
as user-mode servers that are called to by a module that
exists in the operating system’s kernel. Frigate takes ad-
vantage of the reentrant structure of vnodes in UNIX-
like operating systems to allow the developer of Frigate
modules to layer behavior on top of existing file systems
code. Frigate also allows the developer to tag certain files
with additional metadata so that different Frigate mod-
ules can automatically work with different types of files.
The novelty of Frigate is that developers do not need to
understand operating systems development to modify the
capabilities of file systems code and they can test and
debug their modules as user-mode applications. Frigate
developers, however, still need to be aware of the UNIX
file system structures and functions.

File Systems in Userspace (FUSE hereafter) is a
user mode file systems framework. FUSE is supported
by many UNIX-like operating systems such as Linux,
FreeBSD, NetBSD, OpenSolaris, and Mac OSX. The in-
terface supported by FUSE is very similar to the set of
UNIX system calls that are available for file and folder
operations. Aside from the ability to make calls into the
host operating system, there is less shared with the op-
erating system than with vnodes such as path parsing.
FUSE has helped many file system implementations such
as NTFS and ZFS to be portable to many operating sys-
tems. Since FUSE file systems are built as user-land pro-
grams, they can be easier to develop in languages other
than C or C++, easier to unit test, and easier to debug.

Naked Objects [?] is the term used to describe the de-
sign philosophy of using plain object-oriented domain
models to build entire applications. In the realm of desk-
top applications, Naked Object frameworks remove the
concern of the developer in implementing user interfaces,
model-view-controller patterns, and persistence layers.
These components are generated for the domain model
by the Naked Objects framework automatically either
through the use of reflection or through additional meta-

data supplied with the domain model.
A characteristic feature of Naked Object frameworks

is that they present an object-oriented user interface. Ap-
plications where the user is treated more as a problem
solver than as a process follower benefit from an object-
oriented user interface [?, p. 41]. For many applications,
processes are very important and an object-oriented user
interface is not the best fit. We believe that the interface
presented to the programmer and to the user of a file sys-
tem is also object-oriented. In a file system, the compo-
nents are not exposed to the user to facilitate the moving,
reading, writing, creation, or deletion of files and fold-
ers. These actions are accomplished with external pro-
grams and references to the actual objects as command
line parameters. The user interaction with file systems
is a noun-verb style of interaction and not a verb-noun
interaction which is more common with typical desktop
applications . Like the naked object user interfaces, file
systems “provide the user with a set of tools which to
operate and .. does not dictate the users sequence of
actions”[?, p. 41].

3 Naked Objects File System (NOFS)

3.1 Novelty of NOFS

There are three contributions made by the NOFS frame-
work. The first is that NOFS demonstrates the file sys-
tem can be used as an object-oriented user interface in
a Naked Objects framework and that the Naked Objects
design principle can be applied successfully to file sys-
tems development, especially file systems of an exper-
imental nature. The second contribution is that NOFS
inverts and simplifies the normal file system contract. In
FUSE and operating system kernels, there are a series of
functions to implement and data structures to work with.
With the NOFS framework, a domain model is inspected
to produce a file system user interface. Domain models
for NOFS do not implement file system contracts or work
with file system structures. Instead, they are described
with metadata that is used by NOFS to allow the domain
model to interact with the FUSE file system framework.
The third contribution made by the NOFS framework is
that by providing an object-oriented framework to de-
velop file systems, we allow developers who are unfa-
miliar with systems or UNIX programming to more eas-
ily and rapidly implement experimental or lightweight
file systems. With this object-oriented framework, it be-
comes easier to unit test a file system implementation
because details of the operating system do not need to be
stubbed or mocked out; only the domain model needs to
be verified.

2

3.2 Implementing a Domain Model with
NOFS

Here we will explore developing a domain model with
NOFS. We will look at parts of two domain models: an
address book domain model which was developed for
presentation purposes, and a Flickr domain model. The
address book domain model models a series of contacts’
names and phone numbers. The Flickr domain model
models a series of user accounts and their photos from
the Flickr.com online photo service. Flickr exposes a
RESTful, service oriented API that we have used in our
domain model.

