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Service quality and driver efficiency in the delivery industry may be enhanced by increasing the regularity

with which a driver visits the same set of customers. However, effectively managing a workforce of drivers

may increase travel distance, a traditional metric of the vehicle routing problem (VRP). This paper evaluates

the effect that workforce management has on routing costs, providing insight for managerial decision

making. The analysis is presented in the context of the period vehicle routing problem (PVRP), an extension

of the VRP with vehicle routes constructed to service customers according to preset visit frequencies over

an established period of time. We develop models to apply workforce management principles. We show that

multi-objective PVRP models can achieve a balance between workforce management and travel distance

goals, through a computational study with standard PVRP test cases and real-world delivery data. With

the proper parameters in place, workforce management principles may be successfully applied without

sacrificing other operational objectives.

Key words : periodic vehicle routing problems; workforce management; multi-objective optimization

1. Introduction

With intense external pressure from competitors and internal pressure from shareholders mandat-

ing increases in both customer service and profit margins, carriers in the delivery industry must

utilize every advantage possible. This has raised attention on the efficient use of drivers and the

importance of service quality provided to customers. Both service quality and driver efficiency may

be enhanced by increasing the regularity with which a driver visits the same set of customers.

UPS, the biggest operator in the domestic package express industry, relies on their drivers and the

system for managing drivers to maintain a high level of customer satisfaction:

“...Many UPS drivers work the same route for 20 or 25 years. In contrast, a major competitor

1
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reserves the right to reconfigure some drivers’ routes with five days’ notice, meaning their cus-

tomers, service area and earnings power can change quickly. UPS drivers form a real bond with

customers...A formal program that gathers sales leads from drivers generates volume of more than

60 million packages a year, largely because drivers take tremendous ownership of their customers

and routes.” [UPS Corp. (2006)]

This example shows the potential for revenue generation from better workforce management

in delivery services. Competitive advantage through workforce management has been recognized

and extensively studied [Pfeffer (1998) and Bartlett and Ghoshal (2002)]. However, an increase in

workforce effectiveness may come with additional costs elsewhere. While consistency is generally

the goal with delivery workforce management, such that drivers are assigned to the same customers

and regions as often as possible, routes are most commonly constructed to minimize the travel

distance for drivers with little consideration for consistency. These two objectives may conflict with

each other. In a recent review of commercial vehicle routing software, one vendor notes, “If we tell

a customer that it costs them $100 a day to keep the same drivers servicing the same customers,

most fleets will decide it isn’t worth the cost.”[Partyka and Hall (2010)]

In this paper, we study the relationship between the objectives of workforce management and

travel costs, and examine how incorporating multiple objectives impacts managerial decision mak-

ing. Designing vehicle routes to minimize distance may result in multiple drivers visiting a customer

over the planning horizon. Designing vehicle routes to enhance customer-driver relationships may

result in the same driver visiting a customer each time, yet travel cost could increase. Estimating

the magnitude of this cost increase is difficult. Often routing solutions that minimize distance have

the characteristic that customers in close proximity are visited by the same vehicle route, which is

the aim of workforce management. However, given customers with unique visit frequency requests,

and with other operational constraints such as fleet size and vehicle capacity, the dynamics can be

quite intricate. In order to balance workforce management and travel costs one must first quantify

workforce management in route construction. We consider two metrics:

1. Customer familiarity: As the driver becomes familiar with a set of customers, she may more

efficiently serve her customer base. By visiting the same customers repeatedly, service quality is

elevated and the customers become more likely to use the carrier in the future. The customer

familiarity metric is modeled as an objective to maximize the number of times that a unique driver

visits a customer.

2. Region familiarity: The set of customers requesting service each day varies; therefore, it may

be beneficial to study workforce metrics at a more aggregated level. By visiting a customer in



Smilowitz, Nowak and Jiang: Workforce management in periodic delivery operations
Article submitted to Transportation Science; manuscript no. 3

a region, the driver gains familiarity that is of benefit when any customer in the region is later

visited. The more familiar a driver is with a certain region, the faster she can deliver service to

all customers in the region. Furthermore, with a good reputation in a neighborhood, the driver is

likely to generate more business. Region familiarity is modeled similarly to customer familiarity,

as an objective to maximize the number of times that a driver repeatedly visits a region.

We study the effect of adding these metrics under the general setting of the Period Vehicle

Routing Problem (PVRP). The PVRP, introduced by Beltrami and Bodin (1974) and Russell and

Igo (1979), is an extension of the Vehicle Routing Problem (VRP), with vehicle routes constructed

to serve customers according to preset visit frequencies over an established period of time. The

traditional objective of the PVRP is to create a set of tours for each vehicle on each day in the period

to minimize the travel cost, while satisfying operational constraints such as vehicle capacity and

customer visit frequency. The PVRP can be found in industries such as package delivery, grocery

delivery, waste collection, etc. The multiple-day setting of the PVRP provides a time interval to

study the workforce metrics highlighted above. As reviewed in Section 2, prior approaches have

enforced workforce management through model constraints.

In this paper, we develop and analyze alternate models of the PVRP to incorporate customer

familiarity and region familiarity. We show that multi-objective PVRP models can achieve a balance

between workforce management and travel distance goals. Contrary to the belief of some in industry,

we find that workforce management principles can be applied with a minimal impact on travel

costs, through a computational study with standard PVRP test cases, modified for our problem

setting. These results exploit the added flexibility of modeling workforce management in the PVRP

as an objective and not a constraint. The computational analysis shows that the solution with

the best balance between workforce management and travel costs may result in multiple drivers

serving a customer. We demonstrate the usefulness of the new PVRP variations on a data set from

a major package delivery carrier. Fundamentally, this paper presents transportation managers with

best practice methods for applying workforce management without sacrificing other operational

objectives.

The paper is organized as follows. Section 2 presents an overview of literature in workforce

management and periodic routing. Section 3 introduces and analyzes PVRP models to capture

workforce and travel distance objectives. Section 4 describes the Tabu Search approach to solve

the PVRP models and presents the computational study. Section 5 concludes the paper with a

discussion of extensions.
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2. Literature Review

The interaction between operations and workforce management has been studied from several per-

spectives, primarily in staffing and control, with applications in call center management [Jennings

et al. (1996) and Whitt (2005)]. Hopp et al. (2004) and Iravani et al. (2007) also study effective

workforce cross-training structures. In vehicle routing, there is research in creating routes with

balanced daily schedules [Levy and Bodin (1988)] and balanced route lengths [Jozefowiez et al.

(2007)]. Levy and Bodin (1988) schedule the postal carriers of the United States Postal Service and

design Euler cycles for delivering mail. Two procedures for developing a complete set of daily work

schedules and Euler cycles are developed. Jozefowiez et al. (2007) present a bi-objective vehicle

routing problem with route balancing in terms of the route length for drivers that is solved using

a hybrid multi-objective genetic algorithm.

The PVRP is an extension of the classic vehicle routing problem (VRP), where the vehicle routes

are constructed over a period, typically in units of days in a week. Most commonly, objective

functions for the PVRP focus on minimizing travel costs and/or fleet size; see Francis et al. (2008)

for a recent review of the PVRP literature. Early studies of workforce management in the context

of the PVRP rely on fixed routes to enforce driver consistency [Christofides (1971), Beasley (1984),

and Wong and Beasley (1984)]. As noted in these references, fixed routes can lead to capacity-

infeasible solutions or underutilized routes when customers differ over the period. Recent work

focuses on driver consistency in the express delivery industry where a company may wish to send the

same crew to a customer repeatedly to take advantage of the familiarity the crew establishes with

the customer or with the geographic region. Zhong et al. (2007) seek to maintain driver familiarity

with their service territories. The authors model a learning/forgetting behavior for drivers and

show that dispatching drivers consistently to the same geographic areas results in driver familiarity

and improved driver performance.

