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PROCEEDINGS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 86, Number 2, October 1982

IDEALS AND CENTRALIZING MAPPINGS IN PRIME RINGS

JOSEPH H. MAYNE

ABSTRACT. Let H be a prime ring and U be a nonzero ideal of R. If T is

a nontrivial automorphism or derivation of Ft such that uuT — uTu is in the

center of R and uT is in U for every u in U, then R is commutative. If R does

not have characteristic equal to two, then U need only be a nonzero Jordan

ideal.

If R is a ring, a mapping T of R to itself is called centralizing on a subset S of

R if ssT — sTs is in the center of R for every s in S. There has been considerable

interest in centralizing automorphisms and derivations defined on rings. Miers [4]

has studied these mappings defined on C '-algebras. In [5] Posner proved that

if a prime ring has a nontrivial centralizing derivation, then the ring must be

commutative. The same result was obtained for centralizing automorphisms in

[3]. In this paper it is shown that the automorphism or derivation need only be

centralizing and invariant on a nonzero ideal in the prime ring in order to ensure

that the ring is commutative. Also, if R is of characteristic not two, then the

mapping need only be centralizing and invariant on a nonzero Jordan ideal. For

derivations this gives a short proof of a result related to that of Awtar [1, Theorem

3]. Awtar proved that if R is a prime ring of characteristic not two with a nontrivial

derivation and a nonzero Jordan ideal U such that the derivation is centralizing on

U, then U is contained in the center of R.

Jeffrey Bergen deserves many thanks for his suggestions concerning the results

and proofs in this paper.

From now on assume that R is a prime ring and let Z be the center of R. Let

[x,y] = xy — yx and note the important identity [x,yz] = y[x, z] + [x, y]z. The

following lemmas will be used in the proofs of the main results.

LEMMA 1.   If b[a, r]=0 for all r in R, then 6 = 0 or a is in Z.

PROOF. Assume that b[a,r] = 0 for all r in R. Replace r by xy to obtain

b[a,xy] = bx[a,y] + b[a,x]y = bx[a,y] = 0 for all x and y in R. Since R is prime,

b = 0 or [a, y] = 0 for all x in R.

LEMMA 2. If D is a derivation ofR such that vP = 0 for all u in a nonzero right

ideal U of R, then rD = 0 for all r inR.

PROOF. Let u be a nonzero element in U and x be an element in R. Then

ux is in U and 0 = (ux)D — uDx + u(xD) = u(xD). Now replace X by sr to obtain

0 = u(sr)D — [u(sD)]r + us(rD) = us(rD) for all r and s in R. Since R is prime and

u is nonzero, rD = 0 for all r in R.
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LEMMA 3. IfT is a homomorphism ofR such that uT = u for all u in a nonzero

right ideal U ofR, then rT = r for every r in R.

PROOF. Let u be a nonzero element in U and r, s be in R. Since U is a

right ideal, us and usr are in U. Then (usr)T = usr = (us)TrT = usrT. Hence

us(r — rT) = 0 for all s and r in R. Thus r = rT for all r in R.

LEMMA 4. If R contains a nonzero commutative right ideal U, then R must be

commutative.

PROOF. Let u be in U and assume that u2 is not zero. Such an element exists

for if not, then by a variation of Levitzki's theorem [2, Lemma 1.1], R has a nonzero

nilpotent ideal and this is impossible in a prime ring. U is a right ideal and so ur

and us are in U for every r and s in R. Since U is commutative, u2sr = u(us)r =

us(ur) = ur(us) = u(ur)s = u2rs. Hence u2[r, s]=Q for all r and s in R. By Lemma

1, every r in R is in Z. Therefore R is commutative.

Theorem. Let R be a prime ring and U be a nonzero ideal of R. If R has a

nontrivial automorphism or derivation T such that uuT — uTu is in the center ofR

and uT is in U for every u in U, then R is commutative.

PROOF. By Lemma 2 or Lemma 3, T is nontrivial on U. Since U is a nonzero

ideal in a prime ring, U is itself a prime ring. U is then commutative by the author's

result in [3] for automorphisms or by Posner's result [5] for derivations. By Lemma

4, R is commutative.

COROLLARY. If U is a nonzero Jordan ideal in a prime ring R of characteristic

not two and T is a nontrivial automorphism or derivation ofR which is centralizing

and invariant on U, then R is commutative.

PROOF. Every nonzero Jordan ideal in a prime ring of characteristic not two

contains a nonzero ideal [2, Theorem 1.1]. Apply the theorem to this ideal.
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