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Abstract

For concurrentI/O operations,atomicitydefines

theresultsin theoverlappingfile regionssimul-

taneouslyread/writtenby requestingprocesses.

Atomicity hasbeenwell studiedat thefile sys-

tem level, suchasPOSIXstandard.In this pa-

per, we investigatethe problemsarising from

the implementationof MPI atomicity for con-

current overlappingwrite accessand provide

a few programmingsolutions. Sincethe MPI

definition of atomicity differs from the POSIX

one,animplementationthatsimplyreliesonthe

POSIX file systemsdoesnot guaranteecorrect

MPI semantics. To have a correct implemen-

tation of atomic I/O in MPI, we examine the

efficiency of threeapproaches:1) file locking,

2) graph-coloring,and 3) process-rankorder-

ing. Performancecomplexity for thesemethods

areanalyzedandtheir experimentalresultsare

presentedfor file systemsincludingNFS,SGI’s

XFS,andIBM’ sGPFS.

1 Intr oduction

Concurrentfile accesshas beenan active re-

searchtopic for many years.Efforts werecon-

tributed in both software developmentas well

as hardware designto improve the I/O band-

width betweencomputationalunits and stor-

agesystems.While mostof theseworks only

considerexclusive file accessamongthe con-

current I/O requests,more scientific applica-

tions nowadaysrequire data partitioning with
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overlap amongthe requestingprocesses[1, 2,

3, 4]. For instance, ghost cells are com-

monly used in multi-dimensionalarray parti-

tioning such that the sub-arraypartitioned in

one processoverlapswith its neighborsnear

the boundary. A coupleexamplesthat usethis

ghostingtechniquearelargescalesimulationsin

earthclimateandN-body astrophysics,hydro-

dynamicsusingLaplaceequations,both where

astrongspatialdomainpartitioningrelationship

is present. Figure 1 illustratesan exampleof

a two-dimensionalarray in a block-block par-

titioning pattern,wherea ghostcell represent

data ”owned” by more than one process. A

typical run of this large-scaletype of applica-

tions can take from days to monthsand usu-

ally outputsdataperiodicallyfor thepurposesof

check-pointingaswell asprogressivevisualiza-

tion. Duringcheck-pointing,theoutputof ghost

cellscreatesoverlappingI/O from all processes

concurrently. The outcomeof the overlapped

file regionsfrom a concurrentI/O is commonly

referredasatomicity.

In this paper, we examine the implementa-

tion issuesfor concurrentoverlappingI/O op-

erationsthat abide the MPI atomicity seman-

tics. We first differentiatetheMPI atomicityse-

manticsfrom thedefinition in POSIXstandard.

ThePOSIXdefinitiononly considersatomicity

at the granularityof read()/write() calls

in which only a contiguousfile spacecan be

specifiedin a singleI/O request.In MPI, a pro-

Pj

Pj

PkPk−1

Pj−1

Pi−1 Pi+1Pi

Pj+1

P

PjPi

k+1

Ghost cells of

Accessed by and

Accessed by 4 processes concurrently

Figure1: An exampleof 2D arraypartitioning

with overlappingat the boundary. The ghost

cellsof ��� overlapswith its8neighborprocesses

which resultssomeareasareaccessedby more

thanoneprocessessimultaneously.

cesscandefineanon-contiguousfile view using

MPI deriveddatatypesandsubsequentI/O calls

can then implicitly accessnon-contiguousfile

regions.SincethePOSIXdefinitionisnotaware

of non-contiguousI/O access,it alonecannot

guaranteeatomicaccessin MPI, andadditional

efforts areneededabove the file systemto en-

surethe correctimplementationof atomicMPI

access.In this work, we studytwo approaches

for atomicity implementation:usingbyte-range

file locking anda processhandshakingstrategy.

Using a byte-rangefile locking mechanismis

a straightforwardmethodto ensurethe atomic-

ity. In many situations,however, file lockingcan
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serializewhat were intendedto be concurrent

I/O calls and, therefore,it is necessaryto ex-

plorealternativeapproaches.Processhandshak-

ing usesinter-processcommunicationto deter-

mine the accesssequenceor agreementon the

overlaps, in which two methodsare studied:

graph-coloringandprocess-rankorderingmeth-

ods. Thesetwo methodsorder the concurrent

I/O requestsin asequencesuchthatnotwoover-

lapping requestscan perform at any instance.