3.3 Implementing Files

In NOFS, files are modeled as plain classes that are de-
scribed with metadata. The methods on the class are
not constrained to any specific interface but are used
to model the structure of the data in a file. There are
two ways for instances of class to expose their data:
through translation of the return values of public meth-
ods to structured XML files or by defining the structure
of these files by implementing an interface with read and
write methods.

Listing 1: An example NOFS Domain Object

t y p e ContactDOC =
I D o m a i n O b j e c t C o n t a i n e r <Contac t >;

@DomainObject
p u b l i c c l a s s C o n t a c t {

p r i v a t e S t r i n g name ;
p r i v a t e S t r i n g phoneNumber ;
p r i v a t e ContactDOC c o n t a i n e r ;

@ProvidesName
p u b l i c S t r i n g getName () {

re turn name ;
}

@ProvidesName
p u b l i c vo id setName (S t r i n g name)

throws E x c e p t i o n {
name = name ;
c o n t a i n e r . Objec tChanged (t h i s) ;

}

p u b l i c S t r i n g getPhoneNumber ()
{ re turn phoneNumber ; }

p u b l i c vo id setPhoneNumber (S t r i n g v a l u e)
throws E x c e p t i o n {

phoneNumber = v a l u e ;

c o n t a i n e r . Objec tChanged (t h i s) ;
}

@NeedsContainer
p u b l i c vo id s e t C o n t a i n e r (

ContactDOC c o n t a i n e r) {
c o n t a i n e r = c o n t a i n e r ;

}
}

In listing 1, the class Contact (http://tinyurl.
com/nofs-Contact) marks itself as a file object by
using the @DomainObject Java annotation1. It tells
NOFS that it manages its own file name with the @Pro-
videsName annotation on the getName accessor and the
setName mutator methods. The persistence mechanism
of NOFS is injected upon construction of the Contact
class through the setContainer method which is marked
by the @NeedsContainer method. An example represen-
tation of the Contact class as a file in an NOFS file system
is as follows:

Listing 2: Contact Domain Object Representation

<Contac t >
<PhoneNumber >555−1234</PhoneNumber>
</ Con tac t >

In this example, the class FlickrPhoto (http://
tinyurl.com/nofs-FlickrPhoto) marks itself
as a file object by using the @DomainObject Java an-
notation. It tells NOFS that it is immutable by setting
the CanWrite member of the DomainObject annotation
to false. FlickrPhoto’s reponsibility is to model a graph-
ical image from the Flickr photo sharing website. Since
it is convenient to expose to the file system these pho-
tos as an image file and not as an XML file, FlickrPhoto
provides read and write methods as defined by the IPro-
videsUnstructuredData NOFS interface.

Listing 3: Flickr Photo Domain Object

@DomainObject (CanWri te= f a l s e)
p u b l i c c l a s s F l i c k r P h o t o

implements I P r o v i d e s U n s t r u c t u r e d D a t a {

p r i v a t e byte [] d a t a ;
p r i v a t e S t r i n g name ;

p u b l i c F l i c k r P h o t o () {}

p u b l i c vo id s e t D a t a (byte [] d a t a)
{ d a t a = d a t a ; }

1Our listings have been formatted for conciseness. For lengthy ex-
amples, we refer the reader to a permanent (but also shortened) reposi-
tory link. All examples and a test virtual machine are available via our
NOFS home page at Google Code.

3

http://tinyurl.com/nofs-Contact
http://tinyurl.com/nofs-Contact
http://tinyurl.com/nofs-FlickrPhoto
http://tinyurl.com/nofs-FlickrPhoto

@ProvidesName
p u b l i c S t r i n g getName ()
{ re turn name ; }

@ProvidesName
p u b l i c vo id setName (S t r i n g name)
{ name = name ; }

p u b l i c boolean Cacheab le ()
{ re turn f a l s e ; }

p u b l i c long D a t a S i z e ()
{ re turn d a t a . l e n g t h ; }

p u b l i c vo id Read (B y t e B u f f e r b u f f e r ,
long o f f s e t , long l e n g t h) {

f o r (long i = o f f s e t ;
i < o f f s e t + l e n g t h

&& i < d a t a . l e n g t h ; i ++)
b u f f e r . p u t (d a t a [(i n t) i]) ;

}

. . .
}

In both the address book and Flickr examples, the do-
main models did not need to be aware of the UNIX file
system calls required by the FUSE framework such as
chmod, chown, mknod, and others. The developers of
these domain models were able to be mostly concerned
with implementing the details of the structure of the do-
main model.

