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Ports-of-entry are critical components of the modern international supply chain infrastructure, particularly

container seaports and airfreight hubs. The potential operational and economic impact resulting from their

temporary closure is unknown, but is widely believed to be very significant. This paper investigates one

aspect of this potential impact, focusing specifically on the use of supply chain inventory as a risk mitigation

strategy for a one supplier, one customer system in which goods are transported through a port-of-entry

subject to temporary closures. Closure likelihood and duration are modeled using a completely observed,

exogenous Markov chain. Order lead times are dependent on the status of the port-of-entry, including

potential congestion backlogs of unprocessed work. An infinite-horizon, periodic-review inventory control

model is developed to determine the optimal average cost ordering policies under linear ordering costs with

backlogged demand. When congestion is negligible, the optimal policy is state invariant. In the more complex

case of non-negligible congestion, this result no longer holds. For studied scenarios, numerical results indicate

that operating margins may decrease 10% for reasonable-length port-of-entry closures, that margins may be

eliminated completely without contingency plans, and expected holding and penalty costs may increase 20%

for anticipated increases in port-of-entry utilization.

Key words : supply chain risk, inventory management, seaport operations

1. Introduction

Modern global supply chain systems are increasingly vulnerable to disruption. Such systems are

vitally important to the world economy; the value of export merchandise transported globally

in 2008 was an astonishing $15.8 trillion [World Trade Organization (2009)]. Disruptions result

in recovery costs, and can significantly impact the market value of a company moving its goods

through the supply chain. Results of an empirical study in Hendricks and Singhal (2003) esti-

mate a mean decrease in firm market value of 10.28% over the two-day period after the public
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announcement of a major supply chain disruption.

Among the most critical and vulnerable nodes are ports-of-entry, particularly container seaports

and airfreight hubs. Maritime transportation is the dominant mode for international trade, and

80% of the goods (measured by value) moved by ocean are transported in intermodal containers.

Temporary seaport closures could result from a number of events, including natural disasters, labor

disruptions and shortages, and security incidents. In August 2005, Hurricane Katrina caused the

port of New Orleans to close for over two weeks, and full capacity was not restored for many

months thereafter. A lockout of stevedores in 2002 closed 29 Western U.S. seaports for 10 days,

resulting in a backlog of cargo vessels and port congestion that again did not dissipate for months.

While security incidents have not yet resulted in a seaport closure in the U.S., they have severely

disrupted freight transportation systems. In the aftermath of the September 11, 2001 terrorist

attacks, all traffic to U.S. airports was suspended, including international cargo flights and truck

delays at the U.S.-Canadian border increased from a few minutes to an extreme 12 hours [Bonner

(2004)]. Due to the resulting parts shortages, Ford Motor Company intermittently idled production

at five of its assembly plants [Rice and Caniato (2003)], and Toyota came within hours of halting

production at one plant [Sheffi (2001)]. In the event of another terrorist event or “false alarm,”

seaport closures may be likely. Gerencser et al. (2002) present the results of a port security wargame

simulating a terrorist attack using radiological (“dirty”) bombs in intermodal containers. The

participating business and government leaders decided to close every U.S. seaport for eight days,

and the resulting import freight backlog required three months to clear. The forecasted total loss

to the U.S. economy was $58 billion. In another study, Abt (2003) estimates that the impact on

U.S. trade alone from a nuclear attack on a U.S. seaport is $100-$200 billion.

In this paper, a model for quantifying the potential supply chain cost impacts of temporary port

closures is developed. To do so, focus is placed on a simple one supplier, one customer system

in which goods are transported through a port. When closed, the port may develop a backlog of

container processing work which is cleared over time after reopening. An assumption is made that

the customer in this system uses inventory for mitigating the risks of transportation disruption,

and deploys a minimum long-run average cost inventory management policy.

Initially, a probability mass function is developed for the expected leadtime under the threat of

port closure. An expression for the long-run average cost of a stationary, state-dependent basestock

policy is then derived using Markov reward theory. Constraining the model to the case where port

congestion is negligible (all containers may be processed as long as the port is open), the optimal

ordering policy is proven to be state-invariant and closed-form solutions for the optimal basestock



Lewis, Erera, Nowak and White: Managing Inventory in Global Supply Chains Facing Port-of-Entry Disruption Risks
Article submitted to Transportation Science; manuscript no. 3

level and associated long-run average cost are presented. Finally, the theoretical model is used to

quantify the effects of port-of-entry closures for the more complex non-negligible congestion case

through a numerical analysis. A range of probabilities related to likelihood and length of closure are

evaluated, displaying the impact on costs and inventory levels. Further, the results are presented in

the context of three important strategic issues for international supply chain systems facing port

disruptions:

1. Effective contingency plans that reduce the duration of temporary port closures and prioritize

speedy return to normal operation;

2. Inventory management strategies that explicitly plan for potential port closures; and

3. Management strategies for increasing the freight processing capability of highly utilized and

congested ports during states of emergency.

The numerical results emphasize the need for development of these strategies by all segments of the

supply chain. For example, increasing port closure duration from two to 20 days may lead to a 10%

reduction in operating margin. Also, implementing an inventory plan that considers potential port

closures results in a cost savings over plans that do not in virtually every scenario tested. Further,

increasing port utilization from approximately 70% to 96% may increase holding and penalty costs

by nearly 20%. These findings may be used to encourage supply chain managers and policy makers

alike to create anticipatory policies that consider the likelihood of a port closure.

The rest of this paper is organized as follows. Section 2 presents related literature on supply chain

systems facing disruptions and inventory management with uncertain supply. Section 3 introduces

the problem setting, and a Markov decision model for inventory control in this setting. Section

4 then presents theoretical results for a best-case scenario in which port congestion is negligible.

Since these results likely underestimate the true impact of port closures, Section 5 treats the case

with port congestion in more detail, and presents the results of a numerical study which highlights

the relative importance of the three strategic issues identified above. Finally, Section 6 provides

concluding remarks and areas of future research.

2. Related Literature

Supply disruptions can be categorized into two types: disruptions in a supplier’s ability to output

product, and disruptions to the transportation of product from supplier to customer. Inventory

control models that address supplier availability generally assume zero fulfillment lead time or that

at most a single replenishment order is outstanding at any given time. Examples of papers in this

category include Parlar and Berkin (1991), Weiss and Rosenthal (1992), Parlar and Perry (1995),
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and Snyder (2006), which consider EOQ-based inventory ordering policies, and Arreola-Risa and

DeCroix (1998), Özekici and Parlar (1999), and Parlar et al. (1995), which consider (s,S) policies.

Production disruptions in a manufacturing environment can be viewed as a form of internal supplier

disruption, and is studied in Moinzadeh and Aggarwal (1997), Yang et al. (2004), and Yang et al.

(2005). Qi et al. (2009) consider a continuous-time inventory control model where both the supplier

and retailer may face disruptions. In the retailer case, a disruption destroys all on-hand inventory.

Some recent research also focuses on issues of supply chain strategy and design given supplier

disruptions. Tomlin (2005) investigates dual-sourcing policies to mitigate risk, while Tomlin (2009)

studies other potential strategies such as supplier diversification, contingent sourcing, and demand

management for a single-period inventory model for short life-cycle products. Snyder and Shen

(2006) discuss important differences in multi-echelon supply chain designs for dealing with demand

uncertainty and supply uncertainty. Tomlin and Snyder (2009) show that an adaptive inventory

ordering policy based on a threat advisory system for supplier availability can lead to substantial

cost savings over a static policy. Lewis (2005) also considers an adaptive ordering policy based on

a threat advisory system, but where the advisory system provides information about future port-

of-entry closures, rather than supplier availability. Leadtime uncertainty is countered through the

use of forecast updating by Wang and Tomlin (2009), who show that as forecast updating becomes

more efficient, leadtime uncertainty becomes less of an issue.

Little work in the inventory control literature specifically focuses on disruptions to the trans-

portation of product from supplier to customer. Minor disruptions that may cause delays are

generally considered to contribute to regular lead time variability, and so are not explicitly mod-

eled. Kaplan (1970) is the earliest work to prove the optimality of an (s,S) inventory policy for a

finite-horizon, periodic-review inventory system with stochastic lead times and multiple outstand-

ing orders. Order crossover is prohibited by assumption, so that an order placed at time t must

arrive no later than the one placed at time t+1. Ehrhardt (1984) extends this result to the infinite

horizon.

Song and Zipkin (1996) generalize these models by allowing the lead time distribution to depend

on an exogenous system that is modeled as a discrete-time Markov chain (DTMC). When ordering

costs have no fixed component, they show the optimality of a stationary basestock policy for both

the total expected discounted cost and long-run average cost models, where the basestock (or

order-up-to) levels depend on the state of the DTMC. While bounds on the optimal order-up-to

levels are discussed, no explicit procedures are presented to determine optimal policy parameters,
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the long-run average cost of an arbitrary state-dependent basestock policy, or the optimal long-run

average cost.