Francis et al. (2007) considered a range of workforce metrics for the PVRP, including driver

coverage, which measures the portion of the total service region visited by a driver over the period,

and crew size, which measures the number of different drivers visiting a customer over the period.

These metrics are calculated a posteriori to evaluate periodic routing solutions obtained with

the objectives of minimizing travel time and maximizing visit frequency. Their model does not

attempt to optimize these workforce measures. In the work presented here, we incorporate workforce

measures in the objective of the PVRP.

Similar to this paper, Groer et al. (2009) consider a multi-period routing problem where com-

panies want their drivers to develop relationships with customers on a route. They introduce the
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Consistent VRP (ConVRP) as a variant of the VRP, requiring that a customer be visited by only

one driver over the period at approximately the same time on each day, in addition to the tra-

ditional constraints on vehicle capacity and route length. The work presented here differs from

the ConVRP in that driver management is modeled as an objective rather than as a constraint.

We evaluate the extent to which the added flexibility from modeling customer familiarity as an

objective rather than a constraint can improve operations.

Importantly, most multi-period vehicle routing problems are solved with heuristics given the

complexity of the problem. Francis et al. (2006) introduce an exact method for solving the PVRP;

however, their approach is limited to instances in which each node must be visited by the same

driver throughout the time period. With such an assumption, one cannot explore the workforce

metrics for more flexible systems. In Francis et al. (2007), the authors show that using Tabu Search,

one can relax the restrictive assumptions of Francis et al. (2006) and obtain better solutions,

although no longer provably optimal. Further, in a comparative analysis of PVRP solution methods

performed by Francis et al. (2008), the Tabu Search heuristic by Cordeau et al. (1997) is found to

provide high-quality solutions to a known set of PVRP test cases. Notably, these test cases have

not been solved optimally.

3. Modeling

In this section, the general PVRP setting is introduced, which is employed in models based on

travel distance and two workforce management metrics. The relationship between these different

models is then discussed.

3.1. PVRP problem setting

In the standard PVRP, a homogeneous fleet of vehicles operate from a single depot to serve a set

N of customers over a period of time. Let T be the set of days in the time period, indexed by

t ∈ T . Associated with each vehicle is a route k ∈K with a fixed capacity C. A vehicle completes

at most one route per day; an idle vehicle is modeled as a route of no cost. For each day within

the time period, a set of routes is developed to meet a given objective (most commonly minimizing

total travel cost) while satisfying capacity constraints and demand requirements. An example with

three customers requesting service from two vehicles over a two-day period is shown in Figure 1.

The PVRP is defined here on a complete network denoted by the underlying graph G= (N 0,A),

with node set N 0 representing the customers in set N plus the depot (denoted i= 0) and arc set A

connecting nodes in N 0 with non-negative travel costs cij for all (i, j)∈A. The arc costs are shown

on the arcs in Figure 1.
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Figure 1 Period vehicle routing problem example

In the example, each customer has a specific demand request per day. More general demand

and service assumptions have appeared in the literature; often a customer requests a number of

visits over the time period with a constant demand per visit, determined by either the average or

maximum accumulation between visits. The PVRP then determines the visitation schedules for

customers from a set of feasible options; i.e., Monday-Wednesday or Tuesday-Thursday. In this

paper, the visitation schedule is assumed to be set a priori ; for a given day t ∈ T , the set of

customers to visit and their respective demands are given. Let dti denote the demand of customer

i ∈N on day t ∈ T . When travel distance is the only performance metric, the PVRP decomposes

by day given these assumptions. However, workforce metrics link the problem across days.

In the following subsections, mixed integer models of the PVRP are developed. Given a chosen

objective, described in Section 3.2, the PVRP models design vehicle routes (set of customers visited

and sequence of visits) and assign drivers to routes such that operational constraints are observed.

Split delivery is not allowed within one day of service: a customer is visited by at most one route

per day. However, over the period T , a customer may be visited by more than one driver.

3.2. Performance metrics for the PVRP

The three performance metrics studied in this paper are described below.

• Travel Distance: PVRP(TD). The objective function seeks to minimize total travel distance

across all routes over the time period.

• Customer Familiarity: PVRP(CF). The objective function seeks to maximize the number of

visits by a driver to a customer with a cost term that reduces per customer-visit for a driver as

the frequency of visits to that customer increases, recognizing that routing solutions can be more

efficient and effective if drivers repeatedly visit the same set of customers.
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• Region Familiarity: PVRP(RF). The objective function reduces the cost per visit to a geo-

graphic region for a driver as the visit frequency to that region increases for that driver. Since the

customer set varies by day, it may be beneficial to study workforce metrics at an aggregated level.

As noted in Section 3.1, the key decisions of the PVRP are (1) vehicle route design (set of

customers visited and sequence of visits) and (2) driver assignment to vehicle routes. Figure 2

illustrates how these decisions are addressed in each variation. In the PVRP(TD), vehicle route

design is separated from driver assignment. In Phase I, routes are associated with vehicles, but not

drivers. The set of customers visited and sequence of visits on a vehicle route are determined. In

Phase II, driver assignments for the routes are performed. In the workforce management models,

PVRP(CF), and PVRP(RF), there is no distinction between drivers and vehicle routes since the

decisions are made simultaneously.

Phase I:
Design vehicle routes 

( t i t &

Phase II:
Assign drivers to routes to 

hi kf l
PVRP(TD)

(customer assignment & 
sequence) to minimize cost 

achieve workforce goals

Single Phase:
Design paired vehicle/driver routes (customer assignment & 
sequence) to minimize cost and achieve workforce goals

PVRP(CF)
PVRP(RF)

sequence) to minimize cost and achieve workforce goals

Figure 2 Decision phases of the PVRP by model

3.3. Travel distance: PVRP(TD)

The PVRP(TD) designs vehicle routes in Phase I to minimize travel distances and then assigns

drivers to those routes in Phase II to achieve workforce goals.

3.3.1. Phase I: Vehicle routing For each day in the time period, Phase I determines the

assignment of customers to routes and the arc routing variables:

ytik =

{
1 if customer i∈N is visited by vehicle route k ∈K on day t∈ T
0 otherwise

xtijk =

{
1 if vehicle route k ∈K traverses arc (i, j)∈A on day t∈ T
0 otherwise

The travel cost objective is:

fTD =
∑

(i,j)∈A

∑
k∈K

∑
t∈T

cijx
t
ijk. (1)
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Given that costs and constraints can be decomposed by day, Phase I of the PVRP(TD) is solved

as a series of |T | independent vehicle routing instances, using the following formulation for day

t∈ T :

min
∑

(i,j)∈A

∑
k∈K

cijx
t
ijk (2a)

subject to ∑
k∈K

ytik ≥ 1 ∀i∈N : dti > 0 (2b)∑
i∈N

dtiy
t
ik ≤C ∀k ∈K (2c)∑

j∈N0

xtijk = ytik ∀i∈N ;k ∈K (2d)∑
j∈N0

xtijk =
∑
j∈N0

xtjik ∀i∈N 0;k ∈K (2e)∑
i,j∈Q

xtijk ≤ |Q| − 1 ∀Q⊆N ;k ∈K (2f)

ytik ∈ {0,1} ∀i∈N ;k ∈K (2g)

xtijk ∈ {0,1} ∀(i, j)∈A;k ∈K (2h)

The objective function (2a) minimizes routing costs for day t∈ T . Constraints (2b) ensure that

a customer i ∈N is visited by a route if that customer has demand on a given day. If there is no

demand on that day, the customer does not have to be visited. Constraints (2c) are the physical

capacity constraints for each route. Constraints (2d) link the x and y variables for the customers

in set N . Constraints (2e) ensure flow conservation at each node i ∈N 0. Constraints (2f) are the

subtour elimination constraints which also guarantee that each route contains a stop at the depot.

