nnnnnnnnnnnnnnnnn

Loyola University Chicago

Loyola eCommons
Computer Science: Faculty Publications and Faculty Publications and Other Works by
Other Works Department
9-2003

Enhancing the CS Curriculum with with Aspect-Oriented Software
Development (AOSD) and Early Experience

Konstantin Laufer
Loyola University Chicago, klaeufer@gmail.com

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Tzilla Elrad
lllinois Institute of Technology, elrad@iit.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

6‘ Part of the Science and Mathematics Education Commons, and the Software Engineering Commons

Recommended Citation

Laufer, Konstantin; Thiruvathukal, George K.; and Elrad, Tzilla. Enhancing the CS Curriculum with with
Aspect-Oriented Software Development (AOSD) and Early Experience. Enhancing the CS Curriculum with
with Aspect-Oriented Software Development (AOSD) and Early Experience (2003). Retrieved from Loyola
eCommons, Computer Science: Faculty Publications and Other Works.

This Technical Report is brought to you for free and open access by the Faculty Publications and Other Works by
Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications
and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@Iluc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2003 Konstantin Laufer, George K. Thiruvathukal, and Tzilla Elrad


https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Enhancing the CS Curriculum with Aspect-Oriented
Software Development (AOSD)

Konstantin Laufer and George K.

Thiruvathukal
Department of Computer Science
Loyola University Chicago
6525 N. Sheridan Road
Chicago, IL 60626, USA

{laufer,gkt}@cs.luc.edu

ABSTRACT

Aspect-oriented software development (AOSD) is evolving
as an important step beyond existing software development
approaches such as object-oriented development. An aspect
is a module that captures a crosscutting concern, behavior
that cuts across different units of abstraction in a software
application; expressed as a module, such behavior can be en-
abled and disabled transparently and non-invasively, with-
out changing the application code itself. Increasing industry
demand for expertise in AOSD gives rise to the pedagogical
challenge of covering this methodology and its foundations
in the computer science curriculum. We present our curric-
ular initiative to incorporate a novel course in AOSD in the
undergraduate computer science curriculum at the interme-
diate level. We also discuss recent and planned efforts to
integrate coverage of AOSD into existing courses.

Category and Subject Descriptors

K.3.2 Computer and Information Science Education; D.1.5
Object-Oriented Programming; D.3.3 Language Constructs
and Features; D.2.3 Coding Tools and Techniques

General Terms

Design, Languages

Keywords

Aspect-oriented software development, AOSD, aspect-orien-
ted programming, AOP, aspect-oriented modeling, separa-
tion of concerns, crosscutting concern

1. INTRODUCTION

It is now well-established that object-oriented software de-
velopment (OOSD), which comprises analysis and design
methods (OOA and OOD), modeling (UML), design pat-
terns, frameworks, and a smattering of object-oriented lan-

Permission to make digital or hard copies of all or part of this work for

Tzilla Elrad
Department of Computer Science
Illinois Institute of Technology
10 W 31st Street
Chicago, IL 60616, USA

elrad@iit.edu

guages (C++, Java, and Python, just to name a few), is
a significant player in the academic and corporate worlds,
with many academic research and commercial applications
in one way or another building on the OO paradigm. With
the advent of Java in 1995, one could say that an idea whose
time came in the 1960s and 1970s with Simula and the 1980s
with Smalltalk formally got itself on the map. Objects were
truly here to stay.

In some respects, however, it was all too painfully appar-
ent that somewhere along the line, something in the process
of educating the world and creating a culture of objects had
failed. One of the authors recalls being in the corporate
world in the early 1990s as part of an internal task force on
object-oriented methods and applying them to a redesign
of one of the major product lines. Even then, migrating to
object-oriented development was considered a risky venture
for a number of reasons. First and foremost, there were few
companies in any related business with experience in apply-
ing OOP. Second, the learning curve for applying OOP was
considered (at best) steep [8]. Third, techniques for reverse
engineering existing designs (then and even now) were ad-
hoc and fundamentally limited. But more disturbing was
that there were few options (professional training or courses
at academic institutions in the area) where one could learn
how the mysterious phenomenon of OOP actually worked.

