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Magnet traveling through a conducting pipe: A variation on the
analytical approach

Benjamin Irvine,a) Matthew Kemnetz,b) Asim Gangopadhyaya,c) and Thomas Ruubeld)

Department of Physics, Loyola University Chicago, Chicago, Illinois 60626

(Received 15 October 2012; accepted 24 January 2014)

We present an analytical study of magnetic damping. In particular, we investigate the dynamics of

a cylindrical neodymium magnet as it moves through a conducting tube. Owing to the very high

degree of uniformity of the magnetization for neodymium magnets, we are able to provide

completely analytical results for the electromotive force generated in the pipe and the consequent

retarding force. Our analytical expressions are shown to have excellent agreement with

experimental observations. VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4864278]

I. INTRODUCTION

Magnetic braking plays an increasingly significant role in
industry. At present, it is commonly used in applications such
as electric vehicles, rowing machines, roller coasters and free-
fall tower rides in amusement parks, Maglev trains, etc. Other
emerging applications include high-speed trains and military
vehicles and systems. Magnetic braking has not yet achieved
its full potential use in industrial and transportation applica-
tions, even though the first patent for a magnetic brake was
issued in 1892. There are a number of promising applications
in the mining, railroad, and elevator industries, where cur-
rently used mechanical brake systems are prone to overheat-
ing, mechanical degradation, significant maintenance costs,
and periodic failures. Besides being wear free, magnetic
brakes are also quiet and odorless. Because they are not de-
pendent on the coefficient of friction, relatively large braking
forces can be achieved independent of weather conditions.
Furthermore, because their retarding force is proportional to
the velocity, they possess an almost ideal mechanism for
high-speed safety braking. An improved understanding of
magnetic damping is important to the development of future
magnetic braking technology. In industry, complex computa-
tional models are often used to simulate realistic scenarios of
magnetic braking. Here, we have developed a fully theoretical
model for a cylindrically symmetric system, which can be
used to benchmark these computational models.

We present an analysis of a common demonstration that
comprises a cylindrical magnet and a non-ferromagnetic
conducting tube in relative motion to each other.1–21 Owing
to the interaction between the moving magnet and the
induced current in the pipe, the magnet falls quite slowly
through the tube, and generates a sense of amazement in stu-
dents and teachers alike. In this paper, we specifically study
the motion of a cylindrical neodymium magnet through a
copper pipe of circular cross-section. The azimuthal symme-
try of the problem keeps the mathematics tractable and
allows us to generate an analytical expression for the electro-
motive force (emf) generated in an arbitrary segment of the
tube, as well as the resulting retarding force.

This paper is organized as follows. In Sec. II, we describe
the experimental setup used for the demonstration. In Sec. III,
we develop a model based on the near-uniformity of magnet-
ization of neodymium magnets and show that the resulting
prediction of the magnetic field strength has excellent agree-
ment with the measured values of the field on the axis of
the magnet. We also compare the experimental results
with the common point-dipole approximation and with a

two-monopole approximation. In Sec. IV, we use our model
to compute the flux through circular loops of the conducting
pipe and generate an expression for the current in a section of
pipe of arbitrary length. Then, assuming the length of the tube
to be much larger than that of the magnet, in Sec. V we com-
pute the current generated in the pipe. In Sec. VI, we compute
the force on the magnet due to the interaction between the
magnet and the pipe and compare it with experimental results.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1; we use two
hanging masses (m and M) to pull a cylindrical neodymium
magnet through a copper pipe with varying terminal veloc-
ities. Pulling on the magnet from both sides helps to keep it
vertical and prevents it from trying to align with the geomag-
netic field. We use “smart pulleys” from PASCO to record
the position, velocity, and acceleration of the magnet as it

Fig. 1. Schematic of the experimental setup. A two-mass pulley system is

used to pull a neodymium magnet through a copper pipe.
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travels into, through, and out of the pipe. Figure 2 shows that
the velocity of the magnet remains constant (at the terminal
velocity) for a significant segment of the trajectory.

