
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

2003

Scalable Implementations of MPI Atomicity for Concurrent Scalable Implementations of MPI Atomicity for Concurrent

Overlapping I/O Overlapping I/O

Wei-keng Liao

Alok Choudhary

Kenin Coloma

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Lee Ward

See next page for additional authors

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer and Systems Architecture Commons, Computer Sciences Commons, and the

Data Storage Systems Commons

Recommended Citation Recommended Citation
W. Liao et al., “Scalable Implementations of MPI Atomicity for Concurrent Overlapping I/O,” in International
Conference on Parallel Processing, 2003.

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2003 Wei-keng Liao, Alok Choudhary, Kenin Coloma, George K. Thiruvathukal, Lee Ward, Eric Russell,
and Neil Pundit

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Authors Authors
Wei-keng Liao, Alok Choudhary, Kenin Coloma, George K. Thiruvathukal, Lee Ward, Eric Russell, and Neil
Pundit

This conference proceeding is available at Loyola eCommons: https://ecommons.luc.edu/cs_facpubs/12

https://ecommons.luc.edu/cs_facpubs/12

ScalableImplementationsof MPI Atomicity

for ConcurrentOverlappingI/O

Wei-kengLiao
�
, Alok Choudhary

�
, KeninColoma

�
, GeorgeK. Thiruvathukal

�
,

LeeWard� , Eric Russell� , andNeil Pundit�

�
ECEDepartment

NorthwesternUniversity

�
CSDepartment

LoyolaUniversity

� ScalableComputing
SystemsDepartment

SandiaNationalLaboratories

Abstract

For concurrentI/O operations,atomicitydefines

theresultsin theoverlappingfile regionssimul-

taneouslyread/writtenby requestingprocesses.

Atomicity hasbeenwell studiedat thefile sys-

tem level, suchasPOSIXstandard.In this pa-

per, we investigatethe problemsarising from

the implementationof MPI atomicity for con-

current overlappingwrite accessand provide

a few programmingsolutions. Sincethe MPI

definition of atomicity differs from the POSIX

one,animplementationthatsimplyreliesonthe

POSIX file systemsdoesnot guaranteecorrect

MPI semantics. To have a correct implemen-

tation of atomic I/O in MPI, we examine the

efficiency of threeapproaches:1) file locking,

2) graph-coloring,and 3) process-rankorder-

ing. Performancecomplexity for thesemethods

areanalyzedandtheir experimentalresultsare

presentedfor file systemsincludingNFS,SGI’s

XFS,andIBM’ sGPFS.

1 Intr oduction

Concurrentfile accesshas beenan active re-

searchtopic for many years.Efforts werecon-

tributed in both software developmentas well

as hardware designto improve the I/O band-

width betweencomputationalunits and stor-

agesystems.While mostof theseworks only

considerexclusive file accessamongthe con-

current I/O requests,more scientific applica-

tions nowadaysrequire data partitioning with

1

overlap amongthe requestingprocesses[1, 2,

3, 4]. For instance, ghost cells are com-

monly used in multi-dimensionalarray parti-

tioning such that the sub-arraypartitioned in

one processoverlapswith its neighborsnear

the boundary. A coupleexamplesthat usethis

ghostingtechniquearelargescalesimulationsin

earthclimateandN-body astrophysics,hydro-

dynamicsusingLaplaceequations,both where

astrongspatialdomainpartitioningrelationship

is present. Figure 1 illustratesan exampleof

a two-dimensionalarray in a block-block par-

titioning pattern,wherea ghostcell represent

data ”owned” by more than one process. A

typical run of this large-scaletype of applica-

tions can take from days to monthsand usu-

ally outputsdataperiodicallyfor thepurposesof

check-pointingaswell asprogressivevisualiza-

tion. Duringcheck-pointing,theoutputof ghost

cellscreatesoverlappingI/O from all processes

concurrently. The outcomeof the overlapped

file regionsfrom a concurrentI/O is commonly

referredasatomicity.

In this paper, we examine the implementa-

tion issuesfor concurrentoverlappingI/O op-

erationsthat abide the MPI atomicity seman-

tics. We first differentiatetheMPI atomicityse-

manticsfrom thedefinition in POSIXstandard.

