uuuuuuuuuuuuuuuuu

Loyola University Chicago

Loyola eCommons
Computer Science: Faculty Publications and Faculty Publications and Other Works by
Other Works Department
2003

Scalable Implementations of MPI Atomicity for Concurrent
Overlapping I/0

Wei-keng Liao

Alok Choudhary

Kenin Coloma

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Lee Ward
See next page for additional authors

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

b Part of the Computer and Systems Architecture Commons, Computer Sciences Commons, and the

Data Storage Systems Commons

Recommended Citation
W. Liao et al., “Scalable Implementations of MPI Atomicity for Concurrent Overlapping 1/0,” in International
Conference on Parallel Processing, 2003.

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2003 Wei-keng Liao, Alok Choudhary, Kenin Coloma, George K. Thiruvathukal, Lee Ward, Eric Russell,
and Neil Pundit


https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Authors

Wei-keng Liao, Alok Choudhary, Kenin Coloma, George K. Thiruvathukal, Lee Ward, Eric Russell, and Neil
Pundit

This conference proceeding is available at Loyola eCommons: https://ecommons.luc.edu/cs_facpubs/12


https://ecommons.luc.edu/cs_facpubs/12

Scalabldmplementation®f MPI Atomicity

for ConcurrenOverlappingl/O

Wei-kengLiaof, Alok Choudhary, Ken

inColomd, GeogeK. Thiruvathukal,

LeeWard', Eric Russelt, andNeil Pundit

I ECEDepartment

Northwesterrniversity

Abstract

For concurrent/O operationsatomicitydefines
theresultsin the overlappingfile regionssimul-
taneouslyread/writtenby requestingorocesses.
Atomicity hasbeenwell studiedat the file sys-
temlevel, suchas POSIX standard.In this pa-
per, we investigatethe problemsarising from
the implementationof MPI atomicity for con-
current overlapping write accessand provide
a few programmingsolutions. Sincethe MPI
definition of atomicity differs from the POSIX
one,animplementatiorthatsimplyreliesonthe
POSIXfile systemsdoesnot guaranteecorrect
MPI semantics. To have a correctimplemen-
tation of atomic 1/O in MPI, we examinethe

efficiengy of threeapproachesi) file locking,

1

I CSDepartment

* ScalableComputing
System®Department

LoyolaUniversity  ggndiaNationalLaboratories

2) graph-coloring,and 3) process-ranlorder

ing. Performanceompleity for thesemethods
are analyzedandtheir experimentalresultsare
presentedor file systemsncludingNFS,SGI’s

XFS,andIBM’s GPFS.

1 Intr oduction

Concurrentfile accesshas beenan active re-
searchtopic for mary years. Efforts werecon-
tributed in both software developmentas well
as hardware designto improve the 1/0 band-
width betweencomputationalunits and stor
agesystems. While most of theseworks only
considerexclusive file accessamongthe con-
current /0O requests,more scientific applica-

tions nowadaysrequire data partitioning with



overlap amongthe requestingprocesse$l, 2,
3, 4.

monly usedin multi-dimensionalarray parti-

For instance, ghost cells are com-

tioning such that the sub-arraypartitionedin
one processoverlapswith its neighborsnear
the boundary A coupleexamplesthat usethis
ghostingechniquearelargescalesimulationsn
earthclimate and N-body astrophysicshydro-
dynamicsusing Laplaceequationspoth where
astrongspatialdomainpartitioningrelationship
is present. Figure 1 illustratesan example of

a two-dimensionakrray in a block-block par

titioning pattern,wherea ghostcell represent

data"owned” by more than one process. A
typical run of this large-scaletype of applica-
tions can take from daysto monthsand usu-
ally outputsdataperiodicallyfor the purpose®f
check-pointingaswell asprogressie visualiza-

tion. During check-pointingthe outputof ghost

Accessed by 4 processes concurren
iAccessed byP; and P,
o |

:VFV)JIV P

I:)i+1 ) :

P

Pkét\ P Pya
\D Ghost cells ofPJ-

Figurel: An exampleof 2D arraypartitioning

with overlappingat the boundary The ghost
cellsof P; overlapswith its 8 neighborprocesses
which resultssomeareasare accessethy more

thanoneprocessesimultaneously

cesscandefineanon-contiguousile view using

cells createsoverlappingl/O from all processes MP| deriveddatatypesandsubsequerifO calls

concurrently The outcomeof the overlapped
file regionsfrom a concurrent/O is commonly
referredasatomicity.

In this paper we examinethe implementa-
tion issuesfor concurrentoverlappingl/O op-
erationsthat abide the MPI atomicity seman-

tics. We first differentiatethe MPI atomicity se-

manticsfrom the definitionin POSIX standard.