Experimentalperformanceresultsareprovided

for runningatestcodeusingacolumn-wisepar-

titioning patternon threemachineplatforms:an

Linux clusterrunninganextendedNFSfile sys-

tem, an SGI Origin2000runningXFS, and an

IBM SPrunningGPFS.The resultsshow that,

in general,usingfile lockinggeneratestheworst

performanceandusingthe process-rankorder-

ing performsthebestonall threemachines.

Therestof thepaperis organizedasfollows.

Section2 describestheMPI atomicitysemantics

and its differencefrom the POSIX definition.

We explore threepotentialapproachesfor im-

plementingMPI I/O atomicity in depthin Sec-

tion 3. In Section4, we presentperformance

resultson threeparallelfile systems.Thepaper

is concludedin Section5.

2 Concurrent Overlapping

I/O

The concurrent overlapping I/O referredto in

this paperoccurswhenI/O requestsfrom mul-

tiple processesareissuedsimultaneouslyto the

file systemandoverlapsexist amongthefile re-

gionsaccessedby theserequests.If all the re-

questsarereadrequests,thefile systemcanuse

the disk cacheto duplicatethe overlappeddata

for therequestingprocesses.In this case,there

is no conflict in obtainingfile dataamongthe

overlappingprocesses.However, whenoneor

more I/O requestsare write requests,the out-

comeof theoverlappedregions,eitherin file or

in process’smemory, canvarydependingonthe

implementationof thefile system.Thisproblem

is commonlyreferredastheI/O atomicity.

2.1 POSIX Atomicity Semantics

POSIXstandarddefinesatomicitysuchthat all

the bytesfrom a single file I/O operationthat

startout togetherendup together, without inter-

leaving from other I/O operations[5, 6]. The

I/O operationsconfinedby this definition in-

clude the systemcalls that operateon regular

files, such as open(), read(), write(),

chmod(),lseek(),close(), andsoon. In

thispaper, we focuson thetheeffectof theread

andwrite callson theatomicity.

The POSIX definition can be simply inter-
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pretedasthateitherall or noneof thedatawrit-

ten by a processis visible to other processes.

The nonecasecan be either the write data is

cachedin a systembuffer and has not been

flushedto the disk or the data is flushedbut

over-written by otherprocesses.Hence,when

POSIX semanticsis appliedto the concurrent

overlappingI/O operations,thedataresultedin

the overlappedregions in disk shall consistof

data from only one of the write requests. In

otherwords,nointerleaveddatafrom morethan

one processshall appearin the overlappedre-

gions. Otherwise,in non-atomicmode,the re-

sult of theoverlappedregion is undefined,i.e. it

may comprisemixed datafrom morethanone

write request.Many existing file systemssup-

port the POSIX atomicity semantics,such as

NFS,UFS,IBM PIOFS, GPFS,Intel PFS,and

SGIXFS.

POSIX atomicity mainly considersthe I/O

calls definedwithin the POSIX scopein which

its readand write calls sharea commonchar-

acteristic: one I/O requestcan only accessa

contiguousfile region specifiedby a file pointer

andtheamountof datastartingfrom thepointer.

Therefore,theoverlappeddatawrittenby two or

morePOSIXI/O callscanonly bea contiguous

region in file. Many POSIXfile systemsimple-

ment the atomic I/O by serializingthe process

of therequestssuchthattheoverlappedregions

canonly beaccessedby oneprocessat any mo-

ment. By consideringonly the contiguousfile

access,the POSIXdefinition is suitablefor file

systemsthatmainly handlenon-parallelI/O re-

quests.For I/O requestsfrom parallelapplica-

tions that frequently issuenon-contiguousfile

accessrequestsfrom multiple process,POSIX

atomicity may improperlydescribesuchparal-

lel accesspatternsandimposelimitation for the

I/O parallelism.