With the advent of software design patterns [4], a new
sense of hope descended upon the software development
world, despite not providing a solution to all of the prob-
lems. What design patterns provided was the potential to
apply OOP without having to bear the burden of coming
up with the same designs over and over from scratch. This
made it possible to apply OOP using recipes that required
little or no modification. In fact, design patterns played a
significant role in taming the complexity of OOP and, as a
result, made it easier to teach.

A similar challenge is being presented today, silently, with
the emergence of new (or refined, depending on one’s per-
spective) methodologies for software development, such as
aspect-oriented programming (AOP) [7]. In AOP, the idea
in a nutshell is to capture behavior that cuts across many
(or possibly all) units of abstraction in a given software ap-

personal or classroom use is granted without fee provided that copies areplication. Expressed as separate modules called aspects,
not made or distributed for profit or commercial advantage and that copies g ,ch hehavior can be enabled and disabled transparently

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

and non-invasively, requiring no change to the application
code itself. Simple examples of aspects are logging and per-



formance analysis. Often these aspects are captured in OO-
codes by creating objects to do the actual work and then
explicitly using them to achieve the task at hand. To un-
derstand the explicit nature of this, it is instructional at
this point to download any Java code and search for calls
of the form logger.writeLog("some debug message") or
System.currentTimeMillis(). An aspect-oriented way of
achieving the same result would be to create an aspect to
support the desired behavior implicitly. For example, when-
ever | enter method X (), start the timer. Whenever I leave
method X(), stop the timer and accumulate the difference
from the starting time.

Aspects will present new challenges to software develop-
ment in the so-called postmodern era. First, thinking in
aspects is akin to thinking in objects but a much different
thinking altogether at the same time. There are several new
twists in the world of aspects: How does one conceive of
aspects in the first place? How does one combine aspects
to solve problems? What are the pitfalls? One pitfall we
see is that composition—an ordinarily safe phenomenon in
OOP—is not always meaningful and safe in AOP. Take for
example the two aspects we mentioned as examples: perfor-
mance and logging; they don’t mix. As already well known
in operating systems and parallel computing research, it is
important to remove all debugging code before collecting
any kind of performance data. The obvious solution is to
disable the offending aspect(s). But herein lies the problem.
For something such as logging, the problems are obvious.
For other aspects, the problems may be ever so subtle. We
will revisit this topic in the general discussion of AOP.

Another important consideration is that aspects do not
presuppose an underlying object-oriented environment.
Aspect-oriented versions of many languages are already creep-
ing up on the Internet, including C, C++, Java, Python,
and others. While this in many ways is similar to the con-
ditions found during the OOP era, it can create a bit of a
pedagogical mess. “When should aspects be introduced?”
is a question that is harder to answer than the same ques-
tion with aspects replaced by objects. With the potential
need to learn at least 3 forms of abstraction (procedural,
object-oriented, and aspect-oriented), the potential for real
confusion exists.

In this paper, while we do not pretend to have the answers
for the many questions posed, we describe our attempt to
rise to this emerging pedagogical challenge. We do believe
that AOP seems to follow OOP most logically and envision
our proposed course to be taken after CS2 or a subsequent
intermediate course in object-oriented development. At the
same time, we see a clear and present need and opportunity
to introduce AOP strategically in other areas, such as oper-
ating systems, concurrent, and parallel/distributed comput-

ing.

2. ABOUT AOP AND AOSD
We begin by defining a couple of terms:

AOP The term aspect-oriented programming is used when
referring only to programming (languages mainly), but
not the entire life cycle of software engineering.

AOSD The term aspect-oriented software development is
an encompassing term that includes AOP as a signifi-
cant part of its definition. In AOSD, we are referring to
aspects in what is considered the gamut of software en-
gineering: requirements, design, implementation, and

testing (to name the most significant parts of a tradi-
tional SE life cycle, known as the waterfall model).

The core issue behind AOP is to capture the notion of a
concern as a modular software unit. By allowing concerns
to be modular, the desired goal of having adaptable software
is more likely to be realized. AOSD refers to the complete
life cycle evolving the aspect orientation process. The ter-
minology is deceptively simple and sometimes confuses the
most seasoned computer scientists. An example of a con-
cern is scheduling, which affects all entities in a system that
can be run one-at-a-time (such as processes and threads).
Processes and threads, on the other hand, are not concerns.
They are simply objects that are treated the same way by an
operating system, regardless of the scheduling policy used to
run them.