The POSIX definition only considersatomicity
at the granularityof read()/wite() calls
in which only a contiguousfile spacecan be

specifiedn asinglel/O requestin MPI, a pro-

can then implicitly accessnon-contiguoudile
regions.SincethePOSIXdefinitionis notaware
of non-contiguoud/O access,t alone cannot
guaranteatomicaccessn MPI, andadditional
efforts are neededabove the file systemto en-
surethe correctimplementatiorof atomic MPI
access.In this work, we studytwo approaches
for atomicityimplementationusingbyte-range
file locking anda procesandshakingtratey.
Using a byte-rangefile locking mechanismis
a straightforvard methodto ensurethe atomic-

ity. In mary situationshowever, file lockingcan



serializewhat were intendedto be concurrent
I/O calls and, therefore,it is necessaryo ex-
plorealternatve approachesProceshandshak-
ing usesinter-processcommunicatiorto deter
mine the accesssequencer agreemenbn the
overlaps, in which two methodsare studied:
graph-coloringandprocess-rankrderingmeth-
ods. Thesetwo methodsorderthe concurrent
I/O requestsn asequencsuchthatnotwo over-
lapping requestscan perform at ary instance.
Experimentaperformanceesultsare provided
for runningatestcodeusinga column-wisepar
titioning patternonthreemachineplatforms:an
Linux clusterrunninganextended\FSfile sys-
tem, an SGI Origin2000running XFS, and an
IBM SPrunning GPFS.The resultsshow that,
in generalusingfile locking generatetheworst
performanceand usingthe process-rankorder

ing performsthe beston all threemachines.

Therestof the paperis organizedasfollows.
Section2 describesheMPI atomicitysemantics
and its differencefrom the POSIX definition.
We explore three potentialapproachegor im-
plementingMPI 1/O atomicityin depthin Sec-
tion 3. In Section4, we presentperformance
resultson threeparallelfile systems.The paper
is concludedn Section5.

2 Concurrent
/0O

Overlapping

The concurrent overlapping 1/0 referredto in
this paperoccurswhenl/O requestdrom mul-
tiple processesreissuedsimultaneouslyo the
file systemandoverlapsexist amongthefile re-
gionsaccessedy theserequests.If all there-
guestsarereadrequeststhefile systemcanuse
the disk cacheto duplicatethe overlappeddata
for therequestingorocessesin this case there
is no conflict in obtainingfile dataamongthe
overlappingprocessesHowever, whenone or
more I/O requestsare write requeststhe out-
comeof the overlappedegions,eitherin file or
in processs memory canvary dependingnthe
implementatiorof thefile system.Thisproblem
is commonlyreferredasthe /O atomicity.

2.1 POSIX Atomicity Semantics

POSIX standarddefinesatomicity suchthatall
the bytesfrom a singlefile 1/0O operationthat
startouttogetherendup togetheywithoutinter
leaving from other1/O operationg5, 6]. The
I/O operationsconfined by this definition in-
clude the systemcalls that operateon regular
files, suchas open(), read(), wite(),
chnod(),| seek(),cl ose(),andsoon.In
this paperwe focuson thethe effect of theread
andwrite callson theatomicity.

The POSIX definition can be simply inter-



pretedasthateitherall or noneof the datawrit-

accessthe POSIX definitionis suitablefor file

ten by a processis visible to other processes.systemghat mainly handlenon-parallell/O re-

The none casecan be either the write datais
cachedin a systembuffer and has not been
flushedto the disk or the datais flushedbut
over-written by other processes.Hence,when

guests. For I/O requestdrom parallelapplica-
tions that frequently issue non-contiguoudile
accesgequestdrom multiple process,POSIX
atomicity may improperly describesuchparal-

POSIX semanticss appliedto the concurrent lel accesgpatternsandimposelimitation for the

overlappingl/O operationsthe dataresultedin
the overlappedregionsin disk shall consistof
datafrom only one of the write requests. In
otherwords,nointerleaveddatafrom morethan
one processshall appearin the overlappedre-
gions. Otherwise,in non-atomicmode,the re-
sult of theoverlappedegionis undefinedi.e. it
may comprisemixed datafrom morethanone
write request. Many existing file systemssup-
port the POSIX atomicity semantics,such as
NFS,UFS,IBM PIOFS, GPFS,Intel PFS,and
SGIXFS.

POSIX atomicity mainly considersthe 1/0O
calls definedwithin the POSIX scopein which
its read and write calls sharea commonchar
acteristic: one I/O requestcan only accessa
contiguoudile region specifiedby afile pointer
andtheamountof datastartingfrom the pointetr
Thereforetheoverlappediatawritten by two or
morePOSIXI/O callscanonly beacontiguous

regionin file. Many POSIXfile systemsmple-

I/O parallelism.