3.4 Implementing Folders
As with files, folders in NOFS are modeled as plain
classes that can be described with metadata. Folders can
be modeled in one of two ways. The first way is as a class
that is marked as a folder or as a method that returns a
List type collection that is itself marked as a folder. Fold-
ers can be model as children individual files and other
folders.

Listing 4: Implementing Folders using @FolderObject
Annotation
@DomainObject
@FolderObjec t (CanAdd= true ,

CanRemove= t rue)
p u b l i c c l a s s C a t e g o r y ex tends

L i n k e d L i s t <Contac t > {

p r i v a t e S t r i n g name ;

@ProvidesName
p u b l i c vo id setName (S t r i n g name)
{ name = name ; }

@ProvidesName
p u b l i c S t r i n g getName ()
{ re turn name ; }

}

In this example, the class Category (http://
tinyurl.com/nofs-Category) marks itself as a
folder by using the @FolderObject annotation. This is
an example of a folder object that extends a collection
of another object that is a file object type (in this case
Contact). In this example, the CanAdd and CanRemove
members of the @FolderObject annotation are used to
tell NOFS that the folder modeled by the Category class
is mutable by the user of the file system.

The class FlicrkRoot (http://tinyurl.com/
nofs-FlickrRoot), which is a part of an exam-
ple Flickr file system built for NOFS, marks itself as
a folder by using the @FolderObject annotation. This
class also marks itself with the @RootFolderObject an-
notation. The @RootFolderObject annotation is used for
one class per file system to mark which folder class is the
root of the NOFS file system. The FlickrRoot class ex-
poses another folder object through the getUsers acces-
sor method. This method is marked as a folder with the
@FolderObject annotation and is allowed to be a folder
because its return type is a collection of instances of a
class that is a folder object (in this case FlickrUser). As
with files in NOFS, folder classes don’t need to imple-
ment the various FUSE methods such as getdir, readdir,
chmod, and others. NOFS implements the FUSE con-
tract and examines the folder objects to answer all of the
calls.

3.5 Exposing Methods to the File System
In a user interface, reading and updating data is an im-
portant operation. NOFS accomplishes this by exposing
folder and file objects that can be read from and written
to using common file operations such as reading from
files, writing to files, creating new files or folders, and
deleting existing files and folders. Another important
way of interacting with a user interface is through ac-
tion oriented user interface components such as buttons
or menus. NOFS allows file systems to expose these ac-
tions to the file system by generating Perl scripts that
are exposed on the file system around methods that are
marked as executable on a plain class.

In the FlickrRoot example, a method called AddUser
is marked as executable using the @Executable Java an-
notation. When NOFS encounters a method marked with
the @Executable annotation, it will generate a script file

4

http://tinyurl.com/nofs-Category
http://tinyurl.com/nofs-Category
http://tinyurl.com/nofs-FlickrRoot
http://tinyurl.com/nofs-FlickrRoot

on the file system that when invoked with the appropriate
arguments will serialize those arguments into a standard
XML format and send them to NOFS using an IPC chan-
nel which will in turn invoke the AddUser method with
the arguments from the script. In the case of the Ad-
dUser script, it will accept a single primitive argument
that is the user name. The AddUser script will appear as
a file in every instance of the FlickrRoot folder.