Finally, constraints (2g) and (2h) define the binary variables for assignment and routing.

3.3.2. Phase II: Driver assignment Once the routes are constructed, a post-processing

phase is employed to improve workforce measures when assigning drivers to routes. The mathemat-

ical programming approach from Francis et al. (2007) is used to assign the drivers to the routes of

the Phase I solution to minimize a performance metric that counts the regions visited by a route.

Their approach is extended here to post-process according to customers as well.

The service area is partitioned into a set R of regions, indexed by r, such that each region

contains at least one customer. In Figure 1, the service region is divided into two regions: r= 1,2.

Let Nr denote the set of customers contained in region r ∈R and let L be the set of drivers. Assume

that |L|= |K|. If a PVRP(TD) solution does not use all |K| vehicles, the idle vehicles are modeled

as routes that remain at the depot with no cost incurred.
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The assignment problem from Francis et al. (2007) minimizes the number of regions that each

driver covers. A driver covers a region if he visits at least one customer in that region during the

time period.

Given a Phase I solution (x̂, ŷ), one can determine the following parameter:

âtrk =

{
1 if vehicle route k ∈K visits region r ∈R on day t∈ T ; i.e. if

∑
i∈Nr

ŷtik ≥ 1
0 otherwise

The following decision variables are used in the assignment problem:

πtlk =

{
1 if driver l ∈L is assigned to vehicle route k ∈K on day t∈ T
0 otherwise

νrl =

{
1 if region r ∈R is visited by driver l ∈L at least once during the period
0 otherwise

The region-based assignment problem is formulated as:

min
∑
r∈R

∑
l∈L

νrl (3a)

subject to

νrl ≥
∑
k∈K

âtrkπ
t
lk ∀r ∈R; l ∈L; t∈ T (3b)∑

k∈K

πtlk ≥ 1 ∀l ∈L; t∈ T (3c)∑
l∈L

πtlk ≤ 1 ∀k ∈K; t∈ T (3d)

πtlk ∈ {0,1} ∀l ∈L;k ∈K; t∈ T (3e)

νrl ≥ 0 ∀r ∈R; l ∈L (3f)

The objective (3a) minimizes the number of regions covered by the drivers. Constraints (3b) set

νrl to 1 if driver l ∈L is assigned to vehicle route k ∈K that visits region r ∈R on at least one day.

Constraints (3c) ensure that each driver is assigned to a vehicle route on each day and constraints

(3d) ensure that only one driver is assigned to a vehicle route on a given day. Given that |L|= |K|,

both constraints (3c) and (3d) hold at equality to guarantee that each driver is assigned to at least

one route each day and each route is served by at most one driver. Constraints (3e) and (3f) define

the decision variables (note that νrl is binary, given binary values for πtlk).

Alternatively, a customer-based assignment problem is introduced with the following notation.

ωil =

{
1 if customer i∈N is visited by driver l ∈L at least once during the period
0 otherwise

The customer-based assignment problem is formulated as:

min
∑
i∈N

∑
l∈L

ωil (4a)
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subject to

ωil ≥
∑
k∈K

ŷtikπ
t
lk ∀i∈N ; l ∈L; t∈ T, (4b)∑

k∈K

πtlk ≥ 1 ∀l ∈L; t∈ T (4c)∑
l∈L

πtlk ≤ 1 ∀k ∈K; t∈ T (4d)

πtlk ∈ {0,1} ∀l ∈L;k ∈K; t∈ T (4e)

ωil ≥ 0 ∀i∈N ; l ∈L (4f)

The objective (4a) minimizes the number of customers visited by the drivers. Constraints (4b) set

ωil to 1 if driver l ∈L is assigned to vehicle route k ∈K that visits customer i∈N on at least one

day. Constraints (4c) - (4e) are the same as (3c) - (3e) in the region model. Constraints (4f) define

the decision variables (again ωil is binary, given binary values for πtlk).

3.4. Customer familiarity: PVRP(CF)

The PVRP(CF) incorporates the customer-driver relationship into the initial route design, rather

than performing a post-processing step. The two-phase approach of the PVRP(TD) is limited in

achieving customer familiarity, as travel cost is the only metric considered when designing routes

in Phase I. The PVRP(CF) seeks to maximize the frequency with which a driver visits a customer.

Recall the decision variable ωil from Phase II of the PVRP(TD) that matches drivers to cus-

tomers. The PVRP(CF) incorporates this matching in the routing decisions. Since the workforce

management models of the PVRP treat drivers and vehicle routes as a single entity, the notation

l(k) is introduced denoting the driver of vehicle route k. Note that only one driver is associated

with a vehicle route over the time period, although the customers visited and the sequence of visits

may change by day for the driver-route entity. An auxiliary variable for driver-customer assignment

is introduced that is distinguished by the frequency with which a driver visits a customer:

vnil(k) =

 1 if customer i∈N is visited by the driver of route k ∈K, denoted l(k),
a total of n∈ T times in the period

0 otherwise

Note that the learning effect often dampens as the visiting frequency increases; i.e. the marginal

benefit of increasing visiting frequency decreases as the frequency increases (see Zhong et al. (2007)

for a discussion of driver learning behavior). Therefore, the customer access cost for a driver is

modeled as a convex function of the frequency with which a customer is visited. Let αn denote the

customer access cost per visit if a customer is visited by the driver n times in the period, where

the parameter values are chosen such that

αn >αn+1, ∀n∈ T.
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Assume a homogeneous set of customers such that the values are the same for each customer.

Further limits on the values ensure that the model does not artificially increase visits to customers

to lower access costs:

nαn ≤ (n+ 1)αn+1, ∀n∈ T.

Combining the two constraints above, the relationship between αn and αn+1 is:

n

n+ 1
≤ αn+1

αn
< 1, ∀n∈ T. (5)

The total customer access cost for the drivers is:

fCF =
∑
i∈N

∑
k∈K

∑
n∈T

nαnvnil(k). (6)

With this expression, the PVRP(CF) is as follows:

minfTD +φCFfCF (7a)

subject to (2b)- (2h)

∑
t∈T

ytik =
∑
n∈T

nvnil(k) ∀i∈N ;k ∈K (7b)

vnil(k) ∈ {0,1} ∀i∈N ;k ∈K;n∈ T ; (7c)

The objective function (7a) minimizes the total customer access cost for the drivers and the

travel cost of the resulting solution, weighted by the parameter φCF. Constraints (7b) define the

driver visit frequency variables, vnil(k), based on the assignment variables. Constraints (2b) set the

sum of the ytik variables over k and t equal to the number of visits requested by customer i over the

time period, such that the left hand side of constraints (7b) is the total number of visits by vehicle

route k to customer i. Constraints (7c) define the binary variables for visit frequency by driver.

Optimal PVRP(CF) solutions will aggregate visits to a customer to as few drivers as possible

during the period, as defined through the following lemmas:

Lemma 1. Given that αn <αm when n>m, then n= n1 +n2 implies nαn <n1α
n1 +n2α

n2.

Proof:

nαn = (n1 +n2)α
n = n1α

n +n2α
n <n1α

n1 +n2α
n2

�
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Lemma 2. Given the limits on the αn values defined by (5), then∑
n∈T

vnil(k) ≤ 1, ∀i∈N ;k ∈K.