2.2 MPI Atomicity Semantics

MPI standard2.0 [7] extendsits atomicity se-
manticsby takinginto consideratiorof the par
allel 1/0 operations. The MPI atomic mode
is definedas: in concurrentoverlappingMPI
I/O operationstheresultsof the overlappede-
gions shall containdatafrom only one of the
MPI processethatparticipatesn thel/O opera-
tions. Otherwisejn the MPI non-atomiamode,
the result of the overlappedregions is unde-
fined. The major differenceof the MPI atom-
icity from POSIX definition lies on the useof
MPI file view, a new file conceptintroducedin
MPI 2.0. A processfile view is createdoy call-
ing MPl _Fi | e set view) throughan MPI
derived datatype that specifiesthe visible file
rangeto the process. When usedin message

passingthe MPI derved datatype is a power-

mentthe atomic /O by serializingthe process ful mechanisnfor describingthe memorylay-

of therequestsuchthatthe overlappedegions
canonly beaccessetly oneprocessat arny mo-

ment. By consideringonly the contiguousfile

outof amessagéuffer. This corvenienttool is
extendedin MPI 2.0 for describingthefile lay-
out for processfile view. Sincea derveddata



type canspecifyalist of non-contiguousile re-

gions, the visible datato a processanalsobe

non-contiguous Whenperformingan MP1 1/O

requestthevisible regionsarelogically consid-
eredasa continuousdatastreamcoming/going
from/to the file systemto/from the requesting
process.

Similar to POSIX, MPI atomicity con-
siders a call to MPI _Fil eread xxx()/
MPI Filewit xxx() asa singlel/O re-
guest. Unlike overlapin POSIX /O, the over
lappedfile regions betweentwo processesan
alsobenon-contiguous file, generatingnulti-
ple overlappindfile regionsin oneMPI I/O call.
If the underlyingMPI 1/0O implementatiorcon-
sidersheaccesso eachcontiguoudile segment
asasingleread()/wite() calltothefile
systemthentherewill be multiple callsissued
simultaneouslyrom aprocesgo thefile system.
Although the atomicity of accessingo a con-
tiguousoverlappedregion is guaranteedn the
POSIXcompliantfile systemsthe MPI atomic-
ity whichdemandstomicityacrossoneor more
regions of overlap cannotsimply rely on the
POSIX /O calls. Additional effort is required
to implementa correct MPI atomicity seman-
tics. Thefactthat MPI derived datatypespro-
vide more programmingflexibility when spec-
ifying non-contiguoudile layoutincreaseghe
complity of enforcingatomicity in MPI on
POSIXfile systems.

Figure2 shavs anexampleof two concurrent

5

X

Process 0’s file view on array A
y — Po

MPI
non—atomil_
mode |

Overlapped
Region
MPI
atomic
mode

Process 1's file view on array A

Figure2: An exampleof two concurrentover-
lapping writes wherea 2D array is partitioned
columnwisewith afew columnsoverlappedin
theMPI atomicmode thedatain theoverlapped
regioncanonly comefrom eitheroneof thepro-
cessesln thenon-atomianode theresultis un-
definedfor example,interleared.

MPI write requestsn atomic and non-atomic
modes. The file views of both processesp,
and P, consistof 6 non-contiguoudile sey-
ments,assumingthe two-dimensionalarray is
storedin row major. If the MPI implementa-
tion considerswriting eachof the file segment
asa singlecall to write(), thentherewill
be 12 write requestsn total and the process-
ing order of theserequestsin the file system
canbe arbitrary The resultin the overlapped
columnscan,hencecontaininterleareddata,as
illustratedin the MPI non-atomicmode. Even
with POSIX atomicity, the sameoutcomewill
occurin a POSIXfile systemsinceit only con-
sidergher ead()/wri t e() callindividually.



Thereforethe MPI implementatiorcannotsim-
ply rely onthefile systento provide thecorrect

file atomicity.

3 Implementation Strategies

Thedesignof existing file systemsseldomcon-
sider concurrentoverlappingl/O requestsand
mary implementationstratgies that are in-
tendedfor performanceenhancemenactually
hinder the parallelismof overlappingl/O. For
example,in mostclient-serer type of file sys-
tems, stratgjies suchas read-aheadnd write-
behind are adoptedin which read-aheadre-
fetchesseveralfile blocksfollowing thedataac-
tualrequestedo theclient’s systemcachen an-
ticipation of programs sequentiareadingpat-
tern and write-behindaccumulatesereral re-
guestsan orderto betterutilize theavailablel/O
bandwidth. The read-aheadgnd write-behind
policies often work againstthe goals of ary
file systenrelyingonrandom-accessperations
which areusedcommonlyin parallell/O opera-
tions. Underthe useof thesetwo policies, two
overlappingprocesse®f a concurrentl/O op-
erationcan physically cachemore overlapping
datathanlogically overlapsn theirfile views. It
is alsopossiblethatthe overlappingdataof two
processess cachedby otherprocessebecause
of thereadahead.