Separation of Concerns (SOC) is a core principle of soft-
ware engineering which has well-established benefits. The
introduction of of the OO paradigm addressed part of the
challenge of concerns by evolving mechanisms for abstrac-
tion, encapsulation, modularity, and hierarchy. Yet, the
problem of realizing the SOC principle is at the heart of the
ongoing software crisis. Ideally, we would like to have, first
and foremost, heuristics to separate concerns and, second,
software mechanisms to capture these concerns as modular
units throughout the software refinement process. AOSD is
an important evolutionary step toward achieving the goals
of separating concerns.

The object-oriented approach focuses primarily on the
data items that are being manipulated; behavior is the sec-
ondary focus. The data items are characterized as active
entities, because objects perform operations on themselves.
Collective behavior is implemented through the interaction
of objects. (In early OOP literature on Smalltalk, objects
were said to interact via message passing.) Object-oriented
methodology works very well for software systems where
most of problem domain concerns can be modularized us-
ing the dominant decomposition of object orientation. Ex-
perience has demonstrated that in more complex systems,
especially concurrent and distributed systems, preservation
of modularity is not possible for all concerns.

Crosscutting Concernne special case where a program
can fail to preserve modularity is when the implementation
of a specific concern crosses the modular representation (or
boundaries) of other concerns. A good example of such con-
cern is logging. The concept is similar to what one does
when writing a journal—keep a record of the events of sig-
nificance (or even insignificant ones) for any given day/time.
(Many programmers prefer logging to debuggers when it
comes to identifying and diagnosing bugs in their programs.)
A program code to implement logging may be scattered
across different modular components (wherein the various
components will share a reference to an object with a dedi-
cated logging). Synchronization, scheduling, fault tolerance
and security are extreme examples of crosscutting concerns.
Under a dominant decomposition of core functionality, these
concerns cannot be modularized. The best one can hope for
is to scatter concerns among other program components—
components that should ideally not be responsible for ad-
dressing the concern.

Weaving .The process of composing core functionality mod-
ules with aspects is called weaving. Weaving can be done at



compile time [6] or dynamically at run time [10].

Join Points. A Join Points is defined as a well-defined points
in the execution flow of the program. The most prominent
example is a method call. A joint point indicates where an
aspect can interface with ordinary code. A join-point model
provides the common frame of reference to enable the defi-
nition of the structure of aspects. Each join point is said to
have entry and exit points, which correspond to when a join
point is entered or exited (returned from). So if a particular
join point is defined as a method call, the logical points of
entry and exit are entering and returning from the method,
respectively. How this works is language-dependent.

Pointcut. A set of join points. A pointcut expression filters
out a subset of join points. This is an important feature of
AOP because it provides a concise selection mechanism. A
programmer may designate all the join points in a program
where (for example) a security code should be invoked. This
eliminates the need to refer to each join point explicitly and
hence reduces the likelihood that a security code would not
be invoked as needed (considering the earlier example, where
most capability checks had to be performed explicitly). A
Pointcut might also be specified in terms of properties of
methods rather than their names.

Advice. Advice declarations are used to define the aspect
code that runs at join points. For example, the security-
checking functionality described earlier in Java’s Security-
Manager could be run at every join point that is filtered out
by an appropriate pointcut expression. For a method call
join point there are three kinds of advice found in the litera-
ture: before advice (advice code runs at the moment before
the method begins running), after advice (advice code runs
at the moment control returns after the method returns),
and around advice (advice code runs when the join point is
reached and it can check for conditions that may control the
selection of advice code). Advice is similar to event-handling
code and is invoked implicitly.

There are three significant approaches to realize aspect-
orientation:

e Extensions to existing languages such as Java, C, and
C++ (e.g., Hyper/J [9]).

e Frameworks for introducing aspect orientation without
change to the language (e.g., JAC [10]).

e Modeling with (suitable extensions of) UML.

3. PROPOSED AOSD COURSE

In this section, we present our plans for a complete course
on AOSD.