Proof: This follows directly from Lemma 1, as for each i, k pair there exists at most one n value

such that vnil(k) = 1. �

Lemma 3. If φCF is arbitrarily large, each customer’s contribution to fCF is minimized when

the number of drivers visiting that customer is minimized.

Proof: From Lemma 1 and Lemma 2, there exists a driver l(k) such that

nαnvnil(k) <n1α
n1vn1il1(k) +n2α

n2vn2il2(k) ∀i∈N,

where n= n1 +n2. The cost function is then minimized for customer i with driver l(k) rather than

drivers l1(k) and l2(k). �

We show below that the PVRP(CF) minimizes the number of different drivers serving each

customer. Let wil(k) = 1 if customer i ∈N is visited by the driver of vehicle route k ∈K, denoted

l(k), at least once in the time period; and 0 otherwise.

Lemma 4. In the optimized case, for every i∈N and k ∈K,
∑

n∈T v
n
il(k) =wil(k).

Proof: When wil(k) = 0, then it is optimal to set vnil(k) = 0 for all n. By definition, when wil(k) > 0,

there exists at least one n such that vnil(k) 6= 0. By Lemma 2,
∑

n∈T v
n
il(k) ≤ 1. Therefore, in the

optimized case,
∑

n∈T v
n
il(k) =wil(k). �

Theorem 1. The PVRP(CF) minimizes the number of drivers visiting each node.

Proof: Given optimal solutions to a PVRP that minimizes the number of drivers and the

PVRP(CF) denoted {xMinDriv,yMinDriv,vMinDriv,wMinDriv} and {xCF,yCF,vCF,wCF}, respec-

tively.

Assume that the PVRP(CF) does not minimize the number of drivers visiting each node; i.e., that∑
i∈N

∑
k∈K

wMinDriv
il(k) <

∑
i∈N

∑
k∈K

wCF
il(k).

Given that wil(k) =
∑

n∈T v
n
il(k), then:∑
i∈N

∑
k∈K

∑
n∈T

vn,MinDriv
il(k) <

∑
i∈N

∑
k∈K

∑
n∈T

vn,CF
il(k) .

However, it is shown next that
∑

i∈N
∑

k∈K
∑

n∈T nα
nvnil(k) is minimized when

∑
i∈N
∑

k∈K
∑

n∈T v
n
il(k)

is minimized, which contradicts the original assumption, and the PVRP(CF) must minimize the
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number of drivers visiting each node. The expression
∑

i∈N
∑

k∈K
∑

n∈T nα
nvnil(k) can be decom-

posed by customer for a feasible routing solution given that all customers incur the same values of

αn for all n. Lemma 3 states that, for a given customer,
∑

k∈K
∑

n∈T nα
nvnil(k) is minimized when∑

k∈K
∑

n∈T v
n
il(k) is minimized. Therefore, summed over all customers,

∑
i∈N
∑

k∈K
∑

n∈T nα
nvnil(k)

is minimized when
∑

i∈N
∑

k∈K
∑

n∈T v
n
il(k) is minimized. �

It can easily be shown by counter-example that minimizing the number of drivers does not

necessarily maximize the frequency with which a driver visits a node, see Smilowitz et al. (2009).

3.5. Region familiarity: PVRP(RF)

The PVRP(CF) creates vehicle routes that focus on the relationship between a driver and a cus-

tomer. The same concept can apply to a driver’s familiarity with the network. Practically, when a

driver visits an area more frequently, her familiarity with the area increases and hence the travel

time decreases. With parcel delivery, drivers often work in the same region with varying customers.

By visiting one customer in the region, the driver actually gains familiarity with the entire area.

The PVRP(CF) does not consider that drivers become more efficient without paying a direct visit

to the same customers repeatedly. This effect is reflected in the PVRP(RF).

In the PVRP(RF), we introduce a set of variables similar to νrl from Phase II of the PVRP(TD)

that matches drivers to regions; however, a superscript denoting the frequency of visits to the

region is added:

unrl(k) =

 1 if region r ∈R is visited by the driver of vehicle route k ∈K, denoted l(k),
a total of n∈ T times in the period

0 otherwise

In addition, we use auxiliary variables similar to âtrk from Phase II of the PVRP(TD):

atrk =

{
1 if route k ∈K visits region r ∈R on day t∈ T
0 otherwise

Similar to the customer access cost, a region access cost is introduced that is a convex function

of the frequency with which a driver visits a region within the time period. Recall Nr is the set

of customers in region r and let βn represent the region access cost per visit for each region that

a driver visits n times. The access cost parameters reflect the concept that, as a driver visits a

region more frequently, the driver becomes more familiar with the region and can travel through

the region more efficiently. However, the PVRP(RF) should not create solutions in which regions

are visited more frequently than needed to reduce access cost. The limits on βn are similar to αn:

n

n+ 1
≤ βn+1

βn
< 1, ∀n∈ T (8)
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The total region access cost for the drivers is:

fRF =
∑
r∈R

∑
k∈K

∑
n∈T

nβnunrl(k). (9)

The PVRP(RF) is modeled as follows:

minfTD +φRFfRF (10a)

subject to (2b)- (2h)

∑
i∈Nr

ytik ≤ |Nr|atrk ∀r ∈R;k ∈K; t∈ T (10b)∑
t∈T

atrk =
∑
n∈T

nunrl(k) ∀r ∈R;k ∈K (10c)

unrl(k) ∈ {0,1} ∀r ∈R;k ∈K;n∈ T (10d)

The objective function (10a) minimizes the region access cost and the travel distance, weighted by

φRF. Constraints (10b) link the region assignment variables atrk, to the node assignment variables,

ytik: if at least one node within region k is visited by route k on day t, then atrk = 1. Given the limits

on route access cost, atrk = 0 if no nodes within the region are visited to minimize the objective

function. Constraints (10c) define the region visit frequency variables, unrl(k), based on the region

assignment variables. Constraints (10d) define the binary variables for visit frequency by driver.

Lemmas 1-4 and Theorem 1 can be easily adapted to show that the PVRP(RF) minimizes the

number of drivers visiting a region.

3.6. Analysis of the PVRP models

In this section, a general analysis of the PVRP models is presented. As the intention here is to

study the basic trade-offs between cost and workforce metrics, assume the weighting factors φCF

and φRF are arbitrarily large such that travel costs do not impact the decision making for the

workforce models. The empirical study in Section 4 evaluates the weighting factor values.

Figure 3 presents an application of the PVRP models for the example in Figure 1. The perfor-

mance metrics are compared in Table 1, in which we calculate performance metrics for the solutions

derived from each model. The value in bold represents the intended goal for each model. We analyze

these solutions in the following subsections, and, where possible, generalize our findings.

3.6.1. Route usage As shown in Figure 3, on day 1, the capacity constraint and demand

levels require two routes across all models. However, the total demand on day 2 equals the capacity

of one vehicle. The PVRP(TD) uses only a single route to minimize travel cost, while the other
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Model

Figure 3 

Solution f TD f CF f RF

PVRP(TD) 3(a) 48 2α2
+3α

1
2β

2
+2β

1

PVRP(CF) 3(b) 55 4α2
+α

1
2β

2
+2β

1

PVRP(RF) 3(c) 57 4α2+α1 4β2

Performance metric

Table 1 Comparison of PVRP models

models use two routes to achieve workforce goals. A primary objective of many VRP models is

to minimize the number of routes used, due to the fixed cost of each route. A manager may be

concerned that incorporating workforce management can require the use of a greater number of

routes. Focusing on routing cost may lead to solutions using fewer routes, which can make it difficult

to serve a customer with one driver. This is evident in the two phase approach for the PVRP(TD).