2.2 MPI Atomicity Semantics

MPI standard2.0 [7] extendsits atomicity se-

manticsby takinginto considerationof thepar-

allel I/O operations. The MPI atomic mode

is definedas: in concurrentoverlappingMPI

I/O operations,theresultsof theoverlappedre-

gions shall containdata from only one of the

MPI processesthatparticipatesin theI/O opera-

tions. Otherwise,in theMPI non-atomicmode,

the result of the overlappedregions is unde-

fined. The major differenceof the MPI atom-

icity from POSIX definition lies on the useof

MPI file view, a new file conceptintroducedin

MPI 2.0. A process’file view is createdby call-

ing MPI File set view() throughan MPI

derived datatype that specifiesthe visible file

rangeto the process. When usedin message

passing,the MPI derived datatype is a power-

ful mechanismfor describingthe memorylay-

out of a messagebuffer. This convenienttool is

extendedin MPI 2.0 for describingthefile lay-

out for process’file view. Sincea deriveddata
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typecanspecifya list of non-contiguousfile re-

gions,the visible datato a processcanalsobe

non-contiguous.WhenperforminganMPI I/O

request,thevisible regionsarelogically consid-

eredasa continuousdatastreamcoming/going

from/to the file systemto/from the requesting

process.

Similar to POSIX, MPI atomicity con-

siders a call to MPI File read xxx()/

MPI File writ xxx() as a single I/O re-

quest. Unlike overlapin POSIX I/O, the over-

lappedfile regions betweentwo processescan

alsobenon-contiguousin file, generatingmulti-

pleoverlappingfile regionsin oneMPI I/O call.

If theunderlyingMPI I/O implementationcon-

siderstheaccessto eachcontiguousfile segment

asa singleread()/write() call to the file

system,thentherewill bemultiple calls issued

simultaneouslyfrom aprocessto thefile system.

Although the atomicity of accessingto a con-

tiguousoverlappedregion is guaranteedin the

POSIXcompliantfile systems,theMPI atomic-

ity whichdemandsatomicityacrossoneor more

regions of overlap cannotsimply rely on the

POSIX I/O calls. Additional effort is required

to implementa correctMPI atomicity seman-

tics. The fact that MPI deriveddatatypespro-

vide moreprogrammingflexibility whenspec-

ifying non-contiguousfile layout increasesthe

complexity of enforcing atomicity in MPI on

POSIXfile systems.

Figure2 showsanexampleof two concurrent

P0

P1

Process 1’s file view on array A

Y

X

non−atomic

Overlapped
Region

Process 0’s file view on array A

mode

MPI

mode
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0
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a 
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Figure2: An exampleof two concurrentover-

lappingwrites wherea 2D array is partitioned

columnwisewith a few columnsoverlapped.In

theMPI atomicmode,thedatain theoverlapped

regioncanonly comefrom eitheroneof thepro-

cesses.In thenon-atomicmode,theresultis un-

defined,for example,interleaved.

MPI write requestsin atomic and non-atomic

modes. The file views of both processes,���
and �	� , consistof 6 non-contiguousfile seg-

ments,assumingthe two-dimensionalarray is

storedin row major. If the MPI implementa-

tion considerswriting eachof the file segment

as a single call to write(), then there will

be 12 write requestsin total and the process-

ing order of theserequestsin the file system

can be arbitrary. The result in the overlapped

columnscan,hence,containinterleaveddata,as

illustratedin the MPI non-atomicmode. Even

with POSIX atomicity, the sameoutcomewill

occurin a POSIXfile systemsinceit only con-

siderstheread()/write() call individually.
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Therefore,theMPI implementationcannotsim-

ply rely on thefile systemto provide thecorrect

file atomicity.

3 Implementation Strategies

Thedesignof existing file systemsseldomcon-

sider concurrentoverlappingI/O requestsand

many implementationstrategies that are in-

tendedfor performanceenhancementactually

hinder the parallelismof overlappingI/O. For

example,in mostclient-server type of file sys-

tems,strategies suchas read-aheadand write-

behind are adoptedin which read-aheadpre-

fetchesseveralfile blocksfollowing thedataac-

tual requestedto theclient’ssystemcachein an-

ticipation of program’s sequentialreadingpat-

tern and write-behindaccumulatesseveral re-

questsin orderto betterutilize theavailableI/O

bandwidth. The read-aheadand write-behind

policies often work againstthe goals of any

file systemrelyingonrandom-accessoperations

whichareusedcommonlyin parallelI/O opera-

tions. Underthe useof thesetwo policies,two

overlappingprocessesof a concurrentI/O op-

erationcanphysicallycachemoreoverlapping

datathanlogically overlapsin theirfile views. It

is alsopossiblethattheoverlappingdataof two

processesis cachedby otherprocessesbecause

of thereadahead.