We find that the dependence of the retarding force on the ter-
minal velocity can be accurately modeled by a linear relation.
As we will show in Sec. VI, this linear relationship is replicated
by our theoretical analysis. Although researchers have studied
the damped oscillatory motion of a magnet in a conducting
tube,21 in this work, we limit ourselves to a study of the retarding
force for a magnet moving with different terminal velocities.

III. MAGNETIC FIELD DUE TO A NEODYMIUM

MAGNET

In order to quantitatively express the magnetic field, we
need to develop an appropriate model of the magnet. Several
authors have considered the magnet to be a point-
dipole,5,15–17,21 which works well for small magnets moving
through large-diameter pipes (so long as the magnet is not
too close to the inner surface of the pipe). Some authors have
also considered a physical dipole constructed of two point
monopoles separated by an appropriate distance;4 this too
would be a good approximation when the diameter of the
magnet is much smaller than the diameter of the pipe. Our
aim here is to keep the analysis as general as possible. In par-
ticular, we specifically include the case where the diameters
of the magnet and the inner surface are comparable so that a
strong braking force is generated. In such a case, the point-
dipole model does not accurately fit the experimental data.

Neodymium magnets have a very uniform magnetization.
This uniformity allows us to approximate the ~B-field of the
cylindrical magnet as if it were produced by two circular
disks with uniform magnetic surface charge densities 6rm,
where rm is equal to the magnetization M0 of the magnet.23

The method of determining the ~H-field is then analogous to
the case of finding the electric field of a circular,
parallel-plate capacitor with uniform surface charge densities
6re. In Ref. 4, although the authors recognized the applic-
ability of the two-disk model for this situation, they later
chose to approximate it using a two-monopole system.

A. Magnetism in a polarizable medium

The magnetic field due to a current density ~J must satisfy
Ampere’s Law

~r � ~B ¼ l0
~J ; (1)

where ~J ¼ ~Jf þ ~Jb includes both free and bound current, and
the bound current is given by ~Jb ¼ ~r � ~M, with ~M the mag-
netization (magnetic moment per unit volume). Thus, in the
presence of magnetization, we have

~r � ~B ¼ l0
~Jf þ ~Jb

� �
¼ l0

~Jf þ ~r � ~M
� �

: (2)

But for a permanent magnet ~Jf ¼ 0, so Eq. (2) gives

~r � ~B � l0
~M

� �
¼ ~r � l0

~H ¼ 0; (3)

where the conservative field ~H is defined such that ~B
¼ l0

~M þ ~H
� �

: Further, because ~r � ~B ¼ 0 we have

~r � ~H ¼ � ~r � ~M: (4)

Comparing this equation with Gauss’ law ~r � ~E ¼ qe=�0, we
see that the ~H-field is generated by the “magnetic charge
density” qm � � ~r � ~M in exactly the same way that the
electrostatic field ~E is generated by the electrical charge den-
sity qe. This means we can calculate ~H exactly as we would
calculate ~E for an electrostatics problem.

B. Magnetic scalar potential for a uniformly magnetized
cylinder

Because ~H is a conservative field, we can write
~H ¼ � ~rWm, where Wm is the magnetic scalar potential.23

Using Eq. (4), we then see that the magnetic scalar potential
obeys Laplace’s equation

~r2
Wm ¼ �qm ¼ ~r � ~M: (5)

For a cylindrical magnet of radius Rm and length L and hav-
ing uniform magnetization M0 êz (along the axis of the cylin-
der), the divergence is zero everywhere inside (and outside)
the magnet and receives non-zero contributions only at the
two circular end surfaces. Use of the divergence theorem
then shows that the ~H-field generated by the cylindrical mag-
net is the same as that generated by the surface charge den-
sity n̂ � ~M, where n̂ is the outward-pointing normal to the
cylindrical surface. Physically, this corresponds to two disks
of uniform magnetic surface charge densities 6rm separated
by a distance L, where rm¼M0 (see Fig. 3). This expression
for the ~H-field is valid both inside and outside the magnet.
The ~B-field is then given by l0

~H outside the magnet and
l0

~H þ ~M
� �

inside.
Because of the symmetry of the problem, the scalar poten-

tial on the axis of the cylinder is particularly straightforward
to calculate. If we begin with a circular disk of radius Rm and

Fig. 2. The velocity of the magnet as it travels into, through, and out of the

conducting pipe for different applied forces. The velocity is seen to be con-

stant from around 0.4–0.9 m.