This paper provides new theoretical results for the generic model in Song and Zipkin (1996),

specifically an expression for the long-run average cost of a stationary, state-dependent basestock

policy as well as a sufficient condition for the optimality of a stationary, state-invariant basestock

policy, a method for its calculation, and an expression for the associated long-run average cost.

A specialization of the generic model is presented, representing a supply chain moving goods

through an international port-of-entry that is subject to the risk of temporary closures and resulting

congestion. The key steps in this specialization are the modeling of the port-of-entry’s freight

processing operations and the derivation of the probability distribution for order leadtimes. For a

special case of negligible congestion, it is shown that the optimal policy is, in fact, a stationary,

state-invariant basestock policy.

Chen and Song (2001) also develop a specialized algorithm for Markov-modulated demand mod-

els that can be used to determine the optimal order-up-to levels as well as the optimal long-run

average cost for the Song and Zipkin (1996) model. Chen and Yu (2005) consider a specialization

of Song and Zipkin (1996) to investigate the value of observability of the DTMC which models a

simple lead time distribution.

3. Problem Definition and Solution Approach

To develop an understanding of the potential cost impacts of temporary port-of-entry closures on

an international supply chain, consider a simplified system in which a domestic customer orders

a single product from a foreign supplier with unlimited supply. Product is shipped from supplier

to customer using a single fixed transport route passing through a domestic port-of-entry for

importation; see Figure 1. Transit time L> 0 from supplier to port is assumed to be deterministic,

and is measured in discrete periods. Orders then face a stochastic processing delay through the

congested, and possibly closed, port-of-entry. After clearing the port, assume that orders arrive at

the customer instantaneously (our results are extendable to the case of positive transit time from

the port to the customer).

Suppose that the customer operates a periodic-review inventory control system. At the beginning

of each period, the customer observes its inventory state and the state of the supply system (to be

described below), and places an order if necessary. Ordering cost is immediately incurred. Next,

the state of the supply system is updated, resulting in the arrival to on-hand inventory of some

subset of the outstanding orders, and demand is realized. Demand is stochastic and is satisfied



Lewis, Erera, Nowak and White: Managing Inventory in Global Supply Chains Facing Port-of-Entry Disruption Risks
6 Article submitted to Transportation Science; manuscript no.

Foreign 
Supplier

Port of 
Entry

Queue

Domestic
Customer1 2 n

Transit Time 
L

Transit Time
0

Customer Orders

Figure 1 A supply system with possible port-of-entry closures and congestion.

from on-hand inventory if possible; otherwise, it is fully backlogged. Finally, the on-hand inventory

holding cost or the backlog penalty cost is assessed. The problem faced by the customer is to

determine order quantities with the objective to minimize per period average cost considering an

infinite planning horizon.

Orders are placed in discrete quantities (e.g. full containers) at a cost of c per unit. Holding

costs are h per unit per period for any inventory held. Penalty costs are b per unit per period for

any backlogged demand. Given an on-hand inventory level of x̂t at the beginning of period t, the

holding/penalty cost assessed for period t is given by

Ĉ(x̂t+1) =
{
−bx̂t+1 if x̂t+1 < 0
hx̂t+1 if x̂t+1 ≥ 0. (1)

Note that the cost for period t is evaluated in period t+ 1 as it is dependent on the inventory level

carried into the following period.

Let Dt be a non-negative, integer random variable representing the demand in period t, where

demands in different periods are identically and independently distributed. Demand is bounded

such that Dt ∈ {d1, d2, ..., dJ} where J <∞ and 0 ≤ d1 < d2 < ... < dJ <∞. Let D(l) represent

cumulative demand over l periods.

The stochastic processing delay at the port-of-entry (and thus the uncertain lead time for receipt

of orders) is modeled as follows. First, assume that during any time period t, the port may be

open or closed. Port status is modeled using a discrete-time Markov chain I ={it, t≥ 0} with state

space SI = {O,X}, where it =O indicates the port is open, and it =X indicates the port is closed.

Assume that the transition probabilities of I are exogenous to the decisions of the customer, time-

homogeneous, and known. Define pij = P (it+1 = j|it = i) for all t ≥ 0, and let PI = [pij] be the

resulting one-step transition probability matrix. Since the chain has finite state space, let πI be

the unique stationary distribution. Also define p(l)
ij = P (it+l = j|it = i) for all t≥ 0 and l ≥ 0, and

let P l
I = [p(l)

ij ] be the l-step transition probability matrix. Lewis et al. (2006) briefly discusses how

the customer might determine the transition probabilities.
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Second, the processing operation at the port-of-entry is assumed to be capacitated such that a

queue of unprocessed freight does not necessarily immediately dissipate after periods of closure.

The port-of-entry simultaneously services many customers and a simple deterministic queueing

approach is used to model port freight processing. For the purposes of this research, it is not

necessary to model the operations of the port-of-entry in great detail, for example the loading,

unloading, and stacking operations of individual containers at a seaport. Instead, a unit is defined

as an aggregate quantity of work to be completed by the port-of-entry, such that the port has the

capability to process multiple units daily when open; for example, for a seaport that processes an

average of 1,000 import containers daily, a unit may be defined as a group of 100 containers.

Assume that unprocessed units build up in a queue at the port, and that the queue is processed

in first in, first out (FIFO) order. Define uat and upt respectively to be the number of new work

units that arrive to the port, and the maximum number of units that are processed through the

port, in period t. Assume for simplicity that, for all t,

uat = r0, (2)

and

upt =

{
r1 if it =O

0 if it =X,
(3)

where r0 and r1 are finite, positive integer constants, and r1 ≥ r0. Thus, the same amount of work

arrives at the port each period (independent of the customer’s ordering decision and the port’s

open/closed status), and the amount of work that may be processed is dependent on the state it.

The queue length, n, at the beginning of period t+ 1 is

nt+1 = (nt +uat −u
p
t )

+

=

{
(nt + r0− r1)+ if it =O

nt + r0 if it =X,
(4)

where (x)+ =max{x,0}. Define the utilization of the port-of-entry to be

ρ = lim
t→∞

E[uat ]
E[upt ]

=
r0

πIOr1

, (5)

where E is the expectation operator conditioned on i0, πIO is the unique stationary distribution for

an open port, and the limit is the Cesaro limit. To ensure queue length stability, assume ρ< 1.

Finally, the movement of customer orders through the port processing system may be described.

At each time t, r0 new units of work arrive at the port-of-entry representing freight for many

customers. Assume that the customer’s order arriving at the port at time t (the order placed in
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Symbol Definition
it port status at beginning of period t,

O= port open status, X = port closed status
x̂t on-hand inventory level at the beginning of period t
xt inventory position prior to ordering in period t
nt queue length at beginning of period t
zkt order quantity in position k at time t
γ dummy position with all orders that have arrived at customer
y order-up-to level
Λ(it, nt) leadtime random variable
Ĉ(x̂t) total holding/penalty cost in period t− 1
uat number of units arriving at the port in period t,

set equal to r0

upt maximum number of units that may be processed
by the port in period t, set equal to r1 when port open

Dt demand in period t
L transit time
c ordering cost per unit
h holding cost per unit per period
b backlog penalty per unit per period

Table 1 Summary of key terminology

period t − L) becomes part of the last arriving unit of work; note also then that we implicitly

assume that the per period customer order quantity is always smaller than one unit of port work.

Given the definition of a unit of work, this is a reasonable assumption. Orders move through the

port processing system with their assigned unit, and arrive at the customer during the time period

when the unit is processed. Note that by assigning the customer order to the last arriving unit of

work, a worst-case processing scenario is modeled. Also note that the minimum lead time for an

order is L+ 1 periods. The symbols used throughout the paper are summarized in Table 1.

3.1. Modeling the Supply System Using an Order Movement Function

Given this problem setting, an optimal inventory control policy may be determined. To be con-

sistent with existing literature, we adopt the notation for the order position and order movement

function presented in Song and Zipkin (1996). To track outstanding orders through the supply

system, each order is given a position attribute. Let zkt represent the order quantity in position k

at time t, where k ∈ {−(L− 1), ...,−1,0,1, ..., n}. Position k ∈ {−(L− 1), ...,−1,0} is used to hold

an order quantity in transit (e.g. zkt corresponds to the total order quantity that is −k periods

away from arriving to the port). Position k ∈ {1,2,3, ..., n} is used to hold order quantities that

have arrived at the port and are assigned to work unit k in the port processing queue. Since the

queue is processed FIFO, quantities assigned to higher-numbered work units will be processed first.
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Finally, dummy position k=−L holds the order placed in the current period and dummy position

k= γ represents all orders that have arrived at the customer.