Thefile cacheconsisteng problemhasbeen

studiedextensvely in mary client-serer based

6

file systems.Themostcommonlyimplemented
cachingschemas to consultthe sener’s modi-
fication time for the datacachedon the clients
beforeissuingthe 1/0 requestgo the seners.
Obviously, communicationoverheadbetween
sener and clients for cachevalidationand re-
freshing can becomesignificantfor a concur
rent overlappingl/O requestdueto the unnec-
essarydata transfers. Although this problem
canbe alleviated by disablingthe useof read-
ahead/write-throughthe performancegain of
thereducedoverheadmnay not offsetthe perfor
mancelossof disablingcaching. In this work,
our discussions not limited to specificfile sys-
temsandwe assumé¢hegeneral/O requestgan
startat arbitrary file space. We now examine
two potentialimplementatiorstratgiesfor MPI
atomicity and analyzetheir performancecom-

plexity:

1. Using byte-range file locking — This
approachuses the standardUnix byte-
rangefile locking mechanisnto wrap the
read/writecall in each processsuch that
theexclusiveaccespermissiorof theover-
lappedregioncanbegrantedo therequest-
ing process.While afile region is locked,
all read/writerequestgo it will directly go
to the file sener. Therefore,the written

dataof a processis visible to other pro-

cesseafterleaving the locking modeand

the subsequentead requestswill always



obtainfleshdatafrom the senersbecause 3.1 Row and Column-wise 2D Ar-

of theuseof thereadlocks.

. Using processhandshaking — This ap-
proachusesMPI communicationto per
form inter-processnegotiation for writing
to the overlappedile regions. Theideais
a preferablealternatve to usingfile lock-
ing. However, for file systemsthat per
form read-aheadnd write-behind, a file
synchronizationcall immediately follow-
ing every write call is requiredto flush out
all information associatedvith the writes
in progress. A cacheinvalidation shall
alsoperformin eachprocesdeforereading
from the overlappedregions suchthat the
fleshdatais obtainedfrom seners. Under
this strategy cateyory, we further discuss
two negotiation methods: graph-coloring

andprocess-rankrdering.

ray Partitioning

Given P processegarticipatinga concurrent
I/O operation the row-wise partitioningpattern
dividesa two-dimensionahrrayalongits most
significantaxis while the column-wisedivides
it alongtheleastsignificantaxis. Thefollowing
assumptionareusedn thesepartitioningexam-

ples:

e All P processesoncurrentlywrite their
sub-arrayso asinglesharedile.

e Thelayoutsof the 2-dimensionakrrayin
process’memory and disk storageare in
row-majororderwhereaxis Y is the most

significantaxisand X is theleast.

e The sub-arrayspartitionedin every two
processewith consecutie rank id num-
bers overlap with each other for a few
rows/columnson the boundaryalong the

partitioningaxis.

e Theglobalarrayis of size M x N andthe

numberof overlappedrows/columnss R,

In orderto help describingthe above threeap-
proachesn termsof dataamountandfile lay-
outs, we use two concurrentoverlapping /O

casesas examples. Thesetwo casesemploy

whereR < M /P andR < N/P.

To simplify the discussionwe assumeall
I/O requestsarewrite requests.

commonlyseenaccesgatternsn mary scien- Figure3 illustratesthetwo partitioningpatterns

tific applications: row-wise and column-wise on P = 4 processesin the row-wise case the

partitioningon atwo-dimensionaarray

file view of process is asub-arrayof size M’ x



r’ X 0 Overlapped region

T
| — \
P | N |
M‘ """"""" \ ~— Py — <‘—P24>
Ty l
R e

(@) Row-wise partitioning  (b) column-wise partitionin

Figure3: Row-wise andcolumn-wisepartition-
ing on a 2-dimensionalarray The file views
of every two consecutie processesverlapwith

eachotherin R rows/columnsalongY’/X axis.

N,whereM' = 4 + R if0<i<P—1.1In
the column-wisecase,the file view of process
i is of size M x N, where N’ = X + R for
0<i< P—1.Fortheprocess =0or P —1,
the file view containsZ rows/columnslessin

row andcolumn-wisecasesrespectrely.

3.2 Byte-rangeFile Locking

Thebyte-rangdile locking is amechanisnpro-
vided by a file systemwithin its locking pro-
tocol. This mechanisntan be usedto ensure
the exclusive accesdo a locked file region. If
a setof concurrent/O calls containsonly read
requeststhe locking protocolis usuallyimple-
mentedo allow a sharedeadlock sothatmore
thanoneprocessanreadthelockeddatasimul-
taneously If atleastoneof thel/O requestss

a write requestthe write lock is often granted

8

exclusively to the requestingprocesses.Most
of theexisting locking protocolsis centralman-
agedandits scalabilityis, hencelimited. A dis-
tributedlocking protocolusedin theIBM GPFS
file systemimprovesthe performanceof grant-
ing lockingrequestdy having aprocessnanage
its grantedlocked file region for the furtherre-
guestdrom otherprocessef8]. Whenit comes
totheoverlappingequestshowever, concurrent
writes to overlappeddatamustbe still sequen-

tial.