3.1 Pedagogical Challenges

It should be clear from the previous section that designing
a curriculum around aspects is bound to be a non-trivial
challenge. The problems can be summarized as follows:

e Aspect-oriented programming is designed to facilitate
dealing with the complex problems associated with
code tangling. Mastering the basic vocabulary of AOP
is relatively straightforward. However, there are a
multitude of implementations and approaches to AOP.

Students must be made aware of the choices while not
becoming bogged down by trying to understand all of
the arcane differences between the various approaches.

e Similar to the problems that accompanied OOP (prob-
lems with method resolution in multiple inheritance),
a number of issues are likely to emerge as the commu-
nity begins to apply AOP. For example, aspects being
applied to pointcuts (selections of join points) can in-
terfere with the performance and predictability of pro-
gram behavior. (e.g. what happens, say, when logging
and performance concerns are both applied to common
pointcuts? The answer would appear to be that the
performance concern fails to yield valid performance
data; the logging concern affects performance by in-
troducing a non-trivial I/O cost.)

3.2 Prospective Syllabus for the Course

Prerequisite

The envisioned prerequisite is either CS2 (data structures),
assuming the CS1-CS2 sequence introduces object orien-
tation from the start and in sufficient depth. Otherwise,
the prerequisite would be an intermediate course in object-
oriented development taken after CS2.

Textbook

There is presently no undergraduate text book on this topic.
We anticipate that one of the outcomes of this initiative will
be such a book. Meanwhile, we plan on using the other
sources as reference material [1, 2].

Prospective Sequence of Course Modules

A prospective sequence of 3-to-4-week course modules suit-
able for a 15/16-week semester long course, along with the
estimated duration of coverage, is given here. To accommo-
date a 10/11-week quarter course, one could drop some of
the modules or condense the coverage.

Module 1: Programming Languages and Software En-

gineering Preliminaries (3 weeks)

General paradigms of programming languages (1 week).

To motivate the study of models beyond the object model,

it pays to arm the student with an overview of different

paradigms for computing. Most students today see objects

as their first model. Structured (procedural/imperative),

functional, logic, dataflow, and very-high-level language para-
digms are prevalent, especially in the industry.

Software engineering and quality assurance (1 week).

Software engineering has played a significant role in the
thinking about how software is developed, especially in defin-
ing the notion of a process. Knowledge of basic software en-
gineering principles is essential, especially when it comes to
large-scale software development efforts. Prospective topics
to be covered here are an overview of the various life cycles,
such as waterfall, spiral, and extreme programming.

Software maintenance and reusability (1 weak)ad-
dition to methodology, software engineering methodology
introduces a number of desired properties when designing
a software system. Fase of maintenance refers to the ability



to cope with change at a reasonable cost. Another desired
property of a software system is reusability. Research on
frameworks and design patterns addresses the possibilities
of reusing existing code and designs.

Module 2: Object-Oriented Programming and Design

Patterns (3 weeks)

Object-oriented programming (2 week$). order to
think about the post-OOP era, it is necessary to understand
the object model. The object model, as defined by Booch,
is based on four key principles: abstraction, encapsulation,
hierarchy, and modularity. Object-oriented programming
languages support OOP via specific mechanisms. Polymor-
phism with late binding is prevalent in all major OOL. Lin-
guistic features such as abstract classes, interfaces, delega-
tion, and metaprogramming (or reflection) are prominent in
most OOL today.

Taming the object paradigm with patterns (1 week).

The work on design patterns [4] is actually a tacit recogni-
tion of the difficulty of applying OOP successfully. Work on
patterns also brought some clarity to what OOP does well
and what OOP does poorly. OOP is very good at capturing
common attributes and behavior in a vertical fashion. How-
ever, when it comes to behavior that affects entities that do
not have common base classes, it is impossible to address
commonality in a horizontal fashion. The linguistic notion
of interfaces helps get us part of the way toward the solution
but in their own right are ineffective.

Module 3: Aspect-Oriented Programming (4 weeks)

Introduction to aspects (2 weekSdspects directly em-
body the notion of separating concerns. The vocabulary
has been introduced in the introduction sections. The same
topics will be introduced in this lecture.

The motivation for aspects will be demonstrated with a
number of real-world needs. Logging is almost a universal
need in today’s computing environment. Web logging (not
to be confused with weblogs) is relied upon heavily by web
application developers and has almost replaced debugging
as an effective technique for troubleshooting bugs.

