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NOTES AND DISCUSSIONS

Note on thermal heating efficiency
E. T. Jaynesa)
Department of Physics, Washington University, St. Louis, Missouri 63130

!Received 25 April 2002; accepted for publication 26 July 2002"

Kelvin showed the maximum efficiency with which heat can be converted into work; but there is a
dual theorem about the maximum efficiency with which heat at one temperature can be converted
into heat at another temperature. It has some surprising implications, in particular that the efficiency
with which we heat our buildings could in principle be improved by a large factor. This long known,
but still little known, fact is of current pedagogical interest and practical importance. © 2003
American Association of Physics Teachers.
#DOI: 10.1119/1.1508446$

I. INTRODUCTION

For over 200 years the University of Glasgow has played
a uniquely important role in the development of thermody-
namics. There the distinction between temperature as a mea-
sure of intensity of something, and heat as a quantity of
something, was first seen clearly by Joseph Black in about
1760. This knowledge contributed to the work of his col-
league, James Watt, in the first practical means of converting
heat into work. Then Carnot and others tried to find the
maximum theoretical efficiency of this conversion, but the
one who finally succeeded was Wm. Thomson !later Lord
Kelvin" at the University of Glasgow.
Recently an addition to this was made, which is not only

of theoretical interest as representing in a sense the comple-
tion of the logical structure of classical thermodynamics; it
has immediate practical implications. Yet the principle is
hardly new; it is such a simple and immediate consequence
of Thomson’s work that it must have been known to Thom-
son in 1870.1 Today it cannot be really unknown to anyone
familiar with the theory of heat pumps. But to the best of our
knowledge it has not yet appeared in any physics textbook,
stated in a form where it is seen as logically independent of
Carnot engines, and forming the natural dual theorem to the
one on the efficiency of Carnot engines.2 It seems appropri-
ate that this way of looking at the result was finally pointed
out by Robert S. Silver,3 the James Watt Professor !now
emeritus" of the University of Glasgow.
In Sec. II we give the almost trivial derivation, and in Sec.

III we point out its practical implications by numerical ex-
amples. Because a large part of the world’s energy resources
are actually used for heating rather than production of work,
these implications are not trivial. Section IV points out an-
other surprising application.

II. THEORETICAL DERIVATION

We have a source of heat Q2 which is available at Kelvin
temperature T2 . By this we mean, as was stressed long ago
by Gibbs,4 that the source is capable of delivering that heat
to a heat reservoir which is at temperature T2 ; T2 is the
highest temperature to which it can deliver that heat. If there
is available a cold reservoir at temperature T1!T2 , then
according to classical thermodynamics we may exploit this

temperature difference to obtain work W . By applying the
first and second laws, we obtain W"Q2#Q1 , Q1 /T1
%Q2 /T2 ; if we solve these for W and Q1 , we have

W&Q2! 1#
T1
T2

" , Q1%Q2
T1
T2
, !1"

with an equality if and only if the engine is reversible. In the
latter case the ‘‘wasted energy’’

Q1!Carnot""Q2
T1
T2

!2"

is delivered as heat to the reservoir at temperature T1 . This is
the standard result.
But now suppose that our objective is not to produce

work, but to deliver the maximum possible heat to that lower
temperature reservoir. This is the conversion problem faced
in every home, where one has heat from a gas, oil, wood, or
coal flame but wants heat at room temperature. At present,
we simply allow the primary heat Q2 to degrade itself di-
rectly to the lower temperature T1 by passing through ducts,
radiators, etc. In this way we obtain, at best !neglecting heat
loss through chimneys" the amount of heat Q1(direct)
"Q2 . But this process is irreversible because there is a net
entropy increase 'S"Q2 /T1#Q2 /T2$0, indicating that
something has been wasted, and we can do better. The first
and second laws imply that, not only in the conversion of
heat to work, but also in the conversion of heat to heat, the
maximum efficiency will be attained if we can carry out the
process reversibly.
Suppose we have an ambient heat reservoir !the outside

world" at temperature T0!T1 , and we use a perfect Carnot
engine to obtain the heat Q1(Carnot). Then we still have the
work W available, which we can use to drive a heat pump
between T0 and T1 , yielding the additional heat