For every port status and queue length, (it, nt), the order movement function M(k|it, nt) deter-

mines the position to which the order currently in position k will move in the next period, such

that zk,t+1 =
∑

j:M(j|it,nt)=k zjt for all k. The specification of M(k|it, nt) depends on upt , the number

of work units to be processed in period t, as follows. If upt ≥ nt +uat , the entire queue is processed:

M(k|it, nt) =

{
γ if k≥ 0
k+ 1 if k < 0.

(6)

If nt ≤ upt < nt + uat , the existing queue is processed but some of the new work arriving in period

t+ 1 is not:

M(k|it, nt) =

{
γ if k > 0
k+ 1 if k≤ 0.

(7)

Finally if upt <nt, only part of the existing queue and none of the new work is processed:

M(k|it, nt) =


γ if k > nt−upt
k+ r0 if 0<k≤ nt−upt
k+ 1 if k≤ 0.

(8)

Note that this order movement function prevents order crossover.

Using this representation, the on-hand inventory x̂t+1 at the beginning of period t+ 1 is

x̂t+1 = x̂t +
∑

{k:M(k|it,nt)=γ}

zkt−Dt, (9)

while the inventory position xt (the sum of all outstanding orders plus remaining on-hand inventory)

prior to ordering in period t is

xt = x̂t +
∑

−(L−1)≤k≤n

zkt. (10)

The leadtime random variable is represented by Λ(it, nt), where leadtime is the amount of time

from when the customer places the order until the order is received, composed of both transit time,

L, and the time required to process the order at the port. The order movement function can be

used to specify Λ(it, nt) for the order placed in period t given (it, nt):

Λ(it, nt) = min
{
l≥L |M l+1(−L|it, nt) = γ

}
. (11)

where M l(k|it, nt) is the random variable representing the position to which the order in position

k at time t will move by time t+ l. Note that given that port utilization is less than 100%, Λ(it, nt)

is finite with probability one.
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3.2. Probability Mass Function for Order Leadtime

Just as the length of the leadtime in a real supply chain is key in determining levels of inventory,

the leadtime in this model drives many of the theoretical and analytical results regarding optimal

order-up-to policies. Specifically, the probability distribution for the order leadtime is used to derive

the optimal basestock policy for the closure model with negligible congestion in Section 4.2 and to

conduct the numerical analyses in Sections 4.3 and 5.2. Developing this distribution is not a simple

task for this problem. If the port-of-entry is open at time t, all orders arriving to, or waiting at,

the border are not necessarily processed in period t. Whether an order is processed depends on

both the port status and on the specific position of the order in the port work queue. A careful

accounting of how the state of the port changes over time and how the order moves through the

port’s queue is key to the derivation.

For the case when the minimum transit time L> 1, the expression for the leadtime distribution

may be described as follows.

Proposition 1. For all (i, n), the probability mass function of Λ(i, n) is
P (Λ(i, n) = l|it = i, nt = n) =

0 if l < L,∑
0≤m≤r1−r0 f(i,n)(O,m) if l=L,∑
0≤m≤r1−r0 f(i,n)(X,m)pXO +

∑
r1−r0<m≤2r1−r0 f(i,n)(O,m)pOO if l=L+ 1,∑

j∈{O,X}
∑
m≥0

∑
k∈{O,X} P (NjO(t+L, l−L− 1) = β(m),

it+l−1 = k|it+L = j,nt+L =m, it = i, nt = n)pkOf(i,n)(j,m) if l > L+ 1,

(12)

where

β(m) =
{ bm+r0

r1
c if m+r0

r1
6∈Z,

m+r0
r1
− 1 otherwise (13)

f(i,n)(j,m) = P (it+L = j,nt+L =m|it = i, nt = n) (14)

and NjO(t+L, l−L− 1) represents the number of times the port status is open from period t+L

through the next l−L− 1 periods given that it+L = j.

The full proof of this proposition may be found in the Appendix. It is essentially an accounting

exercise of the port queue dynamics. Given (it, nt) = (i, n), an order placed at time t arrives to the

border at time t+L where the length of the queue is nt+L. The customer order is part of r0 units

of work to arrive at time t+L, such that there are nt+L + r0 units of work in the updated queue,

and the order is assigned as a part of the last arriving unit. If the order is to be processed in period

t+ l ≥ t+ L, then all work units must be completely processed by the end of period t+ l, and

moreover, the last of which must be processed in period t+ l. The proof models these constraints

and all allowable intermediate states.
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3.3. Determination of Average-Cost Optimal Ordering Decisions

Recall that the problem of the customer is to determine an ordering decision z−L,t each period such

that long-run average costs are minimized. To do so, a dynamic programming optimality equation

may be defined.

Let (i, n, x̂,z) be the complete model state space for each time period t ≥ 0, where z =

(z−L+1, z−L+2, ...). A decision rule at time t is a function δt : (i, n, x̂,z)→ Z+ such that z−L,t =

δt(i, n, x̂,z), and a policy is the set of decision rules ∆ = {δt, t≥ 0}.

Since the average cost model does not discount future costs, and since orders cannot cross each

other in time, all costs associated with the order placed in period t can be assessed to period t.

A discounted cost criterion model may be used under these conditions to take into account future

costs. However, the discounted cost model is considerably more complex and the results would be

virtually equivalent given that a discount modeled on realistic rates is essentially inconsequential.

As shown in Song and Zipkin (1996) for the generalized model, the total cost V assessed to

period t under ∆ is

V∆(i, n, x̂,z) = cδ(i, n, x̂,z) +C(i, n,x+ δ(i, n, x̂,z)), (15)

where

C(i, n,x+ δ(i, n, x̂,z)) =
∑
l≥0

P (Λ(i, n)≤ l≤Λ(i+, n+))E
[
Ĉ
(
x+ δ(i, n, x̂,z)−D(l+1)

)]
, (16)

and (i+, n+) represents that state of the supply system in period t+ 1. Note that time subscripts

and superscripts are suppressed in this expression for simplicity, for example writing simply δ

rather than δt. Expression C(i, n,x+ δ(i, n, x̂,z)) is the expected cumulative holding and penalty

costs incurred from the time the current order arrives at the customer until the time period prior

to the arrival of the order placed in the next period.

For each starting state (i0, n0, x̂0,z0), the total expected cost incurred from period 0 through

some arbitrary time horizon ending in period T − 1 under policy ∆ is then

v∆
T (i0, n0, x̂0,z0) =E(i0,n0,x̂0,z0)

{
T−1∑
t=0

V∆(it, nt, x̂t,zt)

}
, (17)

and the average expected cost or gain is

g∆(i0, n0, x̂0,z0) = lim
T→∞

1
T
v∆
T (i0, n0, x̂0,z0) = lim

T→∞

1
T
E(i0,n0,x̂0,z0)

{
T−1∑
t=1

V∆(it, nt, x̂t,zt)

}
. (18)

Under linear ordering costs, Song and Zipkin (1996) show for the generalized model that average

cost optimality for such systems is achieved by some stationary state-dependent basestock policy
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that depends only on the inventory position xt, and not on x̂t and zt. The basestock decision rule

at time t for such systems can be written as

δt(it, nt, xt) = z−L,t =

{
0 if xt ≥ y(it, nt)
y(it, nt)−xt if xt < y(it, nt)

, (19)

where y(i, n) is the state-dependent order-up-to level. The resulting average-cost optimality equa-

tion is

g(i, n,x) +B(i, n,x) = min
y(i,n)≥x

{c(y(i, n)−x) +C(i, n, y(i, n)) +E[B(i+, n+, y(i, n)−D)]} , (20)

where B(i, n,x) is the bias, and time subscripts and superscripts are again suppressed.

Theorem 1 may now be presented, providing an expression for the long-run average cost of

a stationary, state-dependent basestock policy that is derived using Markov reward theory. The

theorem states a new, general cost formula for the Song and Zipkin (1996) model. Let W={Wt : t≥

0} be a Markov chain with countable or finite state space S and transition probability matrix P .

Let V : S→< be the cost function such that a cost of V (s) is incurred at time t when Wt = s. The

bivariate stochastic process {(Wt, V (Wt)) : t≥ 0} is known as a Markov reward process (MRP). It is

well known that in Markov decision processes (MDP), every stationary policy ∆ produces an MRP

(denoted W∆) with transition probability matrix P∆ and cost V∆ [Puterman (1994)]. This concept

is central to the analysis. Subscripts and superscripts are again suppressed when appropriate, for

example writing P for P∆.

Since there exists an optimal stationary, state-dependent basestock policy y = {y(i, n)}, this

analysis is confined to ∆ = y. The resulting MRP, Wy, has finite state space Sy. Since demand is

bounded and due to the structure of the policy, the state space for the inventory position is finite.