Fig. 3. A cylindrical (neodymium) magnet is modeled as two disks with uni-

form magnetic charge densities 6rm located at z ¼6L/2, respectively.
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uniform (magnetic) charge density M0 centered at the origin
in the xy-plane, then the (magnetic) scalar potential on the
z-axis is given by

WmðzÞ ¼
M0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

m þ z2

q
� z

� �
: (6)

To get the scalar potential for the uniformly magnetized cyl-
inder, we use Eq. (6) and the following superposition. If the
origin is located at the center of the magnet and the ends of
the cylinder are located at z¼6L/2, as shown in Fig. 3, the
resulting scalar potential Wm is given by

Wm ¼
M0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

mþ z� L

2

� �2
s

� z�L

2

� �2
4

3
5

8<
:

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

mþ zþ L

2

� �2
s

� zþL

2

� �2
4

3
5
9>=
>;

¼M0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

mþ z�L

2

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

mþ zþL

2

� �2
s

þL

2
4

3
5
:

(7)

The magnetic field outside the magnet and along the z-axis is
then given by

Bz ¼ l0Hz ¼�l0

@Wm

@z

¼ l0 M0

2

@

@z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

mþ zþ L

2

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

mþ z� L

2

� �2
s2

4
3
5
:

(8)

To determine M0 we substitute the physical dimensions of
the magnet (L¼ 5.1 cm and Rm¼ 1.27 cm) into Eq. (8) and
compare it with the experimental data for the axial magnetic
field (see Fig. 4). Using the curvefit program in Mathematica
we find M0¼ 1.0335� 106 A/m, which gives a magnetic
dipole moment of pR2

mLM0 ¼ 27 A m2. Also shown in this

figure are the predictions of the point-dipole and
two-monopole models.22 As is evident from Fig. 4, the ex-
perimental data are in excellent agreement with the predic-
tions of the two-disk model, which verifies our assumption
of uniform magnetization. (It is interesting to note that the
two-monopole graph, with magnetic moment m¼ 27 A m2

and length ‘m ¼ 3:245 cm fits the experimental data surpris-
ingly well.)

C. Magnetic field of a cylindrical magnet

To compute the off-axis magnetic field, we begin with the
axial potential given in Eq. (6). Except for points on one of
the circular end surfaces of the magnet, the magnetic scalar
potential Wm satisfies r2Wm ¼ 0. Hence, the general solu-
tion for Wm due to a single disk is given, in spherical coordi-
nates, by

Wmðr; hÞ ¼
X1
‘¼0

a‘r
‘ þ b‘

r‘þ1

� �
P‘ðcoshÞ; (9)

where P‘ðcoshÞ are Legendre Polynomials24 in cos h.
As we will see, for the calculation of flux we only need to

work in the region r>Rm. Hence, a‘ ¼ 0 for all ‘ and the
scalar potential reduces to

Wmðr; hÞ ¼
X1
‘¼0

b‘
r‘þ1

P‘ðcoshÞ: (10)

In order to determine the b‘’s, we note that the expression
for Wm (r, h) in Eq. (10) must be equal to Wm (z) in Eq. (6)
when h¼ 0 (and hence r¼ z). Therefore,

X1
‘¼0

b‘
r‘þ1

� �
¼ M0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

m þ r2

q
� r

	 

; (11)

where we have used the fact that P‘ð1Þ ¼ 1 for all ‘. By
comparing the powers of r on both sides of Eq. (11), we find
that the odd coefficients b2‘þ1 are zero, and the even coeffi-
cients b2‘ are given by

b2‘ ¼
M0 R2‘þ2

m

2ð‘þ 1Þ!

" #Y‘
k¼0

1

2
� k

� �
: (12)

Thus, the magnetic scalar potential Wm (r, h), generated by
one disk, is given by

Wmðr; hÞ ¼
X1
‘¼0

M0R2‘þ2
m

2ð‘þ 1Þ!