Row-wise Partitioning  We now usethe row-
wise partitioningexampleshowvn in Figure3(a)
to describethe atomicity implementatiorusing
file locking. In this example,thefile view of a
processoverlapsR rows with its previous and
successie processesSincethefile storagday-
outis assumedo bein a row-majororder i.e.
eachrow of size N is storedconsecutiely to
its previous andsuccessie row, every process’
file view actuallycoversa contiguoudile space.
Therefore,the concurrentoverlappingl/O can
beimplementedisingasinglewr i t e() callin
eachprocessOnarfile systenthatsupportonly
the atomic mode, atomic file resultsare auto-
maticallyguaranteedor the row-wise partition-
ing case.Onfile systemghatdo no supportthe
atomicmode,wrappingthel/O callin eachpro-
cesswith byte-rangdocking of the file region
will also generateatomic results. ROMIO, an
MPI-10 implementationdevelopedat Argonne



National Laboratory relieson the useof byte-
rangefile locking to implementthe correctMPI
atomicity in which processesnustobtaina ex-
clusive write lock to the overlappedile regions
beforeperformthewrite [9, 10].

Column-wise Partitioning In the column-
wise partitioningcaseshovn in Figure3(b), the
file view of eachprocesss a sub-arrayof size
M x N' overlappingR columnswith its left and
right processeskEachof the M rows of size N’

in the file view is not contiguouswith its pre-
vious or successie row in the file storagelay-

out. The distancebetweerthefirst elementsof

two consecutie rows in eachprocessfile view

is N. Thereforethe overlappedile regionsof

two consecutie processesonsistsof M non-
contiguougows of size R each.Figure4 shavs

an MPI codefragmentthatcreateghefile view

for eachprocessusing a derived datatype to

specifythecolumn-wisepartitioningpatternand
usesacollectve MPI-IO callto performthecon-
currentwrite.

A straightforvard implementationfor the
column-wisecaseis to regard eachcontiguous
I/O requestasasingler ead() /wri t e() call.
This approachresults M write calls from each
processand PM callsin total. OnaPOSIXfile
system,if the PM requestsare processedon-
currentlywithout ary specificorder interleared
results may occur in the overlappedregions.

Since processingorder of thesewrite requests

9

MPI_File_open(comm, filename, io_mode, info, &fh);

MPI_File_set_atomicity(th, 1);

sizes[0] = M; sizes[1] = N;

sub_sizes[0] = M; sub_sizes[1]=N/P;

if (rank == 0 || rank == P-1) sub_sizes[1] -= R/2;

starts[0] = 0; starts[1] = (rank == 0) ? 0 : rank * (N/P - R/2);

MPI_Type_create_subarray(2, sizes, sub_sizes, starts, MPI_ORDER_C,
MPI_CHAR, &filetype);

MPI_Type_commit(&filetype);

MPI_File_set_view(fh, disp, MPI_CHAR, filetype, "native", info);

MPI_File_write_all(fh, buf, buffer_size, etype, &status);

MPI_File_close(&fh);

© ® N 0k wDN PR

PR
N B o

Figure4: An MPI codefragmentthatperforms
the column-wiseaccess. The shadeareail-

lustrateshow to createthe derived datatype,
filetype, which is usedto defineprocesss file

view atline 10.

canbearbitrary the samescenarioccanalsooc-
cur on other file systemseven if file locking
wrapsaroundeachl/O call. Enforcingtheatom-
icity of individualread()/wite() callsis
notsufficientto enforceMPI atomicity. In order
to do so,thefile lock muststartatthe processs
firstfile offsetandendatthevery lastfile offset
the processwill write, virtually the entirefile.
All M rows of theoverlappedegionwill beac-

cessecdhtomically

Though POSIX defines a
liolistio(), to initiate a list of non-

function,

contiguoudile accessem asinglecall, it does
not explicitly indicateif its atomicity semantics
areapplicable.If POSIXatomicityis extended
toliolistio(), the MPI atomicity can
be guaranteedby implementing the non-
contiguousaccesontopof I io_listio().

Otherwise additionaleffort suchasfile locking



IS necessaryo ensurghe MPI atomicity.

3.3 ProcessomHandshaking

An alternatve approacho avoid usingfile lock-
ing is through processhandshaking. Through
inter-processcommunicationthe overlapping
processesigjotiate with each other to obtain
the desirableaccessequencéo the overlapped
regions. In this section,we discusstwo pos-

sible implementation®f processhandshaking:

graph-coloringandprocess-rankrderingmeth-

ods.