Listing 5: RemoveAContact() @Executable example

t y p e ContactDOC =
I D o m a i n O b j e c t C o n t a i n e r <Contac t >;

@Executable
p u b l i c vo id RemoveAContact (C o n t a c t c)

throws E x c e p t i o n {

ContactDOC c o n t a i n e r
= Ge tCon ta ine rManage r ()

. G e t C o n t a i n e r (C o n t a c t . c l a s s) ;
c o n t a i n e r . Remove (c) ;
b o o k C o n t a i n e r . Objec tChanged (t h i s) ;

}

In the listing 5, RemoveAContact (http://
tinyurl.com/nofs-Book) is marked as an exe-
cutable by using the @Executable Java annotation. This
method is different than the previous example in that it
takes a non primitive reference to an instance of the Con-
tact class. When the user invokes the script, they will in-
voke it with a path reference to a Contact file. This path
will then be resolved by NOFS to the specific instance
of the Contact class that represents the file path. This
instance of the Contact class will then be passed to the
RemoveAContact method.

4 Conclusion

We believe that we have successfully demonstrated that
the Naked Objects design principles can be applied to a
file systems framework with NOFS. We have also shown
how domain models can be exposed as an object-oriented
user interface through the file system. Finally we have
demonstrated how it is possible to remove the lower level
details of the FUSE framework from the concern of the
developer and allow them to be more concerned with the
development of their domain model.

5 Experiences and Lessons Learned

Early on, we chose the Java platform to build NOFS,
given the availability of a strong ecosystem for test-
driven design and development and enterprise develop-
ment. We believe at this time that we would have been

better served to have used the .NET platform through
Mono, even considering the present maturity of the
Mono environment, which lags Microsoft’s .Net signifi-
cantly. A future Windows port would be simpler because
the native call facility in .NET is more straight forward
than JNI and because of the presence of user mode .NET
file system drivers such as Dokan (which is used to pro-
vide FUSE support on Windows). Nevertheless, without
Java, the robustness of the current prototype would likely
not have been achieved. In future work focused on per-
formance and benchmarking, however, we are likely to
take a different tact when it comes to the overall devel-
opment environment.

6 Future Work

As presented in this paper, NOFS provides a framework
to translate a domain model into a file system. This re-
duces the need of the developer to understand the meth-
ods and structures that are necessary to implement a
FUSE file system. NOFS however, does not provide a
generic or object-oriented way to work with block de-
vices or network/service access. The developer of an
NOFS file system must still be concerned with the ac-
cess to resources that are outside of the NOFS persis-
tence layer if any. We plan to explore how to build such a
layer, which we believe will be of great value in a cloud-
enabled world.

References

[1] John F. Karpovich, Andrew S. Grimshaw, and
James C. French. Extensible file system (elfs): an
object-oriented approach to high performance file
i/o. In OOPSLA ’94: Proceedings of the ninth
annual conference on Object-oriented programming
systems, language, and applications, pages 191–
204, New York, NY, USA, 1994. ACM.

[2] Ted H. Kim and Gerald J. Popek. Frigate: an
object-oriented file system for ordinary users. In
COOTS’97: Proceedings of the 3rd conference on
USENIX Conference on Object-Oriented Technolo-
gies (COOTS), pages 9–9, Berkeley, CA, USA,
1997. USENIX Association.

[3] S. R. Kleiman. Vnodes: An architecture for multiple
file system types in sun unix. pages 238–247, 1986.

[4] R. Pawson. Naked Objects. PhD thesis, Trinity Col-
lege, Dublin, Ireland, 2004.

[5] K Thompson. Unix implementation. pages 26–41,
1986.

5

http://tinyurl.com/nofs-Book
http://tinyurl.com/nofs-Book

	Loyola University Chicago
	Loyola eCommons
	5-2010

	Naked Object File System (NOFS): A Framework to Expose an Object-Oriented Domain Model as a File System
	Joseph P. Kaylor
	Konstantin Läufer
	George K. Thiruvathukal
	Recommended Citation

	Introduction
	Background and Related Work
	Naked Objects File System (NOFS)
	Novelty of NOFS
	Implementing a Domain Model with NOFS
	Implementing Files
	Implementing Folders
	Exposing Methods to the File System

	Conclusion
	Experiences and Lessons Learned
	Future Work