By focusing on a minimum distance cost solution in Phase I, the number of routes used across days

may differ, limiting the workforce management options in Phase II. In the example, only one route

is used on day 2 in the PVRP(TD) solution, which limits matching customers with drivers in Phase

II. While the focus of PVRP(TD) may result in lower routing costs, the limited flexibility associated

with workforce management may be a concern. Alternatively, focusing on workforce management

may lead to solutions with more vehicles than needed. It should be noted that minimizing routing

cost does not always minimize the number of routes. However, given the triangle inequality, there

is often an incentive to use fewer routes if capacity allows such an option.

3.6.2. Relationship between region and customer based models In the example, the

PVRP(RF) solution results in the same fCF cost as the PVRP(CF) model. Solving the PVRP(RF)

may be simpler computationally given that, unless there is one customer per region, the number

of regions is smaller than the number of customers. However, the PVRP(RF) does not always find

the same solution as the PVRP(CF). If the regions are very large, containing many customers, it

is evident that there will be multiple combinations of customers that may be serviced while drivers
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operate continuously within one region. Even as the region size decreases to the point where there

are very few customers per region, a counterexample may be found that shows a situation where

the PVRP(RF) does not find the same solution as the PVRP(CF).

In Section 4, these observations are extended to larger problem instances.

4. Numerical Analysis

This section presents a comparison of the PVRP models defined in Section 3 using a set of empirical

tests. Section 4.1 describes the computational tests. Section 4.2 presents the modified Tabu Search

heuristic used to solve the PVRP models. Finally, Section 4.3 presents a full analysis of the results.

4.1. Experimental design

4.1.1. Test case instances The PVRP models are evaluated with the multi-day problem

instances used by Groer et al. (2009), adapted from the VRP benchmark problems of Christofides

and Eilon (1969). These instances consist of seven sets of customer locations, with the number of

customers ranging from 50 to 199. A request for service may come from a customer on any of the

five days that compose the time period. A customer has the same demand on any day service is

requested. If all customers request service on each of the five days, the problem decomposes to the

general VRP, with the same solution used for each day. As with Groer et al. (2009), the probability

parameter p < 1 denotes the probability that a customer requests service on a given day. If p is

too small, customers requesting service on multiple days become too infrequent. In order to create

meaningful problem instances, the three values of p selected are: 0.6, 0.7 and 0.8. Each value is

tested for each of the seven sets of customer locations, resulting in 21 problem instances.

Five models are tested: (1) PVRP(TD) without Phase II, (2) PVRP(TD) with Phase II optimized

at the customer level, denoted as PVRP(TD)+C, (3) PVRP(TD) with Phase II optimized at the

region level, denoted as PVRP(TD)+R, (4) PVRP(CF), and (5) PVRP(RF). Note that driver

assignments for the PVRP(TD) without Phase II are obtained by setting the driver index l equal

to the vehicle route index k from Phase I. Thus, the driver-vehicle route assignments are made

arbitrarily without regard to workforce metrics.

4.1.2. Access cost functions The workforce management objectives require a quantification

of driver learning. In practice, it can be difficult to determine how quickly a driver adapts to a

customer or region, whether the biggest drop in cost per visit occurs after one visit or multiple

visits. For the PVRP(CF), we develop four sets, α(1), α(2), α(3), and α(4), to represent driver-

customer learning curves over a five-day period; i.e., α(1) = {α1(1), α2(1), α3(1), α4(1), α5(1)}. To
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Figure 4 Customer access cost functions

maintain proportions among the sets, the five values within each set sum to one; i.e., α1(1) +

α2(1) +α3(1) +α4(1) +α5(1) = 1. The four sets are shown in Figure 4.

The first set, α(1), is generated by letting 1α1 = 2α2 = · · ·= nαn, such that an objective with

this cost function simply minimizes the number of drivers visiting a node. The cost does not change

for a driver if she visits the same node multiple times. Each new driver visiting the node incurs

an additional cost. The design of this set results in large drops between each of the α values (see

Figure 4). The second set, α(2), represents a scenario where the driver gains most familiarity with

one visit, with the learning curve dropping off considerably with subsequent visits. Therefore, this

set has a high access cost for a driver who visits a customer only once in the period, with a large

drop in customer access cost if the driver visits the customer twice and a marginal decrease in

cost with additional visits. The third set, α(3), is similar, but the most familiarity is gained after

two visits, with the large drop in access cost from two to three visits to a customer within the

time period. The costs drop linearly between all visits for the fourth set, α(4). The driver-region

learning sets, β(1), β(2), β(3), and β(4), are constructed identically for the PVRP(RF).

4.1.3. Multi-objective weighting factors The three costs associated with travel, customer

familiarity and region familiarity are of differing orders of magnitude. Travel costs measure distance

while customer familiarity costs measure the number of visits per customer. Region familiarity

costs also differ from customer familiarity costs as these costs are incurred less frequently (multiple

customers can be served in one visit to a region). These differences result in costs that vary by

function, with fTD in the range of 2,000-5,000, fCF approximately 20-200, and fRF approximately

10-40. To regulate the balance between workforce metrics and routing costs, the weighting factors

φCF and φRF are applied to the workforce cost portion of the objective functions in PVRP(CF) and

PVRP(RF), respectively. Placing too much weight on workforce metrics may lead to a considerable
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increase in travel costs. Alternatively, a low weight may result in a solution that is no different from

one found using PVRP(TD). To find an appropriate balance, approximately 60 values of φCF and

φRF are tested. The values of φCF are in the range [0,500], with the majority of tested values below

100. Because the regional access costs are incurred less frequently, the φRF values are extended to

the range [0,1000].

4.2. Tabu Search

Tabu Search (TS) is a widely used metaheuristic solution method for the VRP and PVRP. The

method begins with a quick construct of an initial solution and then performs an intensive local

search by moving from the current step to the best step in the neighborhood. To avoid cycling,

certain moves are declared as Tabu and can not be executed for a number of iterations. TS is a

flexible algorithm that can be easily modified to suit the needs of specific problems. For example,

there are various definitions of search methods for the neighborhood, such as GENI [Gendreau

et al. (1992)], which has demonstrated effectiveness in a range of VRP extensions.

4.2.1. Algorithm implementation The TS implementation for the PVRP models defined

in Section 3 is similar to that presented by Gendreau et al. (1997). The principal changes to the

algorithm here are the definition of a move and the cost functions. In Gendreau et al. (1997) a

move is defined as either a change in the vehicle or schedule assignment; we only consider a change

in vehicle assignment as the problem does not allow flexibility in visitation schedules. Similar to

Gendreau et al. (1997), infeasible solutions are allowed during the search. The cost function c(s) is

a combination of the objective function f(s) and an infeasibility penalty q(s) caused by violation

of vehicle capacity constraints, weighted by the infeasibility penalty factor, Φ. In Gendreau et al.

(1997) the objective function is the travel cost, but here workforce metrics are also added. As an

example, the cost function for the PVRP(CF) model is presented:

c(s) = f(s) + Φq(s) (11a)

f(s) = min
∑

(i,j)∈A

∑
k∈K

∑
t∈T

cijx
t
ijk +φCF

∑
i∈N

∑
k∈K

∑
n∈T

nαnvnil(k) (11b)

q(s) =
∑
k∈K

∑
t∈T

[(
∑
i∈N

dtiy
t
ik−C)]+ (11c)

The remaining components of the TS algorithm used by Gendreau et al. (1997) are similar,

including the use of an aspiration level, which guides the search to feasible solutions, and a scheme to

diversify the local search such that the same attributes are not repeatedly selected for improvement.