Thefile cacheconsistency problemhasbeen

studiedextensively in many client-server based

file systems.Themostcommonlyimplemented

cachingschemeis to consulttheserver’s modi-

fication time for the datacachedon the clients

before issuingthe I/O requeststo the servers.

Obviously, communicationoverheadbetween

server and clients for cachevalidationand re-

freshingcan becomesignificant for a concur-

rent overlappingI/O requestdueto the unnec-

essarydata transfers. Although this problem

canbe alleviatedby disablingthe useof read-

ahead/write-through,the performancegain of

thereducedoverheadmaynot offsettheperfor-

mancelossof disablingcaching. In this work,

our discussionis not limited to specificfile sys-

temsandweassumethegeneralI/O requestscan

start at arbitrary file space. We now examine

two potentialimplementationstrategiesfor MPI

atomicity and analyzetheir performancecom-

plexity:

1. Using byte-range file locking – This

approachuses the standardUnix byte-

rangefile locking mechanismto wrap the

read/writecall in eachprocesssuch that

theexclusiveaccesspermissionof theover-

lappedregioncanbegrantedto therequest-

ing process.While a file region is locked,

all read/writerequeststo it will directly go

to the file server. Therefore,the written

dataof a processis visible to other pro-

cessesafter leaving the locking modeand

the subsequentread requestswill always

6



obtainfleshdatafrom the serversbecause

of theuseof thereadlocks.

2. Using processhandshaking – This ap-

proachusesMPI communicationto per-

form inter-processnegotiation for writing

to the overlappedfile regions. The ideais

a preferablealternative to using file lock-

ing. However, for file systemsthat per-

form read-aheadand write-behind,a file

synchronizationcall immediately follow-

ing every write call is requiredto flushout

all information associatedwith the writes

in progress. A cacheinvalidation shall

alsoperformin eachprocessbeforereading

from the overlappedregionssuchthat the

fleshdatais obtainedfrom servers. Under

this strategy category, we further discuss

two negotiation methods: graph-coloring

andprocess-rankordering.

In orderto help describingthe above threeap-

proachesin termsof dataamountandfile lay-

outs, we use two concurrentoverlappingI/O

casesas examples. Thesetwo casesemploy

commonlyseenaccesspatternsin many scien-

tific applications: row-wise and column-wise

partitioningona two-dimensionalarray.

3.1 Row and Column-wise 2D Ar -

ray Partitioning

Given � processesparticipatinga concurrent

I/O operation,therow-wisepartitioningpattern

dividesa two-dimensionalarrayalongits most

significantaxis while the column-wisedivides

it alongtheleastsignificantaxis.Thefollowing

assumptionsareusedin thesepartitioningexam-

ples:


 All � processesconcurrentlywrite their

sub-arraysto asinglesharedfile.


 The layoutsof the 2-dimensionalarray in

process’memoryand disk storageare in

row-majororderwhereaxis � is the most

significantaxisand � is theleast.


 The sub-arrayspartitioned in every two

processeswith consecutive rank id num-

bers overlap with each other for a few

rows/columnson the boundaryalong the

partitioningaxis.


 Theglobalarrayis of size  ��� andthe

numberof overlappedrows/columnsis � ,

where�������� and ��������� .


 To simplify the discussion,we assumeall

I/O requestsarewrite requests.

Figure3 illustratesthetwo partitioningpatterns

on ����� processes.In the row-wisecase,the

file view of process� is asub-arrayof size  �!�
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(b) column−wise partitioning

Y

X : Overlapped region

0

P3

N

(a) Row−wise partitioning

M

N

1 P3

P2

P

0P

2

P

M

P

1

P

Figure3: Row-wiseandcolumn-wisepartition-

ing on a 2-dimensionalarray. The file views

of everytwo consecutiveprocessesoverlapwith

eachotherin � rows/columnsalong � / � axis.