Q1!pump""
T1W
T1#T0

. !3"

If we combine Eqs. !2" and !3", we have now obtained the
total heat
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Q1"Q1!Carnot"%Q1!pump""Q2
T1
T2

T2#T0
T1#T0

, !4"

and there is always a net gain, because Q1 is always greater
than Q2 whenever T0!T1!T2 . But while we know that a
reversible Carnot engine delivers the maximum attainable
work, this argument does not make it obvious whether Eq.
!4" is the maximum attainable heat.
Now from a theoretical standpoint it is more general and

more elegant to apply the first and second laws directly to
this process, as we did in Eq. !1". Because some heat Q0 is
removed from the outside reservoir, we must have

Q1"Q0%Q2 ,
Q1

T1
%
Q0

T0
%
Q2

T2
. !5"

By solving these equations for Q1 and Q0 , we have

Q1&Q2
T1
T2

T2#T0
T1#T0

, Q0&Q2
T0
T2

T2#T1
T1#T0

, !6"

where the equality holds if and only if the process is revers-
ible. Thus we obtain automatically the same result Eq. !4",
plus the statement that it is the maximum attainable heating,
without invoking Carnot engines at all. It is in this simple
argument that the main theoretical and pedagogical interest
of this discussion lies.

III. PRACTICAL IMPLICATIONS

Consider heating from a primary temperature T2
"1000 K to room temperature, T1"25 °C"298 K, with an
outside temperature T0"0 °C"273 K. Comparing our ideal
Q1 with the present maximum Q2 , we have from Eq. !6", the
gain factor

G(
Q1

Q2
"
1#0.273
1#0.916"8.66. !7"

This seems at first glance quite startling; if we take into
account that we are at present far from getting even Q2 be-
cause of heat loss up chimneys, the conclusion is that it is in
principle possible to heat our homes with an order of mag-
nitude less fuel than we are now consuming.
A better idea of the numerical improvement allowed by

the second law is given in Fig. 1, where we give contours of
constant gain G(Q1 /Q2 in the (T0 ,T2) plane for T1
"25 °C, room temperature. Even in cold climates, average
gains of the order of 5 are indicated. The reason for this high
efficiency is that T0 and T1 are not very different on the
Kelvin scale. With the values of inside and outside tempera-
ture assumed in Eq. !7", one Joule of work will pump

T0 /!T1#T0""10.9 !8"
Joules of heat from the outside world, and deliver 11.9 Joules
to the inside. Unfortunately, presently available heat pumps
are far from realizing this theoretical efficiency. Silver3 notes
that if present engines realize only half of the theoretical
efficiency, then the heat pump component of Q1 will be only
a quarter of our calculated value.
Evidently, the development of heat pumps that approach

the theoretical efficiency for small temperature differences
would be of very great economic importance, and no physi-
cal law stands in the way of realizing them. It is only a
matter of the ingenuity of inventors, and the one who suc-

ceeds will be one of the world’s great benefactors. We sus-
pect that the successful technology will avoid the crude me-
chanical pumps of our present realizations, perhaps
depending on thermoelectric or electrochemical means that
avoid all mechanical moving parts, although perhaps with
circulating fluids.

IV. FREE OVENS FOR ESKIMOS

Note that the derivation of Eq. !6" is general in that it
holds for any exchange of heat between three reservoirs
whatever the relative temperatures and the signs of the Qi ,
although the arrangement of Carnot engines envisaged in our
derivation of Eq. !4" would no longer apply. But this seems
to contradict a common statement of the second law attrib-
uted to Kelvin that ‘‘It is impossible for heat to flow of itself
from a cold reservoir to a hotter one.’’ The statement actually
made by Kelvin is that it is impossible to do this without
leaving changes in external bodies. Equation !6" demon-
strates the need for this qualification for it is quite possible
for heat to flow spontaneously from room temperature T1 to
a higher temperature T2 , if there is at the same time a com-
pensating flow to a lower temperature T0 .
Suppose then that we want to heat an oven at the standard