ThePOSIXdefinitiononly considersatomicity

at the granularityof read()/write() calls

in which only a contiguousfile spacecan be

specifiedin a singleI/O request.In MPI, a pro-

Pj

Pj

PkPk−1

Pj−1

Pi−1 Pi+1Pi

Pj+1

P

PjPi

k+1

Ghost cells of

Accessed by and

Accessed by 4 processes concurrently

Figure1: An exampleof 2D arraypartitioning

with overlappingat the boundary. The ghost

cellsof ��� overlapswith its8neighborprocesses

which resultssomeareasareaccessedby more

thanoneprocessessimultaneously.

cesscandefineanon-contiguousfile view using

MPI deriveddatatypesandsubsequentI/O calls

can then implicitly accessnon-contiguousfile

regions.SincethePOSIXdefinitionisnotaware

of non-contiguousI/O access,it alonecannot

guaranteeatomicaccessin MPI, andadditional

efforts areneededabove the file systemto en-

surethe correctimplementationof atomicMPI

access.In this work, we studytwo approaches

for atomicity implementation:usingbyte-range

file locking anda processhandshakingstrategy.

Using a byte-rangefile locking mechanismis

a straightforwardmethodto ensurethe atomic-

ity. In many situations,however, file lockingcan

2

serializewhat were intendedto be concurrent

I/O calls and, therefore,it is necessaryto ex-

plorealternativeapproaches.Processhandshak-

ing usesinter-processcommunicationto deter-

mine the accesssequenceor agreementon the

overlaps, in which two methodsare studied:

graph-coloringandprocess-rankorderingmeth-

ods. Thesetwo methodsorder the concurrent

I/O requestsin asequencesuchthatnotwoover-

lapping requestscan perform at any instance.

Experimentalperformanceresultsareprovided

for runningatestcodeusingacolumn-wisepar-

titioning patternon threemachineplatforms:an

Linux clusterrunninganextendedNFSfile sys-

tem, an SGI Origin2000runningXFS, and an

IBM SPrunningGPFS.The resultsshow that,

in general,usingfile lockinggeneratestheworst

performanceandusingthe process-rankorder-

ing performsthebestonall threemachines.

Therestof thepaperis organizedasfollows.

Section2 describestheMPI atomicitysemantics

and its differencefrom the POSIX definition.

We explore threepotentialapproachesfor im-

plementingMPI I/O atomicity in depthin Sec-

tion 3. In Section4, we presentperformance

resultson threeparallelfile systems.Thepaper

is concludedin Section5.

2 Concurrent Overlapping

I/O

The concurrent overlapping I/O referredto in

this paperoccurswhenI/O requestsfrom mul-

tiple processesareissuedsimultaneouslyto the

file systemandoverlapsexist amongthefile re-

gionsaccessedby theserequests.If all the re-

questsarereadrequests,thefile systemcanuse

the disk cacheto duplicatethe overlappeddata

for therequestingprocesses.In this case,there

is no conflict in obtainingfile dataamongthe

overlappingprocesses.However, whenoneor

more I/O requestsare write requests,the out-

comeof theoverlappedregions,eitherin file or

in process’smemory, canvarydependingonthe

implementationof thefile system.Thisproblem

is commonlyreferredastheI/O atomicity.

2.1 POSIX Atomicity Semantics

POSIXstandarddefinesatomicitysuchthat all

the bytesfrom a single file I/O operationthat

startout togetherendup together, without inter-

leaving from other I/O operations[5, 6]. The

I/O operationsconfinedby this definition in-

clude the systemcalls that operateon regular

files, such as open(), read(), write(),

chmod(),lseek(),close(), andsoon. In

thispaper, we focuson thetheeffectof theread

andwrite callson theatomicity.

The POSIX definition can be simply inter-

3

pretedasthateitherall or noneof thedatawrit-

ten by a processis visible to other processes.

The nonecasecan be either the write data is

cachedin a systembuffer and has not been

flushedto the disk or the data is flushedbut

over-written by otherprocesses.Hence,when

POSIX semanticsis appliedto the concurrent

overlappingI/O operations,thedataresultedin

the overlappedregions in disk shall consistof

data from only one of the write requests. In

otherwords,nointerleaveddatafrom morethan

one processshall appearin the overlappedre-

gions. Otherwise,in non-atomicmode,the re-

sult of theoverlappedregion is undefined,i.e. it

may comprisemixed datafrom morethanone

write request.Many existing file systemssup-

port the POSIX atomicity semantics,such as

NFS,UFS,IBM PIOFS, GPFS,Intel PFS,and

SGIXFS.

POSIX atomicity mainly considersthe I/O

calls definedwithin the POSIX scopein which

its readand write calls sharea commonchar-

acteristic: one I/O requestcan only accessa

contiguousfile region specifiedby a file pointer

andtheamountof datastartingfrom thepointer.

Therefore,theoverlappeddatawrittenby two or

morePOSIXI/O callscanonly bea contiguous

region in file. Many POSIXfile systemsimple-

ment the atomic I/O by serializingthe process

of therequestssuchthattheoverlappedregions

canonly beaccessedby oneprocessat any mo-

ment. By consideringonly the contiguousfile

access,the POSIXdefinition is suitablefor file

systemsthatmainly handlenon-parallelI/O re-

quests.For I/O requestsfrom parallelapplica-

tions that frequently issuenon-contiguousfile

accessrequestsfrom multiple process,POSIX

atomicity may improperlydescribesuchparal-

lel accesspatternsandimposelimitation for the

I/O parallelism.