The search procedure is as follows.
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1. For each day construct an initial solution using the sweep algorithm [Gillett and Miller (1974)].

Customers are selected for delivery according to their angle with an arbitrary horizontal line at the

start of the algorithm, with the customer closest to the horizon selected first and other customers

added as the sweep arm rotates away from the horizon. On each day, adjacent customers are

assigned to a driver until the driver reaches its capacity limit, then a new driver is used. For the

last driver, all remaining customers are assigned to this driver, even if capacity is exceeded.

2. Construct a set of possible moves. There are |K| − 1 potential driver moves for a customer

on each day service is requested. Drivers containing one of the customer’s g nearest neighbors are

considered as a possible move destination.

3. Identify the best move and check its Tabu status from the Tabu list. Calculate the change in

the objective function for each candidate move using the GENI heuristic with penalties for capacity

infeasibility; diversification is also added into the objective function. The move with the least cost

that is not Tabu is used. Perform the best move. Remove the customer from the previous route

and perform the insertion.

4. Update the Tabu list to include the attribute representing the implemented move. The move

is declared Tabu for θ iterations.

5. Check if the current solution is feasible. If so, update the best feasible solution and decrease

the infeasibility penalty factor Φ. Otherwise, increase Φ.

6. Return to Step 2 and repeat for λmax iterations.

The parameters used for this TS follow from Gendreau et al. (1997). The factor used to adjust

the intensity of the diversification is 0.015. The initial value of the infeasibility penalty weight, Φ,

is set to 10. The parameter used to update Φ is set to 0.1. Tabu tenure, θ, is 7.5log10m, where m

is the number of customers. The number of iterations, λmax, is 5000, with neighborhood size in

GENI fixed at g = 3. All instances are tested on a cluster of 6 computers with quad-core 2.4GHz

(4MB L2 cache) 64-bit Xeon processors in each computer for a total of 24 available cores. Each

computer has 8GB RAM installed.

4.2.2. Tabu Search performance The performance of the TS algorithm is tested using the

seven problem instances from Groer et al. (2009), with p= 0.7, shown in Table 2. For the purposes

of testing performance against cost-based PVRP solutions, the workforce management metrics

are removed. An optimal solution has not been determined for the largest instances. Therefore,

the results produced by the TS algorithm are compared with the record-to-record (RTR) travel

algorithm used by Li et al. (2005), which achieves the best known solution to the seven instances.

The average gap for all instances is 1.17% and the largest gap is below 4%. These low gaps allow
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us to analyze workforce management objectives among models. The computational times are not

reported by Li et al. (2005) for each problem instance; rather, average computational time over all

instances is indicated to be less than half a minute. The average computational time over all seven

instances for the TS algorithm is 6.3 minutes.

table4.pdf

Table 2 Tabu algorithm performance

The computational times for all instances are presented in Table 6 in the Appendix. Most of the

variations in times are a reflection of a change in instance size. As the number of customers increases

and as p increases, increasing the number of requests per customer, computational times increase.

When φCF = 25 and φRF = 50 the times for the workforce management models are comparable

to the times for the PVRP(TD) model. These times are only for Phase I of this model, as Phase

II is performed using AMPL. Postprocessing for Phase II requires 15-20 minutes for the smaller

instances, but can take several hours for the larger instances.

4.3. Model analysis

In the following subsections, we evaluate the application of workforce management principles to the

PVRP. As noted earlier, comparing the objective values of each model does not provide a useful

analysis, as these values differ in magnitude based on what they measure. Rather, we compare

relative gaps as defined next.

Let ∆I(PVRP(Jφ)) represent the relative gap in the value of objective I between a PVRP solu-

tion in which J is the primary objective (with designated weight φ), denoted fI(PVRP(Jφ)), and
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the minimum value of objective I obtained for the instance, denoted fMIN
I . When J = TD, the

parameter φ is dropped. The gap is calculated as follows:

∆I(PVRP(Jφ)) =
fI(PVRP(Jφ))− fMIN

I

fMIN
I

.

As an example, the relative gap in travel distance (I = TD) between the PVRP(TD) and the

PVRP(CF) for weight φ is:

∆TD(PVRP(CFφ)) =
fTD(PVRP(CFφ))− fMIN

TD

fMIN
TD

A large value of ∆TD(PVRP(CFφ)) indicates that the PVRP(CF) with weight φ produces solutions

with large travel costs relative to the solution that has minimum travel cost. A value close to

zero indicates that the PVRP(CF) produces solutions that achieve customer familiarity at a small

increase in travel costs.

4.3.1. Impact of the multi-objective weighting factor The relative objective gaps are

used to evaluate the multi-objective weighting factors, φCF and φRF, for the respective models. The

impact of the weight factors on relative gaps is illustrated in Figure 5 for the test cases. Figure 5(a)

presents the trade-off between routing costs and customer familiarity as φCF increases from 0 to 500

when solving the PVRP(CF). Recall that φCF = 0 corresponds to the single-objective PVRP(TD)

model. The x-axis measures ∆TD(PVRP(CFφ)), the deviation in travel distance between the min-

imum travel distance and the travel distance achieved with the PVRP(CF) for a given weight φ.

The y-axis measures ∆CF(PVRP(CFφ)), the deviation in customer familiarity between the mini-

mum value (over all weights) and the value achieved for a given weight. Each data point represents

the average deviation over all seven instances for p = 0.7, with α(1). As φCF increases, the rel-

ative importance of customer familiarity increases. This figure indicates the amount by which

routing costs increase, ∆TD(PVRP(CFφ)), and workforce costs decrease, ∆CF(PVRP(CFφ)), as

φCF increases. Figure 5(b) presents the same analysis for region familiarity, analyzing PVRP(RF)

models with φRF from 0 to 1000 and β(1).

In both Figures 5(a) and (b), we observe that as φCF and φRF increase and more emphasis is

placed on workforce costs, the ∆TD values increase, although the initial increases from zero are

small. Further, ∆CF and ∆RF approach zero while ∆TD continues to increase, indicating that there

are diminishing returns in placing a greater emphasis on workforce management. Particularly in

the cases of the PVRP(CF), introducing workforce metrics into routing decisions with a small

weight has a high reward with a low cost. Increasing φCF slightly from zero can bring workforce

gaps down to single digits, while φRF shows a more gradual drop. The difference between these
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Figure 5 Impact of multi-objective weighting on: (a) customer familiarity; (b) region familiarity

two models may be attributed to the larger cost values for customer familiarity, with a smaller

φCF value required in order for these costs to have an impact on total cost.

The trade-off analysis leads to a question of how to determine the appropriate φ value to bal-

ance between travel and workforce management costs. We introduce a metric which combines the

deviations in travel and workforce costs. The ∆ values are normalized for the comparison of travel

distance and customer familiarity as follows:

NORMφ =
fTD(PVRP(CFφ))

fMIN
TD

+
fCF(PVRP(CFφ))

fMIN
CF

.

A similar normalization is used for PVRP(RF). Figures 6(a) and (b) present the normalized

values for φCF and φRF, respectively. As with Figure 5, data points represent the average over

all seven instances for r α(1) and β(1), respectively, and both have p= 0.7. It can again be seen

that a slight increase in φ from zero has an immediate impact when both travel and workforce

management costs are considered. The values that provide the best balance between workforce

management and travel costs are φ̄CF = 25 and φ̄RF = 50. As φ increases above these values, the

emphasis on workforce management becomes too great and travel costs disproportionately increase.

We use these weighting factors to further analyze the relationships among the three models next.
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Figure 6 Evaluation of φ value to balance routing and workforce management objectives for: (a) customer

familiarity; (b) region familiarity

4.3.2. Metric comparisons among all models To compare the PVRP models, we analyze

the objective gaps relative to the minimum metric values obtained as defined by ∆I(PVRP(Jφ)).