The probability transition matrix is Py and the cost assessed to period t is

Vy(i, n,x) = c(y(i, n)−x)+ +C(i, n,x+ (y(i, n)−x)+). (21)

Then for each (i, n,x)∈ Sy, the average expected cost or gain of policy y is

gy(i, n,x) = lim
T→∞

1
T
vy
T (i, n,x) = lim

T→∞

1
T
E(i,n,x)

{
T−1∑
t=0

Vy(Wt)

}

= lim
T→∞

1
T

T−1∑
t=0

P t
yVy(i, n,x) = [P ∗yVy](i, n,x), (22)

where the limit exists since Sy is a finite set and where P ∗ is defined to be the limiting matrix of

W. The limiting matrix is defined by the Cesaro limit (see Appendix A.4 in Puterman (1994)) to

be

P ∗ = lim
T→∞

1
T

T−1∑
t=0

P t. (23)
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Regardless of the periodicity characteristics of W, the Cesaro limit exists for both countable-

and finite-state Markov chains (and is equivalent to the regular limit if the chain is aperiodic).

Furthermore if the Markov chain is irreducible and positive recurrent, then a unique stationary

distribution π solves the system of equations π= πP subject to
∑

(i,n,x)∈Sy π(i,n,x) = 1 and π(i,n,x) ≥ 0

for all (i, n,x) ∈ Sy. A property of the limiting matrix is that P ∗P = P ∗. Therefore, since the

stationary distribution is unique, P ∗ = πT eT where e is a column vector of ones. That is, the rows

of P ∗ are identical and are each equivalent to the stationary distribution π. Finally, since W has

finite state space and is irreducible, the gain is constant for all (i, n,x)∈ Sy and is

gy = [P ∗yVy] = πyVy =
∑

(i,n,x)∈Sy

πy(i,n,x)

[
c(y(i, n)−x)+ +C(i, n,x+ (y(i, n)−x)+)

]
. (24)

The long-run average cost of a stationary, state-dependent basestock policy may be defined as

follows.

Theorem 1. Let y be any stationary, state-dependent basestock policy whose resulting MRP has

state-space Sy and stationary distribution πy. Then

gy = cE[D] +
∑

(i,n,x)∈Sy

πy(i,n,x)C(i, n,x+ (y(i, n)−x)+). (25)

Proof: Note that for all t≥ 0, xt+1 = xt + (y(it, nt)−xt)+−Dt. It follows that

lim
t→∞

E
[
(y(it, nt)−xt)+

]
= lim

t→∞
E[xt+1]− lim

t→∞
E[xt] + lim

t→∞
E[Dt], (26)

where E is the expectation operator conditioned on (i0, n0, x0) and the limit is the Cesaro limit.

For any bounded or non-negative function φ,

lim
t→∞

E[φ(it, nt, xt)] =
∑

(i,n,x)∈Sy

φ(i, n,x)πy(i,n,x). (27)

Applying equation (27) to the terms in equation (26),∑
(i,n,x)∈Sy

πy(i,n,x)(y(i, n)−x)+ =E[D] (28)

From equations (24) and (28),

gy =
∑

(i,n,x)∈Sy

πy(i,n,x)

[
c(y(i, n)−x)+ +C(i, n,x+ (y(i, n)−x)+)

]
= cE[D] +

∑
(i,n,x)∈Sy

πy(i,n,x)C(i, n,x+ (y(i, n)−x)+).

�

The result also holds for a generic state component instead of the specific (i, n) that we have

presented here, provided that the associated state space component is finite.
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4. Systems with Negligible Port Congestion
To develop insight into the potential impact of port-of-entry closures on global supply chains, we

initially consider a simplified system where the workload queue is assumed to dissipate immediately

after a port is reopened (i.e., r1 =∞). This case would result if two of the three strategic areas for

improvement were successfully implemented: contingency planning to reduce closure duration and

congestion and investment in strategies to increase processing capabilities at ports-of-entry during

states of emergency. These findings are important because they indicate the potential benefits in

inventory management that may be gained through the implementation of these strategies.

If the border is open when outstanding orders arrive at the port-of-entry, the order crosses and

arrives to the domestic customer without delay. Otherwise, the order is held at the port-of-entry

until the border reopens. When the border reopens, all orders arriving to, or currently waiting at,

the border cross and arrive at the domestic customer. In this case there is no border queue and

the only relevant state information is the port-of-entry status, solely represented by the DTMC

I={it, t≥ 0}.

Given a system where the queue length n may be ignored, several observations may be made

regarding the closure model. This section will provide conditions for the optimality of a state-

invariant basestock policy and show that the optimal policy for the model with negligible congestion

is a stationary, state-invariant policy.

4.1. The Special Class of State-Invariant Basestock Policies

Note that the definition of a state-dependent basestock policy simply permits, but does not require,

the order-up-to levels to vary from state to state. Policies in which the optimal order-up-to levels do

not vary from state to state are known as a special class called state-invariant basestock policies.

In this section, a corollary is introduced providing a sufficient condition for the optimality of a

state-invariant basestock policy, a method for its calculation, and an expression for the associated

long-run average cost. These results are critical to prove that the optimal policy for a system with

negligible port congestion is state-invariant, which is presented in Section 4.2.

In order to provide a sufficient condition for the optimality of a state-invariant basestock policy,

we first describe additional characteristics of C(i, n, y), the expected cumulative holding and penalty

costs incurred from the time the current order arrives until just before the order placed in the next

period arrives. In the case of negligible congestion, the queue length has no impact on the leadtime

probability distribution and therefore can be eliminated from the definition of C(i, n, y), such that

Equation (16) is reduced to the following:

C(i, x+ δ(i, x̂,z)) =
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))E
[
Ĉ
(
x+ δ(i, x̂,z)−D(l+1)

)]
. (29)
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Let the demand D be identically and independently distributed with probability mass function q

and cumulative distribution function Q. Recall that d1 and dJ represent the lower and upper bounds

on the demand distribution, respectively, and that D(l) represents the cumulative demand over l

periods. Then, let the demand D(l) be identically and independently distributed with probability

mass function ql and cumulative distribution function Ql. Define ξi =
∑

l≥0P (Λ(i) ≤ l ≤ Λ(i+)).

Recall that SI = {O,X}. Now, C(i, y) may be described by the following two lemmas.

Lemma 1. For all i∈ SI , C(i, y) is convex in y and lim|y|→+∞C(i, y) = +∞.

Proof: The convexity of C(i, y) follows from the convexity of Ĉ(x) and the definition of C(i, y).

Since Ĉ(x) = max{−bx,hx},

C(i, y) =
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))E
[
Ĉ(y−D(l+1))

]
=
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))E
[
max

{
−b(y−D(l+1)), h(y−D(l+1))

}]
≥
∑
l≥0

P (Λ(i)≤ l≤Λ(i+)))max
{
E[−b(y−D(l+1))],E[h(y−D(l+1))]

}
=
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))max
{
−by+ bE[D(l+1)], hy−hE[D(l+1)]

}
,

which completes the proof. The third step is valid by Jensen’s Inequality. �

Lemma 2. For all i∈ SI and y,

∂C(i, y)≡C(i, y+ 1)−C(i, y) = (b+h)
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))Ql+1(y)− bξi.

Proof: It follows from equation (1) that

∂Ĉ(y− d)≡ Ĉ(y+ 1− d)− Ĉ(y− d) =
{
−b if d> y
h if d≤ y.

Then from Lemma 1,

∂C(i, y) =
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))E
[
∂Ĉ
(
y−D(l+1)

)]
=
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))
(l+1)dJ∑
d=(l+1)d1

ql+1(d)∂Ĉ
(
y−D(l+1)

)
=
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))

 y∑
d=(l+1)d1

ql+1(d)h+
(l+1)dJ∑
d=y+1

ql+1(d)(−b)


=
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))

h y∑
d=(l+1)d1

ql+1(d)− b

1−
y∑

d=(l+1)d1

ql+1(d)
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=
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))

(b+h)

 y∑
d=(l+1)d1

ql+1(d)

− b


=
∑
l≥0

P (Λ(i)≤ l≤Λ(i+)) ((b+h)Ql+1(y)− b)

= (b+h)
∑
l≥0

P (Λ(i)≤ l≤Λ(i+))Ql+1(y)− bξi,

where the expectation operator in the first equation is with respect to D(l+1). �

Considering all stationary, state-dependent basestock policies, let y∗(i) denote the smallest

among all optimal order-up-to levels for state i. Considering all stationary, state-invariant base-

stock policies (where y∗(i)=y∗(j) for all i and j in SI), let ŷ∗(i) denote the smallest among all

optimal order-up-to levels for state i. Define the myopic cost function as H(i, y) = cE[D] +C(i, y)

and let y+(i) denote the smallest among all minimizers of H(i, y). We will refer to y+(i) as the

myopic order-up-to level for state i.

Corollary 1 provides a sufficient condition for the optimality of a state-invariant basestock policy,

a method for its calculation, and an expression for the associated long-run average cost.

Corollary 1.

(i) Let ĩ=min{argmini{y+(i)}}. Then for all i∈ SI , y+(̃i)≤ y∗(i)≤ y+(i).