� , where  ���#" $ %�� , if &'�(�)���+*-, . In

the column-wisecase,the file view of process

� is of size  �.� � , where � � � / $ %+� for

&����0���1*�, . For theprocess�2�-& or �-*�, ,
the file view contains 3 4 rows/columnsless in

row andcolumn-wisecases,respectively.

3.2 Byte-rangeFile Locking

Thebyte-rangefile locking is amechanismpro-

vided by a file systemwithin its locking pro-

tocol. This mechanismcan be usedto ensure

the exclusive accessto a locked file region. If

a setof concurrentI/O calls containsonly read

requests,the locking protocolis usuallyimple-

mentedto allow a sharedreadlock sothatmore

thanoneprocesscanreadthelockeddatasimul-

taneously. If at leastoneof the I/O requestsis

a write request,the write lock is often granted

exclusively to the requestingprocesses.Most

of theexisting lockingprotocolsis centralman-

agedandits scalabilityis, hence,limited. A dis-

tributedlockingprotocolusedin theIBM GPFS

file systemimprovesthe performanceof grant-

ing lockingrequestsbyhavingaprocessmanage

its grantedlockedfile region for the further re-

questsfrom otherprocesses[8]. Whenit comes

to theoverlappingrequests,however, concurrent

writes to overlappeddatamustbe still sequen-

tial.

Row-wisePartitioning We now usetherow-

wisepartitioningexampleshown in Figure3(a)

to describethe atomicity implementationusing

file locking. In this example,the file view of a

processoverlaps � rows with its previous and

successiveprocesses.Sincethefile storagelay-

out is assumedto be in a row-major order, i.e.

eachrow of size � is storedconsecutively to

its previousandsuccessive row, every process’

file view actuallycoversacontiguousfile space.

Therefore,the concurrentoverlappingI/O can

beimplementedusingasinglewrite() call in

eachprocess.Onafile systemthatsupportsonly

the atomic mode,atomic file resultsare auto-

maticallyguaranteedfor therow-wisepartition-

ing case.On file systemsthatdo no supportthe

atomicmode,wrappingtheI/O call in eachpro-

cesswith byte-rangelocking of the file region

will alsogenerateatomic results. ROMIO, an

MPI-IO implementationdevelopedat Argonne
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NationalLaboratory, relieson the useof byte-

rangefile locking to implementthecorrectMPI

atomicity in which processesmustobtaina ex-

clusive write lock to theoverlappedfile regions

beforeperformthewrite [9, 10].

Column-wise Partitioning In the column-

wisepartitioningcaseshown in Figure3(b), the

file view of eachprocessis a sub-arrayof size

 �5�6� overlapping� columnswith its left and

right processes.Eachof the  rows of size � �
in the file view is not contiguouswith its pre-

vious or successive row in the file storagelay-

out. Thedistancebetweenthefirst elementsof

two consecutive rows in eachprocess’file view

is � . Therefore,the overlappedfile regionsof

two consecutive processesconsistsof  non-

contiguousrowsof size � each.Figure4 shows

anMPI codefragmentthatcreatesthefile view

for eachprocessusing a derived data type to

specifythecolumn-wisepartitioningpatternand

usesacollectiveMPI-IO call toperformthecon-

currentwrite.

A straightforward implementation for the

column-wisecaseis to regardeachcontiguous

I/O requestasasingleread()/write() call.

This approachresults  write calls from each

processand �7 callsin total. Ona POSIXfile

system,if the �8 requestsareprocessedcon-

currentlywithoutany specificorder, interleaved

results may occur in the overlappedregions.