Table 3 presents the values of ∆I(PVRP(Jφ)) for the objective functions (I = TD, CF, and RF)

obtained with five model variations (J = TD, TD+R, TD+C, CF, and RF). The results are initially

aggregated across problem instances for the three values of p. The results in Table 3 are presented

for φ= φ̄CF = 25 for the PVRP(CF) and φ= φ̄RF = 50 for the PVRP(RF). The CF and RF metrics

are evaluated with α(1) and β(1), respectively. Other α and β sets are evaluated in Section 4.3.3.

TD CF RF TD CF RF TD CF RF

PVRP(TD) 1.3% 64.7% 104.1% 0.6% 89.6% 103.0% 3.2% 85.6% 97.3%

PVRP(TD)+R 1.3% 46.2% 49.1% 0.6% 74.8% 75.0% 3.2% 80.3% 77.3%

PVRP(TD)+C 1.3% 39.2% 52.1% 0.6% 69.9% 82.7% 3.2% 71.4% 83.2%

PVRP(CF25) 2.9% 5.7% 38.6% 3.4% 7.7% 30.2% 2.0% 4.9% 22.0%

PVRP(RF50) 3.5% 41.5% 38.8% 3.7% 55.5% 33.3% 5.2% 59.2% 42.7%

p =0.6 p =0.7 p =0.8

Table 3 Objective gaps relative to minimum values for the PVRP models for φCF = 25 and φRF = 50

As shown by the values of ∆TD in Table 3, the PVRP models that focus on workforce manage-
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ment increase routing costs by no more than 5.2%. These values do not vary significantly by p. On

the other hand, the increases in workforce metrics for the PVRP(TD) are considerably greater.

This suggests that the models accounting for workforce metrics do a better job of minimizing travel

cost than the PVRP(TD) models do with minimizing workforce metrics. As the value of p increases,

the values of ∆CF increase most dramatically. Increasing p generates more requests per customer

over the course of the time period, making it more difficult for the other models to satisfy driver

consistency metrics. Note that using φ values that balance distance and workforce objectives leads

to ∆I(PVRP(Iφ)) values that are greater than zero.

Comparison of region and customer based models These results show that the relation-

ship between customer and region familiarity models is more complex than that found in the simple

example in Table 1. Using φ values that balance distance and workforce objectives leads to results

such as ∆RF(PVRP(CF)) <∆RF(PVRP(RF)) for each p. With a smaller disparity between dis-

tance and workforce costs, the CF model can put more emphasis on workforce management (both

customer and region familiarity) using a smaller φCF value of 25, relative to the φRF value of 50.

At the highest φ values, which mimic pure workforce models similar to those found in Table 1,

this is no longer the case and the RF model leads to the lowest region familiarity cost. However,

∆RF(PVRP(CF))>0 and ∆CF(PVRP(RF))>0, regardless of φ value, indicating that one model

does not achieve the goals of the other. Much of this is driven by the value of p.

As the value of p increases and customers request service more frequently, ∆RF(PVRP(CF))

decreases. As p goes from 0.6 to 0.8, the average number of requests per region per day increases

from 2.7 to 3.6. The PVRP(CF) model attempts to serve a customer repeatedly with the same

driver, and with more requests per customer within a region, there are more opportunities for a

driver to serve a specific customer within a region, decreasing the region familiarity costs. Inversely,

as p increases, ∆CF(PVRP(RF)) increases. Increasing the number of requests per region per day

from 2.7 to 3.6 results in a wider variety of customers from which to choose for service in the

region every day. In this case, there is a greater likelihood that a driver may repeatedly visit the

same region without having to visit the same customer each time. Therefore, as customers request

service more often, a driver should become more familiar with the region if an attempt is made to

have the driver visit the same customers regularly, but the driver will not necessarily become more

familiar with a set of customers if assignments are based on regions. For the CF and RF metrics

the impact of p is complicated by the α and β structures. This impact is discussed in more detail

in Section 4.3.3.
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Impact of post-processing The results in Table 3 indicate that it is beneficial to apply Phase

II to the PVRP(TD) solutions to improve workforce metrics. Customer-based post-processing is

more effective at reducing driver consistency costs (a customer-dependent term) than region-based

post-processing. This trend is less strong for customer familiarity. Region-based post-processing is

slightly more effective at reducing region familiarity costs than customer-based post-processing.

Neither post-processing method is able to reduce workforce metrics to the levels achieved with

PVRP models with workforce objectives. As discussed in Section 3.6, the initial routes obtained

with the PVRP(TD) tend to use fewer vehicles than those solutions obtained with the workforce

PVRP models. Table 4 presents the average number of vehicles used in routing solutions for each of

the seven test cases for p= 0.7 with two sets of weighting factors. The PVRP(CF) and PVRP(RF)

results are averaged over all α and β values, respectively.

 CF = 25  RF = 50  CF = 500  RF = 1000

Instance  PVRP(TD) PVRP(CF)  PVRP(RF) PVRP(CF)  PVRP(RF)

ConVRP1 3.2 3.6 3.6 4.2 4.7

ConVRP2 7.8 7.9 7.8 8.0 8.0

ConVRP3 5.5 5.8 5.7 6.0 6.0

ConVRP4 8.6 9.3 8.6 9.9 9.1

ConVRP5 12.2 12.6 12.2 13.8 12.8

ConVRP11 5.4 6.1 5.2 6.8 5.9

ConVRP12 6.6 7.0 6.9 7.8 7.4

Low weighting High weighting

Table 4 Average number of vehicles used

The values in Table 4 confirm that fewer vehicles are more likely to be used in PVRP(TD)

solutions than in solutions obtained with workforce management objectives. The difference is more

pronounced when a higher weight is placed on workforce metrics. When the difference is large,

the opportunities to meet workforce goals with post-processing are more limited. This can further

explain the increases in workforce gaps in Table 4.

While fewer vehicles can limit the ability of the PVRP(TD) to achieve workforce goals through

post-processing, more vehicles in the workforce PVRP models do not necessarily translate into

large increases in distance traveled. With low weightings, although the number of vehicles increases

with the workforce models by an average of 6%, the rise in routing costs is small, with an average

∆TD of 2.4%.
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4.3.3. Comparison of driver-customer learning models The set of α values can dra-

matically change routing solutions. The four α sets, α(1),α(2),α(3) and α(4), are differentiated

by the reduction in access cost with increased visits to a customer. For example, while α(2) has

the largest drop in cost between one and two visits, α(3) has the greatest drop from two to three

visits. One might expect that the latter is more effective when customers request more visits, while

the former with fewer visits. These differences are quantified by comparing the number of requests

made by a customer in a period and the maximum number of those requests served by one driver.

For example, if a customer requesting service on all five days of the period has one driver visit

three times and another driver visit two times, the resulting metric would be 5/3. Each customer

falls into one of 15 categories: 5/5, 5/4, 5/3... 2/2, 2/1, 1/1.

