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Unintended consequences of imprecise Notation

- an example from mechanics

Asim Gangopadhyaya1 and Gordon Ramsey2

Department of Physics, Loyola University Chicago,

1032 W. Sheridan Rd., Chicago, IL 60660, U.S.A.

Abstract

We present a conundrum that results from the imprecise use of notation for partial derivatives. Taking an

example from mechanics, we show that lack of proper care in representing partial derivatives in Lagrangian and

Hamiltonian formulations paradoxically leads to two different values for the time derivative of the canonical

momentum. This problem also exists in other areas of physics, such as thermodynamics.

Key words: Partial Differentiation, Classical Mechanics; Lagrangian Formulation; Hamiltonian For-

mulation

PACS: 45.20.Jj, 02.30Xx

We generally insist that our students speak and write with precision, but they often do not. One case in point

is that of partial differentiation, an operation that has a ubiquitous presence in many areas of physics, especially in

areas of thermodynamics and canonical transformations. When we represent the partial differentiation of a function

φ (x1, x2, · · · , xn) of several independent variables with respect to one of those variables xk by ∂φ
∂xk

, we often do

not underscore the constraints in this variation; i.e., the variables that are kept constant while xk changes. As the

following example from classical mechanics shows, this omission can frequently lead to serious misunderstanding.

The comparative study of the Lagrangian and Hamiltonian approaches to classical mechanics is a standard topic

in undergraduate courses in mechanics. The crux of the difference between the two approaches is that they have
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two different sets of independent variables. This aspect is not always sufficiently appreciated by students. Here

we present a simple paradox that challenges the reader to engage deeply, and thus develop a clearer perspective on

each formalism, and their differences. Paradoxes provide many benefits in instruction, namely to motivate deeper

thinking and provide a more thorough understanding of the topic. As pointed out by Welch [1] in this journal, their

greatest benefit is to address “specific deficiencies in understanding and reasoning.” We shall see that the resolution

of our paradox lies in the careful handling of partial differentiation. Hence, one of our aims is to urge students to

be cognizant of the roles played by various variables in the variation of a function that depends on more than one

physical quantity.

In undergraduate classical mechanics courses, students are generally encouraged to express the Lagrangian, L and

Hamiltonian, H in various coordinate systems. This not only helps them build very important expertise in choosing

an efficient set of generalized coordinates for a system, often using symmetries, it also helps them explore how L and

H could look very different in one coordinate system compared to another, and yet carry exactly the same physical

information.

Let us consider a Lagrangian of a free system; i.e., the potential V (q) = 0. The Lagrangian is given by

L(q, q̇) = T (q, q̇)− V (q) = T (q, q̇) (1)

The canonical momentum is defined by

p ≡
∂L

∂q̇
. (2)

Then, the Lagrange’s equation of motion d
dt

∂L
∂q̇ = ∂L

∂q implies

ṗ =
∂T

∂q
. (3)

Let us do a similar analysis using Hamiltonian formulation. Assuming the kinetic energy to be a homogeneous

quadratic function of velocities, and since the potential V is identically zero, the Hamiltonian is T + V = T [2, 3].

Hamilton’s equation of motion then implies,

ṗ = −
∂H

∂q
= −

∂T

∂q
. (4)

Thus, the conundrum is that ṗ is given by ∂T
∂q

in the Lagrangian formulation, and by −∂T
∂q

in the Hamiltonian
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formalism; i.e.,

ṗ =
∂T

∂q

∣
∣
∣
∣
LagrangianFormulation

= −
∂T

∂q

∣
∣
∣
∣
HamiltonianFormulation

. (5)

This suggests that ṗ = 0, as one would expect in a case of a free particle. Is this necessarily true? For example, a

particle described by cylindrical coordinates (r,φ, z), the kinetic energy is given by T = 1
2mṙ2 + 1

2mr2φ̇2 + 1
2mż2,

the derivative ∂T
∂r

#= 0, and hence ṗr #= 0. Thus, for this case, it becomes difficult to explain how a non-zero ṗr be

equal to ∂T
∂r

in Lagrangian formulation and − ∂T
∂r

in Hamiltonan formulation.