(ii) For each i∈ SI , if

ỹ= min

{
(l+ 1)d1 ≤ y <∞ : y ∈Z,

∑
l≥0

Ql+1(y)
P (Λ(i)≤ l≤Λ(i+))

ξi
≥ b

b+h

}
,

then ỹ= y+(i).

(iii) If y+(0) = y+(1) = ...= y+(N)≡ y+, then y+ = y∗(0) = y∗(1) = ...= y∗(N) = ŷ∗ and

gŷ
∗

= cE[D] +
∑
i∈SI

πIiC(i, ŷ∗) = g∗,

where g∗ is the minimal gain over all stationary, state-dependent basestock policies.

Proof: Part (i) follows from Theorem 3(a) and 3(b) in Song and Zipkin (1996). For part (ii),

note that by definition, y+(i) = min{argminy:y∈Z {H(i, y)}}. Removing cE[D], which has no affect

on y+(i), we have y+(i) = min{argminy:y∈Z {C(i, y)}}. Since Λ(i) is finite with probability 1 and

order crossover is prohibited, ξi > 0 for all i ∈ SI . From Lemma 2, for all i ∈ SI , if y < 0, then

∂C(i, y) =−bξi < 0 since Ql+1(y) = 0 for y < (l+1)d1 and ξi > 0. It follows from Lemma 1 that y+(i)

is finite. The variable y+(i) may be redefined with the new bounds and two necessary conditions

for optimality as y+(i) =min{(l+ 1)d1 ≤ y <∞ : y ∈Z,∂C(i, y)≥ 0}. The result in part (ii) then

follows from Lemma 2. In part (iii), the optimality of y+ follows directly from part (i). The left
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equality in the expression for the gain in part (iii) holds by Theorem 1 and the right equality holds

by definition of g∗ and the optimality of ŷ∗. �

Lemmas 1 and 2 and Corollary 1 all hold for a generic state component instead of the specific i

that we have presented here, provided that the associated state space component is finite.

4.2. The Optimality of a State-Invariant Basetock Policy

In the model with negligible congestion, the potential position space, k, is redefined as k ∈

{0,1,2, ...L− 1}. The component zkt of the order vector represents the order that has been out-

standing for k time periods at period t. Since orders may accumulate at the border when it is

closed, zLt represents the sum of all orders that have been outstanding for at least L periods. The

order movement function describing this system is

M(k|O) =
{
k+ 1 if 0≤ k <L,
γ if k=L,

M(k|X) =
{
k+ 1 if 0≤ k <L,
L if k=L.

This order movement function prevents crossover.

Let W={Wt ≡ (it, xt) : t ≥ 0} be the Markov chain that arises under the stationary, state-

dependent basestock policy y. Suppose that W has transition probability matrix P . Assuming

that y∗(O) = y∗(X)≡ ŷ, the one-step transition probability of W is [P ](i,x),(j,x′) = pijP (D= ŷ−x′)

for all (i, x) and (j, x′).

The probability distribution for the order leadtime Λ(i) is now developed. An order placed at

time t when it = i will arrive at time t+ Λ(i). From the order movement function, P (Λ(i) =m) = 0

for 0 ≤m ≤ L− 1. The leadtime is exactly L if and only if it+L = O and so P (Λ(i) = L) = p
(L)
iO .

Similarly, the leadtime is exactly L+ 1 if and only if it+L =X and it+L+1 =O. Therefore P (Λ(i) =

L+ 1) = p
(L)
iX pXO. Note that P (Λ(i) =L+ 1) 6= p

(L+1)
iO since it+L cannot be O. Similarly for m≥ 2,

P (Λ(i) = L + m) = p
(L)
iX p

m−1
XX pXO. Because the queue at the port-of-entry does not have to be

accounted for in the case with negligible congestion, Proposition 1 reduces to:

P (Λ(i) = l) =


0 if l < L,
p

(L)
iO if l=L,
p

(L)
iX p

l−L−1
XX pXO if l > L.

(30)

It can then be shown that

P (Λ(i)≤ l) =


0 if l < L,
p

(L)
iO if l=L,

1− p(L)
iX p

l−L
XX if l > L,

(31)
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P (Λ(i)≤ l≤Λ(i+)) = P (Λ(i)≤ l)−
∑

j∈{O,X}

pijP (Λ(j)≤ l− 1) =


0 if l < L,
p

(L)
iO if l=L,
p

(L)
iO pOXp

l−L−1
XX if l > L,

(32)

and

ξi = p
(L)
iO

(
1 +

pOX
pXO

)
. (33)

The following corollary states that the optimal stationary, state-dependent basestock policy for

the closure model with negligible congestion is actually a stationary, state-invariant basestock

policy. Note that even though the optimal order-up-to levels are independent of the exogenous

supply system state, it is not valid to claim that the model then reduces to one with a single-

state exogenous border system. The system clearly affects the leadtime probability distribution,

the order-up-to levels and the resultant long-run average cost.

Corollary 2. For the closure model with negligible congestion, y∗(O) = y∗(X).

Proof: Since it is assumed that 0< pOX < 1 and 0< pXO < 1, it can be shown that ξi > 0 for all

i ∈ {O,X}. Consider the left-hand side of the inequality in the second necessary condition within

the minimization in Corollary 1(ii). From equations (32) and (33), this expression can be written

as ∑
l≥0

Ql+1(y)
P (Λ(i)≤ l≤Λ(i+))

ξi
=
QL+1(y)
1 + pOX

pXO

+
∑
l>L

(
pOXp

l−L−1
XX

1 + pOX
pXO

)
Ql+1(y),

which is independent of i. Thus the same ỹ will be found in Corollary 1(ii) for both border states

and is therefore the optimal state-invariant order-up-to level by Corollary 1(iii). �

It may appear to be counter-intuitive that the order-up-to level is the same whether the port-

of-entry is open or closed. While the order-up-to level will change depending on the probability or

expected duration of a closure, the optimal policy is not impacted by the current state of the port.

Without congestion the leadtime distribution is independent of queue length and a port-of-entry

closure is a temporary pause on flow through the system that does not create any lasting effects

after reopening. If a port-of-entry is closed, demand at the customer arrives (and accumulates)

with the same distribution that it did when the port-of-entry was open, while orders continue to

be placed that will satisfy all accumulated demand and bring inventory levels back to normal when

the closure ends. The orders arrive at the port-of-entry and wait for reopening. With negligible

congestion all units are immediately passed to the customer as soon as the port-of-entry reopens,

fulfilling the accumulated demand and restoring the inventory level. Altering the order-up-to level

during a port-of-entry closure would simply change the resultant inventory level when the port-of-

entry is reopened.
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Alternatively, when congestion is a factor, the accumulated inventory must wait in a queue to be

processed when the port-of-entry reopens after a closure, impacting the leadtime. Therefore, the

leadtime used to calculate the order-up-to level varies dependent on the state of the port-of-entry

and these results do not necessarily hold for the case with non-negligible congestion. Further, this

result will only hold if the assumption of a finite state space holds.

This finding highlights the importance of efficient port-of-entry operations. A state-invariant

policy makes inventory planning considerably simpler. Under conditions of negligible congestion,

a supply chain manager may safely apply the same policies whether the port is open or closed.

While the elimination of seaport congestion is already a vital, yet hard to achieve, goal that is

facing many port operators, this provides further incentive to reach this goal.

4.3. Numerical Analysis

For reasonable ranges of transition probabilities, the effects of worsening closure conditions on the

optimal long-run average inventory costs per day were limited for the case of negligible congestion.

For example, the optimal long-run average cost per day did not increase by more than 6.16% from

the best to the worst case instances within these ranges. Furthermore, for a case that represents well

a modern Asia-US supply chain, the increase was only 0.60%. See Lewis (2005) for the complete

numerical analysis results. Given that cost is not severely impacted for the case with negligible

congestion, it is of interest to determine if the case with non-negligible congestion behaves in a

similar manner.

5. Systems with Non-Negligible Congestion

While Section 4 provides a theoretical basis for studying the problem of port congestion, in all

likelihood, most systems will experience at least some form of congestion when recovering from

a closure. Developing similar closed form expressions for the case with non-negligible congestion

is not necessarily possible due to increased complexity. Therefore, the impacts of port-of-entry

closures and the resulting congestion on global supply chains are studied numerically using the

model developed in Section 3. The results in this section highlight three important strategic issues

that can improve the productivity and reliability of international supply chain systems:

1. The development of effective contingency plans that reduce the duration of port-of-entry

closures and prioritize the return to a normal state of operation;

2. The development of inventory management strategies by supply chain firms that plan for the

possibility of port-of-entry closures and congestion; and

3. The investment in strategies to increase the processing capabilities of highly utilized and

congested ports-of-entry during states of emergency.



Lewis, Erera, Nowak and White: Managing Inventory in Global Supply Chains Facing Port-of-Entry Disruption Risks
20 Article submitted to Transportation Science; manuscript no.