Sinceprocessingorder of thesewrite requests

sizes[0] = M;

sub_sizes[0] = M; sub_sizes[1] = N / P;

sizes[1] = N;

MPI_Type_commit(&filetype);

MPI_Type_create_subarray(2, sizes, sub_sizes, starts, MPI_ORDER_C,

MPI_File_set_view(fh, disp, MPI_CHAR, filetype, "native", info);

MPI_File_write_all(fh, buf, buffer_size, etype, &status);

MPI_File_close(&fh);

MPI_CHAR, &filetype);

starts[0] = 0; starts[1] = (rank == 0) ? 0 : rank * (N/P - R/2);

if (rank == 0 || rank == P-1)   sub_sizes[1]  -=  R/2;

MPI_File_set_atomicity(fh, 1);

MPI_File_open(comm, filename, io_mode, info, &fh);

7.

12.

11.

10.

9.

8.

6.

5.

4.

3.

2.

1.

Figure4: An MPI codefragmentthatperforms

the column-wiseaccess. The shadearea il-

lustrateshow to createthe derived data type,
9 �;:=<?>A@CBD< , which is usedto defineprocess’s file

view at line 10.

canbearbitrary, thesamescenariocanalsooc-

cur on other file systemseven if file locking

wrapsaroundeachI/O call. Enforcingtheatom-

icity of individual read()/write() calls is

notsufficient to enforceMPI atomicity. In order

to do so,thefile lock muststartat theprocess’s

first file offsetandendat thevery lastfile offset

the processwill write, virtually the entirefile.

All  rowsof theoverlappedregionwill beac-

cessedatomically.

Though POSIX defines a function,

lio listio(), to initiate a list of non-

contiguousfile accessesin a singlecall, it does

not explicitly indicateif its atomicitysemantics

areapplicable.If POSIXatomicity is extended

to lio listio(), the MPI atomicity can

be guaranteed by implementing the non-

contiguousaccesson top of lio listio().

Otherwise,additionaleffort suchasfile locking

9



is necessaryto ensuretheMPI atomicity.

3.3 ProcessorHandshaking

An alternativeapproachto avoid usingfile lock-

ing is throughprocesshandshaking.Through

inter-processcommunicationthe overlapping

processesnegotiate with eachother to obtain

thedesirableaccesssequenceto theoverlapped

regions. In this section,we discusstwo pos-

sible implementationsof processhandshaking:

graph-coloringandprocess-rankorderingmeth-

ods.

3.3.1 Graph-coloring Approach

GivenanundirectedgraphE(��FHGJILK5M in which

G representsa setof verticesand K represents

a set of edgesthat connectthe vertices,a N -
coloringis a function OQPRGTS UV,WIYX!I[Z\Z]Z^N`_ such

that for all a�Icb�deG , if OfF=agMh� OiFjbkM , then

FjalImbkMn�doK ; thatis, noadjacentverticeshave the

samecolor. The graph-coloringproblemis to

find theminimumnumberof colors, N , to color

a givengraph.SolvingtheMPI atomicityprob-

lem canbeviewedasa graph-coloringproblem

if the I/O requestingprocessesare regardedas

the verticesand the overlappingbetweentwo

processesrepresentsthe edge. Whenapplying

graph-coloringto theMPI atomicityimplemen-

tation, the I/O processesarefirst dividedinto N
groups(colors)in which no two processesin a

groupoverlaptheir file views. Then, the con-

then

R iiR   [ j ]  : the j    element ofth

C   [ j ]  : the j    element ofi
th C i

Ci

1. for each column i = 0 . . . P−1

i
thC   : the i    column of W

Given an overlapping P

W [ i ][ j ] = 1   if process i overlaps j and i     j

For each process, do the following:

3. self Cself C i

4. W* collect

for i = 0 . . . P−1

if

myColor

return

5.

6.

7.

8.

*

2. if i self and  C      [ i ]self 1

selfR      [ i ] = 0

thR   : the i    row of Wi

x P matrix, W, where

C

from process i, for i = 0 . . . P−1

0   otherwise

=  i

then

Figure 5: A greedygraph-coloringalgorithm

that finds the color id for eachI/O processin

variablemyColor.

currentI/O is carriedout in N steps.Note that

processsynchronizationbetweenany two steps

is necessaryto ensurethat no processin one

groupcanproceedwith its I/O beforetheprevi-

ousgroup’s I/O completes.Thegraph-coloring

approachfulfills the requirementof MPI atom-

icity while maintainingat leasta degreeof I/O

parallelism.