Similarly, for a particle described by spherical coordinates (r, θ,φ), the kinetic energy is given by T = 1
2mṙ2 +

1
2mr2θ̇2 + 1

2mr2 sin2 θ φ̇2, neither the ṗr, nor the ṗθ are equal to zero. So, how do we explain that ṗθ is equal to

∂T
∂θ

in the Lagrangian formulation and −∂T
∂θ

in the Hamiltonian approach, and yet ṗθ #= 0? As we will show later,

the solution for this apparent problem lies in the fact that ∂T
∂qi

calculated in two different formulations are different.

It is crucial to know which variables are being kept constant in these partial differentiations. For the Lagrangian

formulation, the derivative ∂T
∂qi

implies that T is being differentiated, keeping coordinates qj with j #= i constant, and

all q̇j ’s are held constant. For the Hamiltonian formulation, the derivative ∂T
∂qi

implies that T is being differentiated

keeping coordinates qj with j #= i constant, and all pj ’s are held constant. Since the constraints under which these

two derivatives are being taken are different, the derivatives themselves may be exactly equal in magnitude and

opposite in sign, and hence may make Eq. (5) consistent with a non-zero ṗ.

Let us check this possibility with a free particle in spherical coordinates. The Lagrangian and the Hamiltonian

of the system are given by L = 1
2
mṙ2 + 1

2
mr2θ̇2 + 1

2
mr2 sin2θ φ̇2 and H = p2

r

2m
+ p2

θ

2mr2
+

p2

φ

2mr2 sin2 θ
respectively [?].

From Lagrange’s equation, we get

ṗθ =
∂T

∂θ

∣
∣
∣
∣
{r,φ,ṙ,θ̇,φ̇}

= mr2 sin θ cos θ φ̇2 . (6)

From Hamilton’s method, we get

φ̇ =
pφ

mr2 sin2 θ
; and ṗθ = −

∂T

∂θ

∣
∣
∣
∣
{r,φ,pr,pθ,pφ}

=
p2φ cos θ

mr2 sin3 θ
. (7)

Substituting for pφ in Eq. (7), we see that ṗθ is indeed equal to mr2 sin θ cos θ φ̇2 in both cases.

Thus, in spherical coordinates, Eq. (5) does not lead to any inconsistency for ṗθ. We now show that this is

indeed true in all coordinate systems, provided that the kinetic energy is a homogeneous quadratic function of the

generalized velocities.
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Let us start with a system with zero potential 3 and with N -degrees of freedom, described by the Lagrangian

L(qi, q̇i, t) =
1

2

N
∑

ij

Fij(q)q̇iq̇j , (8)

where the symmetric coefficients Fij are, in general, functions of N -independent coordinates qi. From here on, we

will suppress the q-dependence of Fij . The canonical momenta pi are given by

pi =
∂L(qi, q̇i, t)

∂q̇i
=

∑

j

Fij q̇j ≡ Fij q̇j , (9)

where summation over repeated indices is assumed. Since coordinates qi are assumed to be independent, the inverse

of the matrix Fij exists, and allows us to invert Eq. (9) to find velocities in terms of momenta. We denote the

elements of this inverse matrix by
(

F−1
)

ij
. From Eq. (9), solving for the velocities, we get

q̇i =
(

F−1
)

ij
pj . (10)

Since the Hamiltonian must be written as a function of qi, pi and t, the Hamiltonian for the system is then given by

H(qi, pi, t) = piq̇i − L = piq̇i −
1

2
Fij q̇iq̇j (11)

= pi
(

F−1
)

ij
pj −

1

2
Fij

((

F−1
)

ik
pk
)
(
(

F−1
)

j$
p$

)

, (12)

where we have substituted velocities from Eq. (10) into Eq. (11). Now, using the associativity of matrix multiplica-

tion, we get

H(qi, pi, t) = pi
(

F−1
)

ij
pj −

1

2

(

Fij

(

F−1
)

ik

)

︸ ︷︷ ︸

δjk

pk

(
(

F−1
)

j$
p$

)

= pi
(

F−1
)

ij
pj −

1

2
pk

((

F−1
)

k$
p$
)

=
1

2
pi
(

F−1
)

ij
pj , (13)

where we have relabeled the dummy indices in the second term of the second line. Since the matrix Fij is a function

of qi’s, the Hamiltonian has been properly represented in terms of qi, pi and t. Now, let us compute ṗi for this

general case using the two different formalisms. In the Lagrangian formalism, from Eq. (8), we have