cooking temperature of T2"400 °F"204 °C"477 K, using
heat extracted from the air of a kitchen at room temperature
T1"25 °C"298 K. Our equations use the sign convention
that Q1 is the heat delivered to the reservoir at T1 , while Q0
and Q2 represent heat extracted from those at T0 ,T2 . There-
fore Q0 , Q1 , and Q2 are now all negative, so (#Q1) is the
heat extracted from the room and (#Q2) is the resulting heat
delivered to the oven; but Eq. !6" still holds. If we write the
first as

!#Q2"&!#Q1"
1#T0 /T1
1#T0 /T2

, !9"

we see that the maximum heat that can be delivered to the
oven is less than that extracted from the room, but if the
outside temperature T0 is low enough, the efficiency can be
quite high; unlike room heating, oven heating becomes more
efficient as the outside temperature is lowered.
Indeed, we have only to run a Carnot engine between T1

and T0 extracting the work W"(#Q1)(1#T0 /T1), then use

Fig. 1. Contours of constant gain in the (T0 ,T2) plane, for T1"25 °C.
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that to run a heat pump between T0 and T2 , which delivers
the heat (#Q2)"W/(1#T0 /T2), in agreement with Eq. !9".
If the outside temperature T0 is #40 °F"#40 °C"233 K
then according to Eq. !9", 1000 calories of heat removed
from the room can deliver 426 calories to the oven. If this
leaks back eventually to reheat the room, it might appear that
the ‘‘cost’’ of running the oven was not the 1000 calories
removed from the room, but only the 574 calories lost to the
outside.
But this leaking back is again an irreversible process in

which something is wasted, and we can do better. If the oven
is well insulated, then when we are done with it the heat
(#Q2) is still in it, so we have only to run those Carnot
engines backward, obtaining the work W"426(1#T0 /T2)
from which the heat pump can return the heat W/(1
#T0 /T1)"1000 calories to the room, completely restoring
the status quo. The second law allows us to operate an oven,
at whatever temperature we please, at zero cost, the outside
reservoir T0 serving only as a temporary repository for the
entropy that must be disposed of in heating the oven.5
Unfortunately, the second law will not allow us to supply

our cooling needs as easily; it offers free !that is, zero oper-

ating cost" ovens to eskimos, but not free air-conditioning to
hottentots because they have no lower temperature reservoir
to take up that entropy.

a"Professor Edwin Jaynes died on 28 April 1998 and this paper was found
among his unpublished works; its message remains timely. Correspon-
dence concerning this paper can be addressed to W. T. Grandy, Jr. at
wtg@uwyo.edu.

1WTG—Actually, Kelvin had realized it much earlier: W. Thomson
!Lord Kelvin", ‘‘On the economy of the heating or cooling of buildings by
means of currents of air,’’ Proc. R. Philos. Soc. !Glasgow" 3, 269–272
!1852".
2WTG—There is, however, at least one textbook that presents the principle
in terms of Carnot engines: F. H. Crawford, Heat, Thermodynamics, and
Statistical Physics !Harcourt, Brace & World, New York, 1963", pp. 217–
219.
3R. S. Silver, ‘‘Reflexions sur la puissance chaleurique du feu,’’ J. Heat
Recovery Syst. 1, 205–207 !1981".
4J. W. Gibbs, ‘‘Electrochemical thermodynamics,’’ Report Brit. Assoc. Adv.
Sci. 388 !1886"; reprinted in The Scientific Papers of J. Willard Gibbs
!Longmans, Green & Co., New York, 1906 and Dover Publications, Inc.,
New York, 1961", pp. 406–412.
5WTG—There is still some loss in the form of the energy required to
change the state of whatever was cooked, but the operating cost is zero.
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Dong and Ma have used the ladder-operator technique to
solve the infinitely deep square well problem and have ex-
amined the group theoretical properties of their solutions,
concluding that the eigenstates belong to representations of a
spectrum generating SU!1,1" algebra.1 We demonstrate here
that their technique is an example of the method of super-
symmetric quantum mechanics !SUSY-QM".2 SUSY-QM
provides an elegant and useful prescription for obtaining
closed analytical expressions for both the energy eigenvalues
and the eigenfunctions of a large class of one-dimensional
problems. SUSY-QM extends Dirac’s raising and lowering
operators a† and a, first developed for obtaining the energy
eigenvalues of the one-dimensional harmonic oscillator, to a
similar pair A and A† which connect different potentials that
share the same energy eigenvalues !except for the ground
state". It also naturally imposes an algebraic structure on all
analytically solvable problems of nonrelativistic quantum
mechanics. In fact the infinite square well is a special case of
the Eckart potential, one of the class of shape invariant po-
tentials described earlier in this journal,3 whose group theo-
retical properties have been extensively studied.4 In particu-
lar, we have reviewed the characteristics of the SO(2,1)
)SU(1,1) potential algebra.5