" #Y‘

k¼0

1

2
� k

� �
r2‘þ1

P2‘ðcoshÞ

¼ M0Rm

2

X1
‘¼0

Y‘

k¼0

1

2
� k

� �
ð‘þ 1Þ!

Rm

r

� �2‘þ1

P2‘ðcoshÞ:

(13)

Similar to the axial situation [see Eqs. (7) and (8)], to deter-
mine the magnetic field of the cylindrical magnet at an arbi-
trary point (r, h), we will again need to add the scalar
potentials generated by two such disks with charge densities
6M0 located at positions z¼6L/2. Hereafter, Wm (r, h) will

Fig. 4. Axial magnetic field for a point-dipole model (dashed), a physical

dipole (gray solid), the Two-Disk model (black solid) and the experimental

data (dots); position 0 corresponds to the surface of the magnet. The mag-

netic field data was collected using a Lakeshore Gaussmeter (model #460)

mounted on a linear translation stage.

275 Am. J. Phys., Vol. 82, No. 4, April 2014 Irvine et al. 275

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

147.126.10.123 On: Thu, 12 Jun 2014 15:58:08



refer to the scalar potential of the entire magnet. In terms of
this re-defined Wm (r, h), the magnetic field ~B outside the
magnet jzj > L=2ð Þ is given by

~B ¼ �l0
~rWm; (14)

while for any point inside the magnet jzj < L=2ð Þ, we have

~B ¼ �l0
~rWm � ~M
� �

: (15)

Thus, we have found an exact expression for the magnetic
field (outside a distance Rm). The sum can be computed to
any desired level of accuracy by including a sufficiently
large number of terms. Partovi et al.14 have carried out a
comprehensive analysis for a uniformly magnetized cylinder
falling in a pipe by considering the vector potential due to
the moving magnet. Similarly, Derby et al.19 computed the
magnetic field and the flux due to a cylindrical magnet and
reduced it to the computation of elliptical integrals that could
be calculated using Mathematica. However, because of the
strong similarity with electrostatics, we find that the scalar
potential method is much more accessible to undergraduate
students. In addition, by choosing to keep an appropriate
number of terms in Eq. (13), students can compute the scalar
potential to any desired level of accuracy.

IV. COMPUTATION OF FLUX

As the magnet travels through the copper pipe, the chang-
ing magnetic flux causes eddy currents to form in the pipe.
We will assume that the pipe thickness is small compared to
the radius of the pipe (Refs. 14, 15, and 17 have studied the
effect of thickness more carefully). We also assume that the
magnet falls coaxially through the conducting pipe, and thus
an azimuthal symmetry is maintained throughout the motion.
In this case, the eddy currents generated in the pipe would
form perfect circles perpendicular to the axis of symmetry.
Using the magnetic fields given in Eqs. (14) or (15), we will
now determine the flux through a circular cross-section of
the pipe. We first compute the flux generated by a single disk
and then compute the total flux from the magnet by combin-
ing the flux from two disks.

To compute the flux through a circular loop of (average)
radius Rp a distance z from the disk, we choose a spherical
surface, whose center lies at the center of one of the disks of
the magnet (see Fig. 5). This particular choice simplifies our
calculations considerably. The normal component of the ~B-
field on this surface is simply the radial derivative of l0 Wm.
More importantly, because Rp>Rm, independent of the
value of z, the distance of every point of this spherical

surface is larger than the radius of the (magnetically) charged
disk. This is the reason we were able to set all the a‘’s equal
to zero in Eq. (9).