3.3.1 Graph-coloring Approach

GivenanundirectedgraphG = (V, E) in which

Given an overlapping & P matrix, W, where
R 1 if processioverlapsjandg |

Wil = o erce psjandt |

0 otherwise

R, -the i row of W

Ci -the " column of W

R; [i] :the [ element oR;
C; [i] :the " element of,

For each process, do the following:

1. for eachcolumni=0...P-1

2 if i7sdf and Cy [I]#Z 1 then

3 Csatf < Caat V Ci

4. W* < collect C; from process i, fori=0...P-1
5 for i=0...P-1

6 if Regs [11=0 then

7 myColor = i

8 return

Figure 5: A greedygraph-coloringalgorithm
that finds the color id for eachl/O processin

variablemyColor.

currentl/O is carriedout in k£ steps. Note that

processsynchronizatiorbetweenary two steps

V represents setof verticesand E representsis necessaryto ensurethat no processin one

a set of edgesthat connectthe vertices,a k-

coloringis afunctionC : V' — {1,2, ...k} such
that for all u,v € V, if C(u) = C(v), then
(u,v) ¢ E;thatis, noadjacenwerticeshave the
samecolor. The graph-coloringproblemis to

find the minimum numberof colors, %, to color
agivengraph.Solvingthe MPI atomicity prob-
lem canbeviewedasa graph-coloringproblem
if the I/O requestingorocessesre regardedas
the verticesand the overlappingbetweentwo

processesepresentshe edge. Whenapplying
graph-coloringo the MPI atomicityimplemen-
tation, the I/O processearefirst dividedinto &

groups(colors)in which no two processe# a

groupoverlaptheir file views. Then,the con-

groupcanproceedwith its I/O beforethe previ-

ousgroups I/0O completes.The graph-coloring
approacHulfills the requiremenof MPI atom-
icity while maintainingat leasta degreeof 1/0

parallelism.

The graph-coloringmethodologyis a heuris-
tic which hasbeenstudiedfor a long time and
is provedto be NP-hardfor generalgraphg11].
Becausehe overlappingl/O patterngpresenin
mostof the scienceapplicationsare hardly ar-
bitrary, a greedysolutionmay suffice. Figure5
givesa simplegreedygraph-coloringalgorithm
thatfirst usesa P x P booleanmatrix, W, to
indicateif thereis anoverlapbetweenwo pro-

cesseandstartscoloringthe processeby look-

10



0100 1 N |
/12010 e Py —] P,
W= 0101 T
0010
) .M
0100 l
we 1l ‘ ‘ ‘
/o101 Even processes write
1@ 1 0| P P
[ ]: color0
I : color1

Odd processes write

Figure6: An exampleof column-wiseoverlap-
ping I/0 usingthegraph-coloringapproachAll

I/O requestsare performedin 2 steps: even-
ranked processewvrite at thefirst stepfollowed

by thewritesfrom odd-rankedprocesses.

ing for the lowestranked processesvhosefile
views do not overlap with any processin that
color. Let’'s now considerthe column-wisepar
titioning example. Figure 6 shavs the overlap-
ping matrix using this greedyalgorithm. 1t is
obvious that for the two-dimensionalcolumn-
wise partitioningcase two colorsareenoughto
maintainMPI atomicity: the even-ranled pro-
cessegerform their I/O requestsprior to the

odd-ranledprocessessillustratedin Figure6.

3.3.2 Process-rankOrdering

Another process-handshakingpproachis to
have all processeagreeon a certainaccesri-
ority to the overlappedile regions.An example
is to usea policy wherethe higherranked pro-

cesswins theright to accesshe overlappede-

oz z

IR

oz

Pz
I Jr
oz
o

PP, Pp_

Processfile views

Figure7: Theprocesdile viewsfor thecolumn-
wise overlappingl/O usingprocessank order
ing approach.With the overlappingaccesge-
moved, all P I/O requestsanbe performedsi-
multaneouslywhile MPI atomicity is guaran-

teed.

gionswhile otherssurrendetheirwrites. A cou-
ple of immediateadvantagesof this approach
aretheeliminationof overlappingaccessndthe
reductionof the overall /O amount. The over
headof this methodis there-calculatioro each
process file view by markingdown the over-
lappedregions with all higherrank processes’

file views.

Consideringhe column-wisepartitioningex-
ample, Figure 7 illustratesthe processesfile
views whenusingthe process-rankrderingap-
proach. The file view for process, 0 < i <
P—1,isaM x % sub-arraywhile thefile views
for processe8 andP — 1 areM x (¥ — £) and
M x (% + &), respectiely. Comparedo Fig-
ure 6, eachprocesssurrendersts write for the

right-mostR columns.

11



3.4 Scalability Analysis

In the column-wisepartition case thefile lock-
ing approachresultsin M N — (N — N') bytes,
nearly the entirefile, beinglocked while each
processis writing. In fact, oncea processis
grantedits write locking requestno other pro-
cessegan accesdo the file. As a result, us-
ing byte-rangdile locking serializeghel/O and

dramaticallydegradeghe performance.