In SUSY-QM, each superpotential W(x ,a) produces two
‘‘partner potentials’’

V&"W2!x ,a "&
dW!x ,a "

dx , !1"

and ladder operators

A!x ,a ""
d
dx %W!x ,a ", A†!x ,a ""#

d
dx %W!x ,a ". !2"

A subset of all possible superpotentials W(x ,a) has the prop-
erty known as shape invariance.6 Examples of two such
shape invariant partner potentials are the infinite well and the
cosec2 x potential !something one would hardly guess from
the name ‘‘shape invariant’’". The entire spectrum of these
potentials can be determined by algebraic means,2,3 analo-
gous to the way that the one-dimensional harmonic oscillator
is solved by Dirac’s method.
In addition and independently, it was discovered that each

of these exactly solvable systems possesses a SO(2,1)
algebra,7,8 as Dong and Ma have deduced for the infinite
well. The connection between the SUSY-QM method of so-
lution and the group theoretical potential algebra method was
then established.4,9
In the following we will use units such that * and 2m

"1. In SUSY-QM, the partner potential V# is adjusted to
make the ground state energy E0"0. Each of the excited
state energies is thus shifted from the traditional Schrödinger
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value by #E0 . The superpotential W produces a ground
state eigenfunction +0

(#)(x ,a))exp(#,x0
x W(x,a)dx). For

W(x ,a)"#a cot x, we find +0
(#)(x ,a))sina x. We have

considered the infinite well, for which a"1 for the ground
state +0

(#)(x ,1))sin x.9 If we operate successively with A†,
we produce the excited states sin nx. The primary difference
between the SUSY-QM method3 and that of Dong and Ma is
that A% operates on a ground state with a shifted parameter
a: +(x ,a%1))sina%1 x, while their P% operates on the cus-
tomary ground state sin x. The techniques are equivalent. The
corresponding eigenvalues En

& are obtained from the shape
invariance condition, which represents them as a simple sum
of algebraic remainders from the difference of the values of
the two partner potentials.4 They are the shifted eigenvalues
En

#"n2-2/L2#E0 ; En
%"En%1

# . !As an added bonus, En
%

are the energy levels of the cosec2x potential."
The connection between shape invariant potentials and

SO(2,1) or its extension algebra has been obtained.4 We have
shown that they are special cases of the generalized Natan-
zon potential.10 We have also shown that the set of already
known potentials constitutes the full set.4,9 Our approach
therefore links the group theoretic !potential algebra" ap-
proach and the supersymmetric quantum mechanics ap-
proach for treating shape invariant potentials.

a"Electronic mail: agangop@luc.edu, asim@uic.edu
b"Electronic mail: jmallow@luc.edu
1S.-H. Dong and Z.-Q. Ma, ‘‘The hidden symmetry for a quantum system
with an infinitely deep square-well potential,’’ Am. J. Phys. 70, 520–521
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‘‘Supersymmetry and quantum-mechanics,’’ Phys. Rep. 251, 268–385
!1995", and references therein.
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