Figure 7 presents results for the four α sets for φCF = 25 along with PVRP(TD)+C for compar-

ison. Good workforce management is achieved when the number of visits requested is equivalent to
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Figure 7 Maximum number of visits made by one driver to a customer (φCF = 25)

the number of visits made by one driver. In the figure, this is reflected when the uppermost colored

bar is the predominant one, as in the graph for α(1). The PVRP(TD)+C model results in a mix of

the number of drivers visiting each customer. The PVRP(CF) with α(1) clearly outperforms the

other PVRP(CF) models in serving most customers with the same driver. When revisiting the α

sets shown in Figure 4, these results are not surprising. Given that 1α1 = 2α2 = · · ·= nαn for the

α(1) set, there is a more significant drop in cost between values. For example, while α(1) and

α(2) have similar relative drops in value from one visit to two visits, the absolute drop in α(1) is

considerably larger (0.22 vs. 0.17). These differences have an impact, even at small values of φCF.
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When using α(2), the model finds the best results from a workforce management perspective

when two visits are requested, which is where the largest drop in cost occurred. Similarly, when the

α(3) parameters are applied, the model finds the best results when three visits are requested. With

relatively little drop between values, α(4) provides far less incentive for repeated visits. These

results further underline the importance of the ratio between consecutive αn values.

Consider the constraint placed on the αn values when constructing the PVRP(CF) model:

n

n+ 1
<
αn+1

αn
< 1, ∀n∈ T

As the ratio αn+1

αn decreases and approaches n
n+1

, the benefit from reducing the number of different

drivers visiting a customer increases. It is clear that the heuristic is very responsive to this ratio

for all values of n.

4.3.4. Industry Analysis The preceding results indicate that a slight emphasis on workforce

management leads to a reduction in related costs with a minimal increase in travel costs. In addition,

post processing of distance minimizing routes is limited in lowering workforce management costs.

We evaluate the extent to which these insights are observed in practice with data provided by a

major package delivery carrier. The data set represents five days of operation consisting of 1800

deliveries, serving over 1100 unique customers with three routes per day. Of these 1800 deliveries,

only 22% have time windows. Therefore, consistent with our PVRP models, time windows are

ignored.

In order to apply the heuristic to this instance, the large data set is aggregated to a set of 197

customers requesting 737 deliveries over the five days with the following customer aggregation

criteria. Customers are clustered with their neighbors, such that the average distance from any

customer in a cluster to the center of the cluster is less than or equal to 1 distance unit and the

total number of customers in a cluster is less than 11. The center is defined by the average x

and y coordinates of all customers in a cluster. Customers are combined only if they appear on

the same route on each of the days that they request service. As such, we can create a base case

for comparison in which each customer cluster is assigned to the same route as in the original

assignment. The sequence of cluster visits within each route is improved using a simple k-opt

algorithm. We compare this base case with results from the PVRP(TD) and PVRP(RF) models.

We focus on region familiarity rather than customer familiarity for two reasons; first, the data set

is already an aggregation of true customers as described above, and second, the post-processing of

PVRP(TD) routes is performed based on regions due to the size of the problem instance. In all

cases, the number of routes is fixed at three per day.



Smilowitz, Nowak and Jiang: Workforce management in periodic delivery operations
28 Article submitted to Transportation Science; manuscript no.

Table 5 provides a summary of the results when the PVRP models are tested with the aggregated

package delivery carrier data. For the PVRP(RF) models, the values of φRF range from 1 to 4, to

achieve varying balances between travel distance and region familiarity given the relative magnitude

of the metrics for this large instance. For each model, the table presents the absolute values of fTD

and fRF , as well as the percent improvement in these values compared with the base case.

UPStable.pdf

Table 5 Evaluation of model costs relative to package delivery carrier data

The difference in travel costs for the carrier result and the PVRP(TD) results is likely due, in part,

to the omission of time windows in this study. We attempt to improve the sequence of cluster visits

in the aggregated carrier solution to make a more fair comparison (i.e., to reduce the impact of time

windows). However, recall that customers are only clustered together if they appear on the same

disaggregated route, and the disaggregated routes are designed by the carrier with consideration

of time windows. All PVRP models ignore time windows. Additionally, the larger travel distances
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may arise from a consideration of workforce management costs in the carrier solution that are not

present in the PVRP(TD) model. Notably, the value of fRF for the PVRP (TD) does not improve

with post-processing. With only three routes, there is little room for improvement, unless the initial

assignment of drivers to routes is very poor. The result for the PVRP(RF) model is similar to

the results found using the random problem instances, in that workforce management cost savings

may be found with little effect on travel costs. In fact, in this case there is no effect on travel cost.

Increasing β values beyond those reported led to a minimal reduction in workforce management

costs.

The three PVRP model variations provide practitioners with a framework to analyze a wider

range of data sets. Importantly, given the results found in the previous section, one may wish to

study the impact of p in practice. The likelihood of customer service requests will differ significantly

between residential and commercial customers, as will node density. Our modeling framework

facilitates the analysis of how workforce management strategies may differ between these two

customer classes.

5. Conclusions and Extension

In this paper, we examine how the incorporation of workforce management metrics influences

operational decisions for periodic vehicle routing problems. Two PVRP models are proposed that

include workforce management metrics as a part of the objective function for comparison with

a base PVRP model focused on minimizing travel cost. It is shown that solving the traditional

PVRP to minimize travel cost can lead to solutions that are less desirable from the perspective

of workforce management, even with post-processing. For example, the traditional PVRP gener-

ally reduces the number of routes used, which limits the available options when assigning drivers

to customers. However, by adding workforce management metrics to the objective function, an

appropriate balance can be obtained between travel cost and workforce management goals.

We explore approaches to model driver familiarity with both customers and regions, finding that

workforce management principles can be applied with a minimal impact on travel costs. These

results are found through a computational study with both standard PVRP test cases, modified for

our problem setting, and a data set provided by a major package delivery carrier. Fundamentally,

this paper presents transportation managers with best practice methods for applying workforce

management without sacrificing other operational objectives.

As an extension to this work, one can incorporate the dynamic nature of driver learning more

explicitly. Over time, as drivers become more familiar with their routes, it should be possible to

add more customers or a larger service territory. Therefore, a next step should incorporate variable

capacity constraints and variable demand to reflect the improved service level of drivers.
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Appendix

Problem instance ConVRP1 ConVRP2 ConVRP3 ConVRP4 ConVRP5 ConVRP11 ConVRP12

Number of customers 50 75 100 150 199 120 100
p φ CF φ RF Model

‐ ‐ PVRP(TD) 62 133 206 479 766 254 214

25 ‐ PVRP(CF) 58 120 207 483 753 288 218

‐ 50 PVRP(RF) 64 139 209 490 768 290 226

250 ‐ PVRP(CF) 81 175 249 680 1108 380 276

‐ 500 PVRP(RF) 80 176 254 698 1114 302 288

500 ‐ PVRP(CF) 80 176 257 688 1337 398 291

‐ 1000 PVRP(RF) 78 173 255 701 1331 396 288

‐ ‐ PVRP(TD) 81 178 251 612 1177 335 250

25 ‐ PVRP(CF) 71 173 239 614 1162 336 255

‐ 50 PVRP(RF) 74 187 252 635 1169 364 261

250 ‐ PVRP(CF) 92 238 308 854 1710 463 328

‐ 500 PVRP(RF) 93 240 310 871 1730 370 339

500 ‐ PVRP(CF) 94 245 324 879 1800 490 343

‐ 1000 PVRP(RF) 90 237 311 870 1743 473 338

‐ ‐ PVRP(TD) 102 220 333 700 1341 423 335

25 ‐ PVRP(CF) 100 213 313 690 1330 434 342

‐ 50 PVRP(RF) 98 234 335 701 1342 422 346

250 ‐ PVRP(CF) 122 296 421 947 1930 546 436

‐ 500 PVRP(RF) 122 301 435 952 1961 431 436

500 ‐ PVRP(CF) 125 299 423 946 1925 540 434

‐ 1000 PVRP(RF) 120 306 442 944 1956 548 433

Computational time (in seconds)

0.6

0.7

0.8

Table 6 Comparison of the computational times (in seconds)
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