The purposeof proposingthe two process-
handshakingapproachess trying to maintain
the I/O scalabilitywithout the useof file lock-
ing. The overheadof the graph-coloringap-
proachis thecommunicatiortostof exchanging
thefile views, but this approachdoesnot sacri-
fice I/O parallelism. Thefile views are usedto
constructthe overlappingmatrix locally. With
arelative smallnegotiationoverheadthegraph-
coloringapproachmaintainsa certaindegreeof
I/O parallelism. To constructthe overlapping
matrix, the graph-coloringapproactusesalog-
ical bit to indicateif anoverlapexists between
two processesln the process-rankrderingap-
proach,the exact overlappedbyte rangesmust
beknow in orderto calculatethelocalfile view.
This overheads expectedo beneggligible when
comparedo the performancamprovementre-
sulting from the removal of all overlappingre-
guests.Additionally, the overall I/O amounton
the file systemis reducedsincethe lowerrank

processesurrendertheir accesse$o the over-

Tablel: Systenmconfigurationgor thethreepar
allelmachine®nwhichtheexperimentatesults

wereobtained.

H [ cplant | origin2000] 1BM SP |

File system| ENFS XFS GPFS
CPUtype Alpha R10000 Pawver3

CPUSpeed| 500MHz | 195MHz | 375MHz

_ Gigabit Colory

Network Myrinet Ethernet switch
I/O seners 12 12
Peakl/O

bandwidth 50MB/s 4GB/s 1.5GB/s

lappedregions.

4 Experiment Results

We implementedthe column-wisepartitioning
exampleusingstandardJnix 1/O calls andob-
tained experimentalresultsfrom three parallel
machinesASCI Cplant,anAlphaLinux cluster
at SandiaNational Laboratory;the SGI Origin
2000attheNationalCenterfor Supercomputing
Applications (NCSA); and Blue Horizon, the
IBM SP at SanDiego Supercomputingenter
(SDSC).Themachineconfigurationarebriefly
describedn Table 1. Cplantis a Linux clus-
ter runningthe ExtendedNetwork File System
(ENFS)in which eachcomputenodeis mapped
to oneof thel/O senersin around-robinselec-
tion schemeat boottime [12]. Basically ENFS
is anNFSfile systemwith a few changes.The

12



10 CPlant Array size: 4096 x 8192 12 Origin2000  Array size: 4096 x 8192 25 IBM SP Array size: 4096 x 8192
§ m graph-coloring § M file locking § M file locking
@ 8¢ process-rank ordering| @ 10 W graph-coloring m 20F W graph-coloring
= = gl process-rank ordering = process-rank ordering
c 6f = < 15¢
S T 6 S
g4 o g0
c c c
S ol I S 2L S 5
o o o
Q . Q . Q nl
8 16 4 8 16 4 8 16
number of processes number of processes number of processes
16 CPlant Array size: 4096 x 32768 20 Origin2000  Array size: 4096 x 32768 IBM SP  Array size: 4096 x 32768
D14 m graph-coloring ] W file locking W file locking
process-rank ordering| & | graph-coloring | graph-coloring
@ 12; g 15 rocess-rank ordering -rank orderi
S s p g process-rank ordering
<10 =
z 8 g100
g5 2
g 4 g 5f
o)
o) 20 o
Q 0 =0
4 8 16

4 8 16 4
number of processes

number of processes

number of processes

IBM SP Array size: 4096 x 262144

W file locking
| graph-coloring
process-rank ordering

16 CPlant Array size: 4096 x 262144 20 Origin2000  Array size: 4096 x 262144
S14 m graph-coloring g m file locking |
£ 12 process-rank ordering) & 15 W graph-coloring )
s 0 S o process-rank ordering
1_/10— =
B 8 5 10;
E 5
2 c
S 4+ < 5
o
o 3l 1 S ol
=0 =
4 8 16 4 8 16

number of processes

number of processes

M 1INT

number of processes

Figure 8: Performanceesultsof runningthe column-wisepartitioning experimentson a Linux
ClusteranIBM SBE andanSGIOrigin200.Threefile sizeswereused:32MB, 128MB, and1GB.

most notableis the absenceof file locking on
Cplant. Accordingly, our performanceresults
on CPlantdo not include the experimentsthat
usefile locking. ENFSalsoperformsthe opti-
mizationthatNFSusuallydoes,ncludingread-
aheadandwrite-behind.

We ran the experimentswith the threearray
sizes:4096 x 8192 (32MB), 4096 x 32768 (128
MB), and 4096 x 262144 (1GB). On all three
machineswe used4, 8, and 16 processorand
theresultsareshown in Figure8. Notethe per

formanceof file locking is the worstof the im-

plementationof MPI atomicity The poor re-
sults are also expectedas discussedn Section
3.2thatfile locking hindersthel/O concurreny.