Thegraph-coloringmethodologyis a heuris-

tic which hasbeenstudiedfor a long time and

is provedto beNP-hardfor generalgraphs[11].

BecausetheoverlappingI/O patternspresentin

mostof the scienceapplicationsarehardly ar-

bitrary, a greedysolutionmaysuffice. Figure5

givesa simplegreedygraph-coloringalgorithm

that first usesa ���.� booleanmatrix, p , to

indicateif thereis anoverlapbetweentwo pro-

cessesandstartscoloringtheprocessesby look-
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*
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W  = 
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0
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0

1

0
1

1
0

0
1
0
1

0

Figure6: An exampleof column-wiseoverlap-

ping I/O usingthegraph-coloringapproach.All

I/O requestsare performedin 2 steps: even-

rankedprocesseswrite at thefirst stepfollowed

by thewritesfrom odd-rankedprocesses.

ing for the lowest ranked processeswhosefile

views do not overlap with any processin that

color. Let’s now considerthecolumn-wisepar-

titioning example. Figure6 shows the overlap-

ping matrix using this greedyalgorithm. It is

obvious that for the two-dimensionalcolumn-

wisepartitioningcase,two colorsareenoughto

maintainMPI atomicity: the even-ranked pro-

cessesperform their I/O requestsprior to the

odd-rankedprocesses,asillustratedin Figure6.

3.3.2 Process-rankOrdering

Another process-handshakingapproachis to

have all processesagreeon a certainaccesspri-

ority to theoverlappedfile regions.An example

is to usea policy wherethe higherranked pro-

cesswins the right to accesstheoverlappedre-

P

N

M

Process file views

0P 1 P2 PP−1

N
P

N
P

N
P

N
P

2
R
2 2

RR
2

R

Figure7: Theprocessfile viewsfor thecolumn-

wiseoverlappingI/O usingprocessrank order-

ing approach.With the overlappingaccessre-

moved,all � I/O requestscanbeperformedsi-

multaneouslywhile MPI atomicity is guaran-

teed.

gionswhile otherssurrendertheirwrites.A cou-

ple of immediateadvantagesof this approach

aretheeliminationof overlappingaccessandthe

reductionof the overall I/O amount.Theover-

headof this methodis there-calculationo each

process’s file view by markingdown the over-

lappedregions with all higher-rank processes’

file views.

Consideringthecolumn-wisepartitioningex-

ample, Figure 7 illustratesthe processes’file

viewswhenusingtheprocess-rankorderingap-

proach. The file view for process� , &q�#�r�
�s*t, , is a  �o/$ sub-arraywhile thefile views

for processes& and �u*v, are  �'Fw/ $ *.3 4 M and

 ��Fw/$ %x3 4 M , respectively. Comparedto Fig-

ure 6, eachprocesssurrendersits write for the

right-most� columns.
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3.4 Scalability Analysis

In thecolumn-wisepartitioncase,thefile lock-

ing approachresultsin 1��*1Fj��*u� � M bytes,

nearly the entirefile, being locked while each

processis writing. In fact, oncea processis

grantedits write locking request,no otherpro-

cessescan accessto the file. As a result, us-

ing byte-rangefile lockingserializestheI/O and

dramaticallydegradestheperformance.

The purposeof proposingthe two process-

handshakingapproachesis trying to maintain

the I/O scalabilitywithout the useof file lock-

ing. The overheadof the graph-coloringap-

proachis thecommunicationcostof exchanging

thefile views, but this approachdoesnot sacri-

fice I/O parallelism.Thefile views areusedto

constructthe overlappingmatrix locally. With

arelativesmallnegotiationoverhead,thegraph-

coloringapproachmaintainsa certaindegreeof

I/O parallelism. To constructthe overlapping

matrix, thegraph-coloringapproachusesa log-

ical bit to indicateif an overlapexists between

two processes.In theprocess-rankorderingap-

proach,the exact overlappedbyte rangesmust

beknow in orderto calculatethelocal file view.

Thisoverheadis expectedto benegligible when

comparedto the performanceimprovementre-

sulting from the removal of all overlappingre-

quests.Additionally, theoverall I/O amounton

the file systemis reducedsincethe lower-rank

processessurrendertheir accessesto the over-

Table1: Systemconfigurationsfor thethreepar-

allelmachinesonwhichtheexperimentalresults

wereobtained.