The model may be used to evaluate these issues by adjusting the appropriate parameters. Port-of-

entry closure duration is analyzed through the modification of the probability of a port transitioning

from closed to open, pXO. As this probability value decreases and the port is closed for a longer

period, the cost of the closure event rises. The scale of this cost increase reflects the relative

importance of limiting closure duration.

The importance of planning for the possibility of closures and congestion is evaluated by deter-

mining the costs that a firm may incur when there is no contingency planning. Using a probability

of port closure equal to zero, such that pOX = 0, results in an inventory policy that does not consider

potential port-of-entry closures. The cost will generally increase when this policy is adopted under

conditions with nonzero closure probabilities. Quantifying this cost provides a metric to evaluate

the need for port-of-entry closure contingency planning.

Finally, highly utilized ports-of-entry are evaluated by decreasing the processing parameter, r1,

mimicing a port with increasing utilization and, potentially, congestion. Similarly to the analysis

of closure duration, the increase in costs as utilization rises reflects the need to combat congestion

at the busiest of ports.

5.1. Determination of Optimal Policies

In order to evaluate these various scenarios, the model is tested using an appropriate algorithm.

The numerical results were determined using a standard implementation of the value iteration

algorithm (VIA) for Markov decision problems. A detailed description of the algorithm can be

found in Puterman (1994). To enable efficient computation, the allowable state space and order

quantities are constrained to be finite without substantially affecting the optimal solution.

The VIA terminates in a finite number of iterations with an ε-optimal policy. Its long-run average

cost at the termination of the VIA (denoted gε) satisfies the following inequality: gε − g∗ < ε.

Furthermore, the true optimal long-run average cost is approximated as in Theorem 8.5.6(b) in

Puterman (1994) (denoted g′) and so |g′− g∗|< ε/2. For any positive ε, no matter how small, the

policy obtained at the termination of the VIA may be sub-optimal. However in this paper, as is

common, the policy obtained by the VIA algorithm and the approximation of the optimal long-run

average cost is referred to as the optimal policy and the optimal long-run average cost. For the

numerical study that follows, ε is set at 0.01 and therefore the maximum difference between the

approximate and true optimal long-run average cost is equivalent to less than $0.005.

5.2. Experimental Design

Consider a supply chain where the domestic customer reviews its inventory and places daily re-

supply orders in container-loads. Suppose that the deterministic leadtime from the supplier to the
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domestic seaport is L=15 days, corresponding to typical ocean carrier service from Asia to the

Western United States. Assume a value of c=$150,000 for the contents of a forty-foot container.

This is a reasonable average value for goods shipped via ocean carrier, but may be low for some

commodities such as electronics or pharmaceuticals. From Theorem 1, note that the purchase cost

parameter does not directly affect the optimal inventory policy and that it contributes to the

long-run average cost per day as an additive term, cE[D]. Therefore, only results for the optimal

long-run average daily holding and penalty costs are presented. Given the value of the container

contents, a daily holding cost of h=$100 per day represents a 24.33% annual holding cost rate, a

reasonable rate for many supply chains. The daily penalty cost for unfilled demand is b=$1,000,

representing an annual penalty cost of 2.4 times the container contents value.

Demand has a truncated Poisson distribution with mean demand of 0.5 containers per day, and

a maximum realizable demand in any period of dJ = 10. A truncated Poisson distribution assigns

Poisson probabilities to all demand realizations up through dJ−1 and a probability of 1−Q(dJ−1)

to dJ , where dJ is chosen such that 1 − Q(dJ−1) < ε for some ε > 0. In this problem instance,

P (D= 10) = 1−Q(9) = 1.63× 10−10.

For the freight processing model of a seaport, assume r0=10 units of work per day and r1=11

units of work per day. Therefore a port closure of 10 days results in congestion that will last for

at least 100 days. The values of r0 and r1 were selected to provide a realistic model of potential

seaport congestion. For example in the port security wargame described earlier, eight days of

seaport closure resulted in 92 days of port congestion, and the 2002 10-day closure of Western U.S.

seaports resulted in months of congestion.

Finally, several sets of port-of-entry closure and reopening probabilities that represent a wide-

range of plausible real-world scenarios are considered: pOX ∈ {0.001,0.003,0.01,0.02} and pXO ∈

{0.05,0.1,0.2,0.3,0.4,0.5}. These sets correspond to an expected inter-closure time (1/pOX) ranging

from approximately three years to 50 days, and an expected closure duration (1/pXO) ranging

from 20 days to two days. Note that the shorter inter-closure time and closure duration may

replicate delays at an airport due to inclement weather. The probabilities can not allow for an

expected port utilization that is equal to or greater than one; therefore, the following pairs are

excluded: (pOX , pXO) ∈ {(0.01,0.1), (0.01,0.05), (0.02,0.2), (0.02,0.1), (0.02,0.05)}. The remaining

pairs translate to expected utilizations greater than 90%, which is representative of the situation

at many major seaports. For example, many seaports in the U.S. operate at close to capacity

throughout the year.
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Figure 2 Expected holding and penalty costs per day for the range of transition probabilities.

5.3. Effect of Closure Duration on Costs and Order-up-to Levels

The most critical information resulting from this analysis is the effect that port closure duration

has on holding and penalty costs, as well as order-up-to levels. The long-run average holding and

penalty costs per day using the optimal action sequence are presented in Figure 2 and selected

optimal order-up-to levels for a range of port status transition probabilities are shown in Table

2. When the port is open, the optimal order-up-to levels exhibit little variation over the range of

the transition probabilities, so these are not presented graphically. However, the optimal order-

up-to levels do vary with the transition probabilities when the port is closed; Table 2 depicts the

cases when the port is closed and there are zero and 100 units of work in the port work queue,

respectively.

0.001 0.003 0.01 0.02 0.001 0.003 0.01 0.02

0.05 25 28 30 33

0.1 18 18 23 24

0.2 14 14 15 20 20 21

0.3 13 13 14 14 19 19 19 20

0.4 13 13 13 13 18 18 19 19

0.5 12 12 13 13 18 18 18 18

n = 0 n = 100

p XO

p OX p OX

Table 2 Optimal order-up-to level for the range of transition values when the port is closed with queue lengths

of 0 (no congestion) and 100 (significant congestion).

For the studied ranges, observe that the optimal long-run average holding and penalty cost and
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order-up-to levels are non-decreasing as pXO decreases or pOX increases. As the likelihood of a

closure (pOX) or the expected duration of a closure (1/pXO) increases, a firm should carry more

inventory. Furthermore, the optimal long-run average holding and penalty cost and order-up-to

levels are more sensitive to pXO than to pOX . Therefore, a firm will be impacted more by the length

of a closure than the probability of closure. This result underlines the importance of reopening the

port as soon as possible in the event of a closure.

As Figure 2 and Figure 3 show, the optimal long-run average holding and penalty costs per day

increase superlinearly both as pXO decreases and as 1/pXO increases. Note that this will not always

occur. For example, costs that simply decrease linearly with 1/χ may increase superlinearly with

χ (where χ is a dummy variable).
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Figure 3 Expected holding and penalty costs per day based on expected closure duration).

As discussed in Lewis et al. (2006), longer port-of-entry closures and increased congestion can

quickly erode profit margins. Not unexpectedly, the greatest increases in the optimal long-run

average holding and penalty cost and order-up-to levels occur when pXO is small, corresponding to

long expected closures. For example, when pOX=0.003 and the expected closure duration increases

from two to 20 days, the expected holding and penalty cost per day increases by 136%, from $548 to

$1,294 per day. Such cost increases represent significant reductions in operating margin. Assuming

that this firm earns annual revenue equal to average yearly demand multiplied by the average value

of a container’s contents and operates with a 10% margin, its annual operating income would be

about $2.7 million. Thus, an increase in expected closure duration from two to 20 days results in

a 10% reduction in operating margin.
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These results have important implications for supply chain stakeholders, both private firms and

public agencies. While prevention of closures is critically important (especially due to security-

related incidents), economic impacts should also be mitigated by the deployment of effective con-

tingency plans that reduce the duration of potential seaport closures and quickly return the freight

transportation systems to normal operation. Such contingency plans may include the re-routing

of in-transit freight to other ports-of-entry (when feasible) or, in the case of extreme residual con-

gestion, specially allocated investment to enable temporary increases in processing capacity at the

disrupted seaport or appropriate alternate ports-of-entry. The development and implementation of

effective contingency plans will require the strategic engagement and cooperation of private firms

and public agencies.

5.4. Performance of Inventory Policy without Consideration for Port-of-Entry
Closure

In the previous section, it was assumed that the domestic customer makes optimal decisions given

complete knowledge of the dynamics of port-of-entry closures and reopenings and the workload at

the port-of-entry (e.g. queue length). Thus, the results of the analytical study indicate the best-

expected performance that the domestic customer could achieve. Suppose that a domestic customer

optimizes its inventory policy without regard to seaport closures and congestion. The policy may

be sub-optimal when implemented and could be a costly managerial error. This policy is referred

to as the implemented policy. The difference in cost between the optimal inventory policy and the

implemented policy quantifies the savings from contingency planning for port-of-entry closures and

congestion.