2.2 MPI Atomicity Semantics

MPI standard2.0 [7] extendsits atomicity se-

manticsby takinginto considerationof thepar-

allel I/O operations. The MPI atomic mode

is definedas: in concurrentoverlappingMPI

I/O operations,theresultsof theoverlappedre-

gions shall containdata from only one of the

MPI processesthatparticipatesin theI/O opera-

tions. Otherwise,in theMPI non-atomicmode,

the result of the overlappedregions is unde-

fined. The major differenceof the MPI atom-

icity from POSIX definition lies on the useof

MPI file view, a new file conceptintroducedin

MPI 2.0. A process’file view is createdby call-

ing MPI File set view() throughan MPI

derived datatype that specifiesthe visible file

rangeto the process. When usedin message

passing,the MPI derived datatype is a power-

ful mechanismfor describingthe memorylay-

out of a messagebuffer. This convenienttool is

extendedin MPI 2.0 for describingthefile lay-

out for process’file view. Sincea deriveddata

4

typecanspecifya list of non-contiguousfile re-

gions,the visible datato a processcanalsobe

non-contiguous.WhenperforminganMPI I/O

request,thevisible regionsarelogically consid-

eredasa continuousdatastreamcoming/going

from/to the file systemto/from the requesting

process.

Similar to POSIX, MPI atomicity con-

siders a call to MPI File read xxx()/

MPI File writ xxx() as a single I/O re-

quest. Unlike overlapin POSIX I/O, the over-

lappedfile regions betweentwo processescan

alsobenon-contiguousin file, generatingmulti-

pleoverlappingfile regionsin oneMPI I/O call.

If theunderlyingMPI I/O implementationcon-

siderstheaccessto eachcontiguousfile segment

asa singleread()/write() call to the file

system,thentherewill bemultiple calls issued

simultaneouslyfrom aprocessto thefile system.

Although the atomicity of accessingto a con-

tiguousoverlappedregion is guaranteedin the

POSIXcompliantfile systems,theMPI atomic-

ity whichdemandsatomicityacrossoneor more

regions of overlap cannotsimply rely on the

POSIX I/O calls. Additional effort is required

to implementa correctMPI atomicity seman-

tics. The fact that MPI deriveddatatypespro-

vide moreprogrammingflexibility whenspec-

ifying non-contiguousfile layout increasesthe

complexity of enforcing atomicity in MPI on

POSIXfile systems.

Figure2 showsanexampleof two concurrent

P0

P1

Process 1’s file view on array A

Y

X

non−atomic

Overlapped
Region

Process 0’s file view on array A

mode

MPI

mode

MPI

atomic
or

1

0

Dat
a

Fro
m

 P 1

Dat
a

Fro
m

 P0

Dat
a

Fro
m

 P

Dat
a

Fro
m

 P 1

Dat
a

Fro
m

 P

0

Dat
a

Fro
m

 P

Figure2: An exampleof two concurrentover-

lappingwrites wherea 2D array is partitioned

columnwisewith a few columnsoverlapped.In

theMPI atomicmode,thedatain theoverlapped

regioncanonly comefrom eitheroneof thepro-

cesses.In thenon-atomicmode,theresultis un-

defined,for example,interleaved.

MPI write requestsin atomic and non-atomic

modes. The file views of both processes,���
and �	� , consistof 6 non-contiguousfile seg-

ments,assumingthe two-dimensionalarray is

storedin row major. If the MPI implementa-

tion considerswriting eachof the file segment

as a single call to write(), then there will

be 12 write requestsin total and the process-

ing order of theserequestsin the file system

can be arbitrary. The result in the overlapped

columnscan,hence,containinterleaveddata,as

illustratedin the MPI non-atomicmode. Even

with POSIX atomicity, the sameoutcomewill

occurin a POSIXfile systemsinceit only con-

siderstheread()/write() call individually.

5

Therefore,theMPI implementationcannotsim-

ply rely on thefile systemto provide thecorrect

file atomicity.