Cplant Origin 2000 IBM SP

File system ENFS XFS GPFS

CPUtype Alpha R10000 Power3

CPUSpeed 500MHz 195MHz 375MHz

Gigabit Colony
Network Myrinet

Ethernet switch

I/O servers 12 - 12

PeakI/O

bandwidth
50MB/s 4 GB/s 1.5GB/s

lappedregions.

4 Experiment Results

We implementedthe column-wisepartitioning

exampleusingstandardUnix I/O calls andob-

tainedexperimentalresultsfrom threeparallel

machines:ASCI Cplant,anAlphaLinux cluster

at SandiaNationalLaboratory;the SGI Origin

2000at theNationalCenterfor Supercomputing

Applications (NCSA); and Blue Horizon, the

IBM SPat SanDiego SupercomputingCenter

(SDSC).Themachineconfigurationsarebriefly

describedin Table 1. Cplant is a Linux clus-

ter runningthe ExtendedNetwork File System

(ENFS)in whicheachcomputenodeis mapped

to oneof theI/O serversin a round-robinselec-

tion schemeat boot time [12]. Basically, ENFS

is anNFSfile systemwith a few changes.The

12
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Figure8: Performanceresultsof runningthe column-wisepartitioningexperimentson a Linux

Cluster, anIBM SP, andanSGIOrigin200.Threefile sizeswereused:32MB, 128MB, and1GB.

most notableis the absenceof file locking on

Cplant. Accordingly, our performanceresults

on CPlantdo not include the experimentsthat

usefile locking. ENFSalsoperformsthe opti-

mizationthatNFSusuallydoes,includingread-

aheadandwrite-behind.

We ran the experimentswith the threearray

sizes:�y&WzW{n�}|R,~zyX (32MB), �y&�zW{7���WXW��{W| (128

MB), and �y&WzW{t��X�{yXk,[��� (1GB). On all three

machines,we used4, 8, and16 processorsand

theresultsareshown in Figure8. Notetheper-

formanceof file locking is theworstof the im-

plementationsof MPI atomicity. The poor re-

sultsarealsoexpectedasdiscussedin Section

3.2thatfile lockinghinderstheI/O concurrency.

In mostof the cases,the process-rankordering

strategy out-performedgraph-coloring.

5 Conclusions

In this paper, we examinedthe atomicity se-

manticsfor boththePOSIXandMPI specifica-

tions. Thedifferencebetweenthemthenumber

of non-contiguousregionsin eachI/O requests.
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While POSIX considersonly one contiguous

file spaceI/O, a singleMPI I/O requestcanac-

cessnon-contiguousfile spaceusingMPI’s file

view facility. We compareda few implemen-

tation strategies for enforcingatomicwrites in

MPI includingfile locking, graph-coloring,and

process-rankordering.Theexperimentalresults

showed that using file locking performedthe

worstwhenrunningatwo-dimensionalcolumn-

wisepartitioningcase.Sincefile locking is ba-

sicallyacentralmanagedmechanism,theparal-

lelism of concurrentI/O requests,especiallyfor

overlappingI/O, can be significantly degraded

by using it. The two alternatives proposedin

this papernegotiateprocessesI/O requestorder

of accesspriority throughprocesshandshaking.

Withoutusingacentralizedlockingmechanism,

thesetwo approachgreatlyimprovetheI/O per-

formance.

Thestrategiesof graph-coloringandprocess-

rankorderingrequireeveryprocessawareof all

the processesparticipatedin a concurrentI/O

operation.In thescopeof MPI, only collective

calls have this property. Note that MPI collec-

tive I/O is differentfrom the concurrentI/O in

which a concurrentI/O is for moregeneralI/O

cases.An MPI non-collective I/O operationcan

also be concurrent. File locking seemsto be

the only way to ensureatomic resultsin non-

collective I/O callsin MPI, sincetheconcurrent

processesare unknown. Otherwise,given the

participatingprocesses,I/O optimizationssuch

asthe processhandshakingapproachproposed

in this papercanbe appliedto improve perfor-

mance.
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