The implemented policy is determined by evaluating the optimal inventory policy when the

probability of seaport closure is assumed to be zero, e.g. pOX=0. The cost of this policy may then

be compared to the long-run average cost given the true closure probability for each case. Figure 4

displays the amount that the cost decreases from that of the implemented policy when the potential

for port closure is considered. Note that the implemented policy is independent of the system state,

such that y∗(i, n)=12 containers regardless of the port status and border queue length.

Port-of-entry closures are low probability events and some firms may substantially underesti-

mate them or even choose to ignore them. Sub-optimal decision making that does not consider low

probability events may be acceptable in many cases. However, there are clearly scenarios for which

contingency planning for port closures and congestion is critically important. Total cost savings

of only 1-2% correspond to annual dollar savings in the hundreds of thousands. The most impres-

sive data point corresponds to the case when pOX=0.003 and pXO=0.05. In this case, the annual
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Figure 4 Cost savings per day due to contingency planning that considers port-of-entry closures.

expected cost penalty is approximately $2.6 million; such a cost nearly consumes all operating

income in this case. Supply chain firms operating under suboptimal inventory policies face exacer-

bated cost impacts of seaport closures and congestion when compared to firms operating optimally.

Of course, firms must also be careful not to overestimate expected port closure times when devel-

oping inventory policies. Such over-estimations will lead to unnecessarily larger order-up-to levels

and consequently larger inventory holding costs.

5.5. Impact of Port-of-Entry Utilization on Cost and Order-up-to Levels

Investment in strategies that increase the processing capabilities of highly utilized and congested

ports-of-entry during states of emergency is critical to global supply chains. Utilization provides

a means for measuring a seaport’s excess processing capacity. Utilization and excess processing

capacity are inversely proportional; as utilization increases, a seaport’s ability to process the freight

backlog after a disruption diminishes. Therefore, closures more negatively impact supply chains

that rely on highly utilized seaports. In this section, the impact of seaport utilization on the optimal

long-run average holding and penalty cost and order-up-to levels is investigated.

Recall that port utilization is given by ρ= r0/(πOr1) and is therefore affected by the processing

parameters (r0 and r1) as well as the port status transition probabilities (through the stationary

distribution). In this section, the arrival parameter (r0=10) and the probability of transitioning

from open to closed (pOX=0.003) are fixed. The processing parameter (r1) and the expected closure

duration (1/pXO) are then varied. Let Ω be the optimal long-run average holding and penalty cost.

Table 3 displays the optimal expected holding and penalty costs per day and the order-up-to levels
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Figure 5 Change in long-run average holding and penalty costs per day as seaport utilization increases.

when there is significant congestion. The table also shows the differences in utilization values as

the transition probabilities and arrival and processing parameters are varied. Figure 5 displays the

optimal long-run average holding and penalty costs per day versus port utilization when r0=10

and r1=11.

p XO r 0 r 1   y* (O, 100) y* (X ,100)

0.05 1 24 0.044 $909 13 13

0.05 10 30 0.353 $981 13 13

0.05 10 15 0.707 $1,093 14 18

0.05 10 11 0.964 $1,294 19 33

0.1 1 24 0.043 $610 12 12

0.1 10 30 0.343 $632 12 13

0.1 10 15 0.687 $676 13 16

0.1 10 11 0.936 $761 18 24

0.5 1 24 0.042 $543 12 12

0.5 10 30 0.335 $543 12 12

0.5 10 15 0.671 $544 12 13

0.5 10 11 0.915 $548 17 18

Table 3 Impact of seaport utilization (ρ) on expected costs and optimal order-up-to levels

As utilization increases and potential congestion becomes more severe, optimal expected holding

and penalty costs per day and the optimal order-up-to levels increase. As r1 decreases relative to

a fixed value of r0, fewer units of work can be completed in any open period, which means that

queues will require a greater number of periods to be reduced. Figure 5 indicates that the holding

and penalty costs per day (and the optimal order-up-to levels) increase more than linearly with

seaport utilization. When pXO=0.05 and the port utilization increases from 70.7% to 96.4%, the
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expected holding and penalty costs per day increase by nearly 20%. These results again assume

optimal decision-making, and the expected costs per day would be even greater if the domestic

customer implemented a sub-optimal inventory policy. Therefore, investments that increase the

processing capabilities of highly-utilized seaports are crucial to reducing the impacts on supply

chain productivity by seaport closures and congestion and need to be prioritized. Since additional

processing capability is only required when congestion develops following a temporary closure,

such investments should again be directed to strategies that enable such highly-utilized seaports

to temporarily increase capacity immediately following a closure.

6. Conclusions

Ports-of-entry are among the most critical components of the modern international supply chain

infrastructure, particularly container seaports. As global reliance on containerized cargo and ocean-

shipping continues to increase, research about the potential impacts of disruptions such as unex-

pected port-of-entry closures and the resulting congestion is critical to both users and operators of

international supply chain systems.

This research highlights three strategic activities involving supply chain users, operators, and

government agencies that can improve the productivity and reliability of international supply

chain systems. First, implementing a plan that considers potential port closures results in a cost

savings over plans that do not in virtually every scenario tested, indicating that supply chain

users should develop inventory management strategies that plan for the possibility of port-of-entry

closures and resultant congestion. Firms that fail to do so may expect annual inventory-related

cost increases that completely consume operating income. Second, it is shown that increasing

port closure duration leads to a considerable reduction in operating margin. While the prevention

of disruptions is critically important, the supply chain entities must also engage and cooperate

with each other to design effective contingency plans that reduce the duration of port-of-entry

closures and quickly return supply chain systems to normal states of operation. Finally, increasing

port utilization may increase holding and penalty costs significantly. Investment by infrastructure

operators and government agencies should be made to increase the processing capabilities of highly

utilized ports-of-entry, especially during the states of emergency that immediately follow a closure

when congestion is worst.

While the first issue relates to a potential strategic choice for supply chain firms, the latter

two issues relate to choices to be made by government authorities and port terminal operators.

However as supply chain firms are clearly impacted by the decisions of the other stakeholders,



Lewis, Erera, Nowak and White: Managing Inventory in Global Supply Chains Facing Port-of-Entry Disruption Risks
28 Article submitted to Transportation Science; manuscript no.

supply chain firms must be engaged in the latter two issues to ensure more favorable supply chain

systems. One example of the interaction between supply chain firms and government authorities is

the Customs-Trade Partnership Against Terrorism (C-TPAT), a program created by U.S. Customs

and Border Protection through which supply chain firms voluntarily improve their supply chain

security practices in exchange for more favorable treatment in clearing U.S. customs. Bakshi and

Gans (2010) provide an analysis of C-TPAT, showing how this program can help alleviate seaport

congestion.

Future research of micro-level operations of supply chain systems, as considered in this paper, is

still necessary to fully understand the impacts of port-of-entry closures and the potential manage-

ment strategies that firms can employ to deal with them. However, the results here indicate the

importance of future research of macro-level operations of supply chain systems as a whole, involv-

ing multiple supply chain users, trade lanes, and ports-of-entry. While these types of centralized

optimization and management policies may provide an overall benefit to a supply chain system,

it is expected that individual supply chain users and operators may be negatively impacted by

them. Compensation mechanisms should be considered in this research to account for cost-benefit

imbalances. Some governments are beginning to research these types of systems-level policies (such

as the U.S. Department of Transportation). A necessity for such policies is what Lee and Wolfe

(2003) refer to as “total supply network visibility,” which is discussed as a strategy to help mitigate

the impacts of a supply chain security breach. Continuing with the concept of visibility, another

area of future research is the partial-observability of port-of-entry congestion. Domestic customers

may have an indication of the level of congestion, but good metrics for port-of-entry congestion

(and other components of supply chain system visibility) may be difficult to determine, monitor,

and disseminate.
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Appendix. Proof of Proposition 1

Proof: Given (it, nt) = (i, n), Λ(i, n) = l for l≥L if and only if the following two events occur:

(i) it+l =O, and

(ii) If l=L, then

nt+L + r0 ≤ r1. (34)

If l > L and nt+L =m, then

Nit+LO(t+L, l−L− 1) = β(m). (35)

The first condition holds as it+l = X implies that upt+l = 0 and the order cannot be processed in that

period. Thus it+l must be O. The second condition accounts for the dynamics of the port work queue. Given

(it, nt) = (i, n), an order placed at time t arrives to the border at time t+L where the length of the queue

is nt+L. Then r0 units of work arrive and the customer order is assigned to the last arriving unit. After the

arrival of new work this queue is referred to as the full queue. There are nt+L + r0 units of work in the full

queue and the order placed at time t is at the very end. If the order is to be processed in period t+ l, then

all customers that have arrived to the queue by the end of period t+L must be completely processed by the

end of period t+ l, and moreover, the last of which must be processed in period t+ l.