Integrating over the spherical surface shown in Fig. 5, the
flux Um(z) through a circular loop a distance z from the front
disk is given by

UmðzÞ ¼
ð

S

~B � r̂ da ¼ �l0

ð
S

@Wmðr;hÞ
@r

da

¼
X1
‘¼0

b2‘
@

@r

1

r2‘þ1

� �����
r¼

ffiffiffiffiffiffiffiffiffi
R2

pþz2
p

ðhp

0

P2‘ðcoshÞ sinh dh d/

¼ 2pl0

XN

‘¼0

b2‘ ð2‘þ 1Þ
ðR2

p þ z2Þ‘
ð1

up

P2‘ðuÞdu; (16)

where in the last line we defined u¼ cos h and

up ¼ z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p þ z2
q

. We can compute the integral in Eq. (16)

using the identity P2‘ uð Þ ¼ P02‘þ1ðuÞ � P02‘�1ðuÞ
� 


=ð4‘þ 1Þ,
giving a flux

UmðzÞ ¼ pl0M0R2
m 1� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
pþ z2

q" #

þ 2pl0

XN

‘¼1

ð2‘þ 1Þb2‘

ðR2
pþ z2Þ‘

1

4‘þ 1

	 


� P2‘�1

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

pþ z2
q !

�P2‘þ1

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

pþ z2
q !" #

;

(17)

where we have substituted the value of b0 in the first term.
The above expression for Um(z) gives the flux due to a single
disk. To compute the flux due to the entire magnet, we need
to consider two disks with magnetic charge densities 6M0

separated by a distance L. The net flux is then the sum of the
contributions from these two disks. In Fig. 6, we plot the
magnetic flux through a circular cross-section of the pipe a
distance z from the center of the magnet, as well as the flux
contributions from l0

~H and l0
~M. Note that a superposition

of the l0
~H and l0

~M contributions gives the magnetic flux, as
expected.

V. COMPUTATION OF EMF

In order to compute the emf through a circular cross-
section of the conducting pipe a distance z from the center of
the magnet, we need to determine the change in flux through
the loop during a time interval Dt. We take the z-direction
pointing up and assume the magnet falls with a constant ve-
locity~v ¼ ðdz=dtÞẑ ¼ �v0ẑ. The emf is then given by

E ¼
þ
~E � d~‘ ¼ � dUm

dt
¼ � dUm

dz

dz

dt
¼ v0

dUm

dz
: (18)

The electric field in the wall of the pipe is therefore
E/ðrÞ ¼ E=2pr, where r is the distance from the axis of the
pipe. Hence, the current density in the pipe is given by
J/ ¼ rcE/ ¼ rcE=2pr, where rc is the conductivity of the
pipe (in this case rc¼ 4.91� 107 S/m for copper). The cur-
rent DI through a section of the pipe of thickness dr and
length Dz can then be calculated as

Fig. 5. Schematic diagram showing the magnet in the pipe and the spherical

surface used to compute the flux. For our setup, we have Rm ¼ 0.0127 m and

Rp ¼ 0.01365 m, while the thickness of the pipe is 0.00127 m.
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ð
dI ¼

ðR2

R1

J/ðrÞ dr Dz ¼ v0rc

2p
ln

R2

R1

� �
dUm

dz
Dz

¼ v0rc

2p
ln

2Rp þ d
2Rp � d

� �
dUm

dz
Dz; (19)

where R1 and R2 are the inner and outer radii of the pipe,
d¼R2�R1 is the pipe thickness, and Rp¼ (R1þR2)/2 is the
average radius of the pipe. In our case d=2Rp � 0:04� 1, so
we can expand the logarithm in powers of d/Rp to get

DI ¼ v0rc

2p
d

Rp
þ 1

12

d3

R3
p

þ � � �
 !

dUm

dz
Dz

� v0rc

2p
d

Rp

dUm

dz
Dz; (20)

to lower order. Therefore, the total current through a section
of the pipe from z1 to z2 is given by

I ¼ v0rcd
2pRp

Umðz2Þ � Umðz1Þ½ �: (21)

Verifying this expression for current was a difficult task. We
removed a small cylindrical slice (a few millimeters in length)
from the middle of the pipe and replaced it with a loop of very
thin magnetic wire in series with a large resistor. The gap was
kept small to ensure that the velocity of the magnet remained
constant. By finding the voltage across the resistor (measured in
lV), we indirectly measured the current in the loop and inferred
what the current would have been in the absence of the resistor.
Figure 7 shows the current generated in a loop as the magnet
passes through it, along with our theoretical prediction. Here,
we see that there is reasonably good agreement between the
positions of the peaks, but less so for the heights. This discrep-
ancy is caused by the uncertainty in measuring very low vol-
tages. Fortunately—as demonstrated in Sec. VI—the retarding
force is much easier to measure than the induced current, so we
will obtain much better agreement between theory and experi-
ment when investigating the force as a function of velocity.