In high-performance computing applications, performance
is an aspect that comes up repeatedly. Today’s software de-
velopers often develop what can best be termed home-brewed
libraries for gathering and analyzing performance data. Us-
ing aspects, it is possible to introduce the capability of per-
formance gathering into any application and remove it when
no longer needed without changing the application code it-
self.

Aspects are often called non-invasive, because they can be
introduced into code without altering the code itself. While
mostly true, there are potential difficulties (addressed later
in the course) when it comes to composition of aspects and
unintended consequences. The two aspects presented here
make a good example. What happens when the performance
and logging aspects interact? The likely answer is that bad
performance data is obtained.

and object-oriented programming made their debuts.

Two approaches are presently front runners: aspect-orien-
ted extensions (e.g., Aspect/J, an extension to Java) and
aspect-oriented frameworks. Because objects are still con-
sidered valuable in their own right, most approaches in one
way or another employ an object-oriented language as a sig-
nificant part of the design.

At least this set would be taught from outside of our own
research: Aspect/J, Hyper/J, Demeter/adaptive program-
ming, and Compositional filters.

Module 4: Advanced Topics in Aspects (3 weeks)

Theoretical foundations of aspects (1 weekjis will
be covering current research on composition mechanisms,
semantics, verification, and testing.

Aspects and UML; addressing modeling and design (1

week). The Unified Modeling Language (UML) is widely
used in present software engineering practice. We will cover
our ongoing research in using and extending UML to accom-
modate aspects.

Tools support for aspects (1 week).fairly underdevel-
oped area at the moment, tools support is likely to evolve
by the time we develop this course. The likely scenario is
that a number of tools (e.g. Rational Rose and others) will
be expanded to address aspects.

Module 5: Applications of Aspects (3 weeks)

Aspects and operating systems emerging research
area is the use of aspects in operating systems. Operat-
ing system design and implementation is one area can make
a significant difference, especially when it comes to mainte-
nance and debugging. In addition, aspects are likely to be
useful in managing the implementation (code) of an operat-
ing system, as well.

Aspects and databasesspects are likely to make a dif-
ference in databases In current database technology, pro-
cedural languages (SQL and several variants thereof) are
used to do query processing and integrity triggers. Integrity
triggers, which often affect the same tables/relations in a
database, certainly provide an example of a cross-cutting
concern. Given the importance of databases in the indus-
try, we will want to address this topic in the new course (at
least peripherally).

Aspects and concurrencye have existing courses ad-
dressing concurrency. Concurrency is one of the places where
OOP has not been very successful. The reason is due to a
well-documented and established problem known as the in-
heritance anomaly. Using aspects, the problems associated
with the inheritance anomaly are potentially eliminated (al-
though this has not been formally proven yet), making it
possible to untangle programming libraries that contain ex-
plicit synchronization code. There are other opportunities in
this space as well, in the form of languages and frameworks
for concurrent programming.

Aspect-oriented programming languages (2 weeksyp-
ect-oriented programming languages are emerging everywhere.
The situation is not much different than when structured

Aspects and distributed systeme also have existing
courses on distributed systems. Distributed systems are



yet another area where OOP has been of limited success.
While client/server has been well addressed by systems such
as CORBA (Common Object Request Broker Architecture)
and RMI (Remote Method Invocation), a number of prob-
lems have not been solved elegantly within such frameworks.
In particular, fault tolerance, fault detection, eliminating
central points of failure, dynamic discovery, etc. are exam-
ples of concerns not easily addressed, again because these
issues tend to span multiple (if not all) components in a
distributed system.

Industry. Industry applications. Industry is actually play-
ing a vital role in much of the academic discussion. Xerox
PARC (whose researchers were among the early proponents
of OOP) is where much of the AOP work is taking place.
By the time we develop this course, there is likely to be
significant interest even in industry for aspect-oriented pro-
gramming [5].