If the order is to be processed in period t+L, then the number of units of work processed in period t+L

must be at least the number of units of work in the full queue. That is,

nt+L + r0 ≤ upt+L = r1. (36)

The equality holds since it+L =O from part (i).

If the order is to be processed in period t+ l for l > L, then the number of units of work processed during

the time interval [t+L, t+ l] must be at least the number of units of work in the full queue. This condition

is clearly necessary but not sufficient, since it allows the full queue to be completely processed in a period

prior to period t+ l. Therefore a second condition is required to ensure that by the end of period t+ l− 1,

there are still a positive number of units of work remaining in the full queue. This means that the customer

order has not yet been processed. These two conditions are respectively represented by the following two

inequalities:

Nit+LO(t+L, l−L)r1 ≥ nt+L + r0, (37)

and

Nit+LO(t+L, l−L− 1)r1 <nt+L + r0. (38)

Note that by definition, Nij(t, l) equals either Nij(t, l−1) or Nij(t, l−1)+1 with probability one. However

given that the condition in part (i) holds, Nit+LO(t+L, l−L) =Nit+LO(t+L, l−L− 1) + 1 with probability

one. Substituting this into equation (37) and rearranging terms,

Nit+LO(t+L, l−L− 1)r1 ≥ nt+L + r0− r1. (39)
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Combining equations (39) and (38) and dividing by r1,

nt+L + r0
r1

− 1≤Nit+LO(t+L, l−L− 1)<
nt+L + r0

r1

⇐⇒

α− 1≤Nit+LO(t+L, l−L− 1)<α, (40)

where α= nt+L+r0
r1

.

Assume α is integer. Since Nit+LO(t+ L, l − L− 1) is integer-valued, equation (40) holds if and only if

Nit+LO(t+L, l−L− 1) = α− 1. Now assume that α is not integer. Then equation (40) holds if and only if

Nit+LO(t+L, l−L− 1) = bαc. The conditions in parts (i) and (ii) are both necessary and sufficient.

To determine P (Λ(i, n) = l|it = i, nt = n) for all l≥ 0, four cases for the value of l are considered. Leadtime

can not be shorter than transit time, L, such that P (Λ(i, n) = L|it = i, nt = n) = 0 for l < L. If leadtime is

equal to transit time, l = L, the port must be open when the order arrives and the port must be able to

process the entire queue. Therefore,

P (Λ(i, n) =L|it = i, nt = n) = P (it+L =O,nt+L + r0 ≤ r1|it = i, nt = n)

= P (it+L =O,nt+L ≤ r1− r0|it = i, nt = n) (41)

=
∑

0≤m≤r1−r0

P (it+L =O,nt+L =m|it = i, nt = n)

=
∑

0≤m≤r1−r0

f(i,n)(O,m).

In the case where l=L+1, the port must be open for period t+L+1 and the queue must be long enough

such that the processing of units arriving during period t+L cannot be completed until period t+L+ 1.

Therefore,

P (Λ(i, n) =L+ 1|it = i, nt = n)

= P (it+L+1 =O,Nit+LO(t+L,0) = β(nt+L)|it = i, nt = n)

=
∑

j∈{O,X}

∑
m≥0

P (it+L = j,nt+L =m, it+L+1 =O,Nit+LO(t+L,0) = β(nt+L)|it = i, nt = n)

=
∑

j∈{O,X}

∑
m≥0

P (it+L+1 =O,NjO(t+L,0) = β(m)|it+L = j,nt+L =m, it = i, nt = n)

∗P (it+L = j,nt+L =m|it = i, nt = n)

=
∑

j∈{O,X}

∑
m≥0

P (it+L+1 =O|NjO(t+L,0) = β(m), it+L = j,nt+L =m, it = i, nt = n)

∗P (NjO(t+L,0) = β(m)|it+L = j,nt+L =m, it = i, nt = n)f(i,n)(j,m)

=
∑

j∈{O,X}

∑
m≥0

pjOP (NjO(t+L,0) = β(m)|it+L = j,nt+L =m, it = i, nt = n)f(i,n)(j,m)

=
∑

m≥0: β(m)=0

f(i,n)(X,m)pXO +
∑

m≥0: β(m)=1

f(i,n)(O,m)pOO

=
∑

0≤m≤r1−r0

f(i,n)(X,m)pXO +
∑

r1−r0<m≤2r1−r0

f(i,n)(O,m)pOO.

The second to last equation follows since NjO(t+L,0) represents the number of visits to state O

only in period t+L and can therefore only take on values of 0 (if j =X) or 1 (if j =O). The final
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equation follows from (13). For example β(m) = 0 for values of m≥ 0 such that m+r0
r1
≤ 1, which

implies that m≤ r1− r0. Since the customer queue length is non-negative, m≥ 0.

Similarly, when l > L+ 1 the port must be open for period t+ l and the queue must be long

enough such that the processing of units arriving during period t+ l−1 cannot be completed until

period t+ l. Therefore,

P (Λ(i, n) = l|it = i, nt = n)

= P (it+l =O,Nit+LO(t+L, l−L− 1) = β(nt+L)|it = i, nt = n)

=
∑

j∈{O,X}

∑
m≥0

P (it+L = j,nt+L =m, it+l =O,Nit+LO(t+L, l−L− 1) = β(nt+L)|it = i, nt = n)

=
∑

j∈{O,X}

∑
m≥0

P (it+l =O,NjO(t+L, l−L− 1) = β(m)|it+L = j,nt+L =m, it = i, nt = n)

∗P (it+L = j,nt+L =m|it = i, nt = n)

=
∑

j∈{O,X}

∑
m≥0

P (it+l =O,NjO(t+L, l−L− 1) = β(m)|it+L = j,nt+L =m, it = i, nt = n)f(i,n)(j,m)

=
∑

j∈{O,X}

∑
m≥0

P (it+l =O|NjO(t+L, l−L− 1) = β(m), it+L = j,nt+L =m, it = i, nt = n)

∗P (NjO(t+L, l−L− 1) = β(m)|it+L = j,nt+L =m, it = i, nt = n)f(i,n)(j,m)

=
∑

j∈{O,X}

∑
m≥0

∑
k∈{O,X}

P (it+l−1 = k, it+l =O|NjO(t+L, l−L− 1) = β(m), it+L = j,nt+L =m, it = i, nt = n)

∗P (NjO(t+L, l−L− 1) = β(m)|it+L = j,nt+L =m, it = i, nt = n)f(i,n)(j,m)

=
∑

j∈{O,X}

∑
m≥0

∑
k∈{O,X}

P (it+l =O|it+l−1 = k,NjO(t+L, l−L− 1) = β(m), it+L = j,nt+L =m, it = i, nt = n)

∗P (NjO(t+L, l−L− 1) = β(m), it+l−1 = k|it+L = j,nt+L =m, it = i, nt = n)f(i,n)(j,m)

=
∑

j∈{O,X}

∑
m≥0

∑
k∈{O,X}

P (NjO(t+L, l−L− 1) = β(m), it+l−1 = k|it+L = j,nt+L =m, it = i, nt = n)

∗pkOf(i,n)(j,m).

�

It is not easy in general to develop a closed-form expression for probability distribution f(i,n), due

to the max operator that governs queue processing. However, f(i,n) can of course be determined via

explicit enumeration of all possible port-of-entry status sample paths for L+ 1 periods, given each

possible initial state (i, n). In practice, such enumeration is reasonable computationally as long as

L and n are relatively small.

The probability distribution for Nij(t, l) can be derived using methods developed first in Gabriel

(1959). For all i, j =O, t≥ 0 and l≥ 1,

P (NOO(t, l) = 1 + ν) =


pνOOp

l−ν
XX

∑τO
w=1

(
ν
η

)(
l−ν−1
θ−1

)(
pOX
pXX

)θ (
pXO
pOO

)η
if 0≤ ν < l,

plOO if ν = l,
0 otherwise,

(42)

P (NXO(t, l) = ν) =


plXX if ν = 0,

pνOOp
l−ν
XX

∑τX
w=1

(
ν−1
θ−1

)(
l−ν
η

)(
pOX
pXX

)η (
pXO
pOO

)θ
if 0< ν ≤ l,

0 otherwise,

(43)
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where τO = l+ 0.5− |2ν + 0.5− l| (note that this expression corrects a minor error in the corre-

sponding equation in Gabriel (1959)), τX = l+ 0.5− |2ν − 0.5− l|, and θ and η are functions of w

such that if w is even, then θ= η= 0.5w, and if w is odd, then θ= d0.5w−1e and η= d0.5we. Due

to the Markov property, Nij(t, l) is identically distributed for all t.
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