VI. COMPUTATION OF RETARDING FORCE

Because the magnet travels with a constant velocity ~v,
conservation of energy stipulates that the (thermal) energy
loss in the conducting pipe per unit time will be equal to
j~F �~vj, where ~F is the magnetic retarding force. Thus, if we
know the power loss and the magnet velocity we can deter-
mine the retarding force. To compute the power loss in the
pipe, we first determine the differential loss over an infinites-
imal length Dz of the pipe. This loss is given by

dP ¼ ðdIÞ2ðdRÞ ¼ J/ dDzð Þ2 � Resistance of length dz

¼ v0rcd
2pRp

dUm

dz
Dz

� �2 2pRp

rcdDz
;

¼ v2
0

rcd
2pRp

dUm

dz

� �2

Dz: (22)

Assuming the pipe to be much longer than the magnet, we
find that the total power loss is given byFig. 6. Contributions of the various fields to the flux Um(z) through a

cross-section of the pipe a distance z from the center of the magnet.

Contributions are from l0
~H (top), l0

~M (middle), and ~B (bottom) for our

magnet of length L ¼ 5.1 cm.

Fig. 7. Theoretical (solid) and experimental (dots) results for the induced

current in a loop of wire as our magnet passes through.

277 Am. J. Phys., Vol. 82, No. 4, April 2014 Irvine et al. 277

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

147.126.10.123 On: Thu, 12 Jun 2014 15:58:08



P ¼ v2
0

rcd
2pRp

ð1
�1

dUm

dz

� �2

dz

¼ 2v2
0

rcd
2pRp

ð1
0

dUm

dz

� �2

dz: (23)

Since the dissipated power is given by P ¼ j~F �~vj ¼ Fv0, the
retarding force is found to be

F ¼ 2
v0rcd
2pRp

ð1
0

dUm

dz

� �2

dz: (24)

Therefore, we find that the retarding force is proportional to
v0, rc, and d. In particular, if all other parameters are kept
fixed, we find that F / v0. Figure 8 shows the prediction of
Eq. (24) compared to the experimental data; apart from a
small offset (explained below), the agreement is impressive.
Such linear behavior between speed and retarding force has
been shown to be an excellent model for speed less than
25 m/s.14

As mentioned, the electrical conductivity of the copper
pipe is rc¼ 4.97� 107 S/m. We carried out an extensive
measurement procedure to determine the resistance of cop-
per pipes of various lengths using the 4-point method and
Kelvin clips as suggested in Ref. 25. We also contacted the
manufacturer of the pipe and the American Society for
Testing and Materials (ASTM) for further verification. As
seen in Fig. 8, the slopes of the theoretical prediction and the
experimental data are almost identical; however, the experi-
mental data are slightly offset from the theoretical prediction
such that a best-fit line would not pass through the origin.
This discrepancy is caused by a very small, but finite, fric-
tional force in the smart pulleys we used. The total mass
hung from these pulleys—the magnet, the weight, and the
counter weight—were on the order of 600 g, giving an effec-
tive frictional force of about the weight of six grams.26 We
emphasize that the vertical offset of 0.0526 N in Fig. 8 can
be accounted for by this frictional force.

VII. CONCLUSION

We studied the effect of a cylindrical neodymium magnet
moving along the axis of a cylindrical conducting pipe. Using
the symmetry of the setup and the near uniformity of the mag-
netization of a neodymium magnet, we were able to develop

an analytical model for the induced surface current density
and resulting retarding force. The analytically predicted cur-
rent distribution and the retarding force show excellent agree-
ment with experimental observation. Because we were able to
use the magnetic scalar potential technique, which bears a
strong resemblance to electrostatics, our analysis is compara-
tively more accessible to undergraduates than other
approaches. In addition, students can compute the flux to any
desired level of accuracy by keeping a sufficiently large num-
ber of terms in the expansion of the scalar potential.
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