In mostof the casesthe process-rankrdering

stratgy out-performedyraph-coloring.

5 Conclusions

In this paper we examinedthe atomicity se-
manticsfor boththe POSIXandMPI specifica-
tions. Thedifferencebetweerthemthe number

of non-contiguousegionsin eachl/O requests.

13



While POSIX considersonly one contiguous
file spacd/O, asingleMPI 1/O requestanac-
cessnon-contiguousdile spaceusingMPI’s file
view facility. We compareda few implemen-
tation stratgiesfor enforcingatomicwrites in
MPI includingfile locking, graph-coloringand
process-rankrdering.The experimentalesults
shaved that using file locking performedthe
worstwhenrunningatwo-dimensionatolumn-
wise partitioningcase. Sincefile locking is ba-
sically acentralmanagedanechanismtheparal-
lelism of concurrent/O requestsespeciallyfor
overlappingl/O, can be significantly degraded
by usingit. The two alternatves proposedin
this papemegotiateprocesseO requesbrder
of accesriority throughprocesandshaking.
Withoutusinga centralizedockingmechanism,
thesetwo approachgreatlyimprove thel/O per
formance.

The stratgiesof graph-coloringandprocess-
rankorderingrequireevery processwareof all
the processegarticipatedin a concurrentl/O
operation.In the scopeof MPI, only collective
calls have this property Note that MPI collec-
tive 1/0O is differentfrom the concurrent/O in
which a concurrent/O is for moregenerall/O
casesAn MPI non-collectve I/0O operationcan
also be concurrent. File locking seemsto be
the only way to ensureatomic resultsin non-
collective I/O callsin MPI, sincethe concurrent
processesre unknovn. Otherwise,given the

participatingprocessesl/O optimizationssuch

asthe processhandshakingpproachproposed
in this papercanbe appliedto improve perfor

mance.

6 Acknowledgments

This work was supportedn part by DOE lab-

oratories,SNL, LANL andLLNL andin part
by NSF EIA-0103023. It was also supported
in part by NSF cooperatie agreementACI-

9619020hroughcomputingresourcegrovided

by the NationalPartnershigor AdvancedCom-

putationalnfrastructureattheSanDiego Super

computerCenter We alsoacknavledgethe use
of the SGI Origin2000at NCSA.

References

[1] P Crandall, R. Aydt, A. Chien, and
D. Reed. Input-OutputCharacteristic®f
ScalableParallel Applications. In Super-
computing ' 95, Dec1995.

2] N. NieuwejaarD. Kotz, A. Purakayastha,
C. Ellis, and M. Best. File-AccessChar
acteristicof ParallelScientificWorkloads.
|IEEE Transactions on Parallel and Dis-
tributed Systems, 7(10):1075-1089,0ct
1996.

[3] E.Smirni,R.Aydt, A. Chien,andD. Reed.
I/O Requirementsof Scientific Applica-

tions: An Evolutionary View. In the

14



[4]

[5]

[6]

[7]

[8]

[9]

Fifth IEEE International Symposium on
High Performance Distributed Computing,
pagest9-59,1996.

E. Smirni and D. Reed. Lessonsfrom
Characterizinghe Input/OutputBehavior
of Parallel ScientificApplications. Perfor-
mance Evaluation: An International Jour-
nal, 33(1):27-44,Jun1998.

IEEE/ANSI Std.1003.1.Portable Operat-
ing System Interface (POS X)-Part 1. Sys-
tem Application Program Interface (API)
[C Language], 1996.

IEEE Std.1003.1-2001System I nterfaces,
2001.

Message Passing Interface Forum.
MPI-2:
Passing
forum.og/docs/docs.htmluly 1997.

Extensions to the Message

Interface. http:/mww.mpi-

F. Schmuckand R. Haskin. GPFS: A
Shared-DiskFile Systemfor Large Com-
puting Clusters. In the Conference on
File and Storage Technologies (FAST’ 02),

pagex231-244,Jan2002.

Raje@ Thakur William Gropp, and Ew-
ing Lusk. Users Guide for ROMIO: A
High-Performance, Portable MPI-1O Im-
plementation. MathematicandComputer

ScienceDivision, ArgonneNational Lab-

[10]

[11]

[12]

15

oratory October1997. TechnicalReport
ANL/MCS-TM-234.

R. Thakur W. Gropp, and E Lusk. On
ImplementingMPI-10 Portably and with
High Performanceln the Sxth Workshop
onl/Oin Parallel and Distributed Systems,
pagex3-32,May 1999.

M. Garegy andD. JohnsonComputers and
Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman,New
York, 1979.

SandiaNational Laboratory Computa-
tional Plant. http://www.cs.sandia.gd

Cplant.



	Scalable Implementations of MPI Atomicity for Concurrent Overlapping I/O
	Recommended Citation
	Authors

	tmp.1321474891.pdf.Am6tr