3.3 Integration

Integration is a key part of our prospective course. AOSD,
as we have articulated, clearly has pervasive implications on
the way software development is done. To avoid repeating
the past mistakes of rolling out OOP without a careful ex-
amination of its implications across the discipline, we will
not limit the discussion exclusively to the subject of AOP
(aspect-oriented programming). The following courses are
candidates for introducing AOP early and often:

Introduction to OOP.This course is the first course our
students take after CS2. At that point, students are already
familiar with the principles of data abstraction (classes and
modules). This is the first opportunity to explore OOP at
a deeper level. The authors have successfully introduced
AOP as a module toward the end of an object-oriented de-
velopment course for advanced undergraduates and master’s
students.

Operating SystemSperating systems is widely agreed
as an area where aspects could really make a difference. As
this course is usually taken after Introduction to OOP, this
would be a place to introduce applications of aspects. The
focus of this course is conceptual with some implementation
to understand OS programming interfaces, so there is an
opportunity here.

Software EngineeringOne should not forget that the gap
of OOP being transitioned to education was also manifested
in industry (with an even longer gap; many industry projects
are yet to adopt OOP). By introducing aspects into the soft-
ware engineering course, students will learn how to capture
aspects using UML, a result that can be transitioned from
the relationship with one of the author’s research group,
which has an active project on UML and AOSD.

Extreme Series CourseSwo of the authors both teach
a number of topics courses as part of an “extreme” soft-
ware development series. Aspects are relevant in two of
these courses, including concurrency and distributed sys-
tems (both of which were addressed in the curriculum topics
discussion). Some of the material developed for the prospec-
tive undergraduate course is likely to be expanded upon in
these courses, which are electives.

4. CONCLUSIONS AND FUTURE WORK

AOSD is not a mere fad and is here to stay. There is a
strong community behind it at http://www.aosd.net, and a
number of significant industry movers are beginning to take
it seriously. The SIGCSE community must do whatever
it can to ensure that AOSD principles become part of the
regimen of software development topics [3] covered as part
of an undergraduate education. Furthermore, steps must
be taken now to ensure that AOSD does not experience the
same lag that accompanied object-oriented programming.

In this paper, we have presented a vision for introducing
AOSD in the curriculum and integrating it with existing
courses the authors’ institutions, and we briefly described
our early experience with this integration. We believe this
blueprint and preliminary experience will be of value to
those who wish to introduce AOP into their curriculum in
an evolutionary manner, while at the same time providing
an opportunity to be revolutionary by offering a full course.

5. REFERENCES

[1] Mehemt Aksit, Siobhan Clarke, Tzilla Elrad, and
Robert Filman. Aspect-oriented software development,
2003. To appear.

[2] Krzysztof Czarnecki and Ulrich Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[3] Alan Fekete and Bob Kummerfeld. Design of a major
in software development. In Proceedings of the 33rd
SIGCSE technical symposium on Computer science
education, pages 73-77. ACM Press, 2002.

[4] Erich Gamma, Richard Helm, Ralph E. Johnson, and
John M. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley,
Reading, Massachusetts, 1995.

[5] Gregor Kiczales. Aspect-oriented programming (aop),
2003. TheServerSide.com Techtalk Interview.

[6] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of aspectj. In EFCOOP, pages 327-353, 2001.

[7] Gregor Kiczales, John Lamping, Anurag Menhdhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-oriented programming. In
Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP
’97 — Object-Oriented Programming 11th European
Conference, Jyviskyld, Finland, volume 1241, pages
220-242. Springer-Verlag, New York, NY, 1997.

[8] John Lewis. Myths about object-orientation and its
pedagogy. In Proceedings of the thirty-first SIGCSE
technical symposium on Computer science education,
pages 245-249. ACM Press, 2000.

[9] Harold Ossher and Peri Tarr. Hyper/j:
multi-dimensional separation of concerns for java. In
Proceedings of the 22nd international conference on
Software engineering, pages 734-737. ACM Press,
2000.

[10] Renaud Pawlak, Lionel Seinturier, Laurence Duchien,
and Gérard Florin. Jac: A flexible framework for aop
in java. In Proc. 3rd Intl. Conf. Metalevel
Architectures and Separation of Crosscutting
Concerns, Kyoto, Japan, 2001.



	Enhancing the CS Curriculum with with Aspect-Oriented Software Development (AOSD) and Early Experience
	Recommended Citation

	tmp.1321392756.pdf.rWbxu