ṗi =
∂L

∂qi
=

∂T

∂qi
=

1

2

[
∂

∂qi
Fjk

]

q̇j q̇k . (14)

3It is worth noting that this discrepancy in the values for ṗ returned by the two formalisms is present even for the case with a non-zero

potential V (r, θ,φ); it just appears more dramatic when the potential is zero.
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On the other hand, from Eq. (13), the Hamiltonian formalism gives

ṗi = −
∂H

∂qi
= −

∂T

∂qi
= −

1

2

(
∂

∂qi

(

F−1
)

$m

)

p$ pm (15)

Now, substituting for momenta from Eq. (9), we get

ṗi = −
∂T

∂qi
= −

1

2

(
∂

∂qi

(

F−1
)

$m

)

(F$j q̇j) (Fmk q̇k)

=
1

2

[

−Fj$

(
∂

∂qi

(

F−1
)

$m

)

Fmk

]

q̇j q̇k . (16)

In Eqs. (14) and (16), we have computed the time derivatives of momentum pi from Lagrangian and Hamiltonian

formalisms respectively. Consistency of these two expressions requires that factors within square brackets of these

two equations be equal; i.e.,

[
∂

∂qi
Fjk

]

=

[

−Fj$

(
∂

∂qi

(

F−1
)

$m

)

Fmk

]

. (17)

Multiplying the above equation by
(

F−1
)

sj
and summing over the index j, we get

(

F−1
)

sj

[
∂

∂qi
Fjk

]

=
(

F−1
)

sj

[

−Fj$

(
∂

∂qi

(

F−1
)

$m

)

Fmk

]

= −
(

F−1
)

sj
Fj$

︸ ︷︷ ︸

δs#

(
∂

∂qi

(

F−1
)

$m

)

Fmk

= −

(
∂

∂qi

(

F−1
)

sm

)

Fmk

= −

(
∂

∂qi

(

F−1
)

sj

)

Fjk . (18)

Thus, consistency of the two results requires

(

F−1
)

sj

[
∂

∂qi
Fjk

]

+

(
∂

∂qi

(

F−1
)

sj

)

Fjk = 0 . (19)

However, the left-hand side of Eq. (19) is a perfect differential that can be written as

∂

∂qi

(
(

F−1
)

sj
Fjk

)

=
∂

∂qi
δsk , (20)

which is identically zero. Thus, for a system where the kinetic energy is a homogeneous quadratic function of the

velocities, the two seemingly different expressions for ṗi, one derived from the Lagrangian and the other from the

Hamiltonian formulation, are thus proved to be identical.
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Conclusion: In this note, we present a conundrum that appears in coordinate systems where the kinetic energy is

a quadratic homogeneous function of velocities and a function of generalized coordinates. The conundrum is most

clear in the absence of an interaction, as both the Lagrangian and the Hamiltonian are equal to the kinetic energy,

and the expressions for ṗi in two formalisms are ∂T
∂qi

and − ∂T
∂qi

respectively. The purpose of this note is to show that

if L and H are expressed correctly in their respective sets of independent variables, and the differentiations are done

carefully, then there is no discrepancy. This type of puzzle goes a long way toward instilling a deeper understanding

of the partial differentiations involved in these two different formulations of classical mechanics. We would like to

stress that this problem is not localized to the area of mechanics alone. There are many examples in other fields as

well. For example, in thermodynamics, the molar specific heat of a gas ∆Q
∆T

could refer to either Cp or Cv depending

on whether pressure or the volume is kept constant during the variation of temperature. Similarly, as pointed out

by one of the referees, for an ideal gas we have dU = 3
2nRdT = 3

2p dV . Thus, while ∂U
∂V

∣
∣
p
= 3

2p,
∂U
∂V

∣
∣
T
= 0. These

examples drawn from different areas of physics clearly show that for partial differentiation, we need to pay great deal

of attention to the variables that are constrained to a constant value.

We would like to thank the anonymous referees and Professor Thomas Ruubel for a very careful reading of the

manuscript and for providing helpful suggestions. One of us (AG) would like to thank Alpana for her inspiration,

and we both would like to thank Aysel Bayrak and Sureyya Terrace, Troya, Istanbul for the warm hospitality where

this work was completed.
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