3 Implementation Strategies

Thedesignof existing file systemsseldomcon-

sider concurrentoverlappingI/O requestsand

many implementationstrategies that are in-

tendedfor performanceenhancementactually

hinder the parallelismof overlappingI/O. For

example,in mostclient-server type of file sys-

tems,strategies suchas read-aheadand write-

behind are adoptedin which read-aheadpre-

fetchesseveralfile blocksfollowing thedataac-

tual requestedto theclient’ssystemcachein an-

ticipation of program’s sequentialreadingpat-

tern and write-behindaccumulatesseveral re-

questsin orderto betterutilize theavailableI/O

bandwidth. The read-aheadand write-behind

policies often work againstthe goals of any

file systemrelyingonrandom-accessoperations

whichareusedcommonlyin parallelI/O opera-

tions. Underthe useof thesetwo policies,two

overlappingprocessesof a concurrentI/O op-

erationcanphysicallycachemoreoverlapping

datathanlogically overlapsin theirfile views. It

is alsopossiblethattheoverlappingdataof two

processesis cachedby otherprocessesbecause

of thereadahead.

Thefile cacheconsistency problemhasbeen

studiedextensively in many client-server based

file systems.Themostcommonlyimplemented

cachingschemeis to consulttheserver’s modi-

fication time for the datacachedon the clients

before issuingthe I/O requeststo the servers.

Obviously, communicationoverheadbetween

server and clients for cachevalidationand re-

freshingcan becomesignificant for a concur-

rent overlappingI/O requestdueto the unnec-

essarydata transfers. Although this problem

canbe alleviatedby disablingthe useof read-

ahead/write-through,the performancegain of

thereducedoverheadmaynot offsettheperfor-

mancelossof disablingcaching. In this work,

our discussionis not limited to specificfile sys-

temsandweassumethegeneralI/O requestscan

start at arbitrary file space. We now examine

two potentialimplementationstrategiesfor MPI

atomicity and analyzetheir performancecom-

plexity:

1. Using byte-range file locking – This

approachuses the standardUnix byte-

rangefile locking mechanismto wrap the

read/writecall in eachprocesssuch that

theexclusiveaccesspermissionof theover-

lappedregioncanbegrantedto therequest-

ing process.While a file region is locked,

all read/writerequeststo it will directly go

to the file server. Therefore,the written

dataof a processis visible to other pro-

cessesafter leaving the locking modeand

the subsequentread requestswill always

6

obtainfleshdatafrom the serversbecause

of theuseof thereadlocks.

2. Using processhandshaking – This ap-

proachusesMPI communicationto per-

form inter-processnegotiation for writing

to the overlappedfile regions. The ideais

a preferablealternative to using file lock-

ing. However, for file systemsthat per-

form read-aheadand write-behind,a file

synchronizationcall immediately follow-

ing every write call is requiredto flushout

all information associatedwith the writes

in progress. A cacheinvalidation shall

alsoperformin eachprocessbeforereading

from the overlappedregionssuchthat the

fleshdatais obtainedfrom servers. Under

this strategy category, we further discuss

two negotiation methods: graph-coloring

andprocess-rankordering.

In orderto help describingthe above threeap-

proachesin termsof dataamountandfile lay-

outs, we use two concurrentoverlappingI/O

casesas examples. Thesetwo casesemploy

commonlyseenaccesspatternsin many scien-

tific applications: row-wise and column-wise

partitioningona two-dimensionalarray.

3.1 Row and Column-wise 2D Ar -

ray Partitioning

Given � processesparticipatinga concurrent

I/O operation,therow-wisepartitioningpattern

dividesa two-dimensionalarrayalongits most

significantaxis while the column-wisedivides

it alongtheleastsignificantaxis.Thefollowing

assumptionsareusedin thesepartitioningexam-

ples:

 All � processesconcurrentlywrite their

sub-arraysto asinglesharedfile.

 The layoutsof the 2-dimensionalarray in

process’memoryand disk storageare in

row-majororderwhereaxis � is the most

significantaxisand � is theleast.

 The sub-arrayspartitioned in every two

processeswith consecutive rank id num-

bers overlap with each other for a few

rows/columnson the boundaryalong the

partitioningaxis.

 Theglobalarrayis of size ��� andthe

numberof overlappedrows/columnsis � ,

where�������� and ��������� .

 To simplify the discussion,we assumeall

I/O requestsarewrite requests.

Figure3 illustratesthetwo partitioningpatterns

on ����� processes.In the row-wisecase,the

file view of process� is asub-arrayof size �!�

7

(b) column−wise partitioning

Y

X : Overlapped region

0

P3

N

(a) Row−wise partitioning

M

N

1 P3

P2

P

0P

2

P

M

P

1

P

Figure3: Row-wiseandcolumn-wisepartition-

ing on a 2-dimensionalarray. The file views

of everytwo consecutiveprocessesoverlapwith

eachotherin � rows/columnsalong � / � axis.

� , where ���#" $ %�� , if &'�(�)���+*-, . In

the column-wisecase,the file view of process

� is of size �.� � , where � � � / $ %+� for

&����0���1*�, . For theprocess�2�-& or �-*�, ,
the file view contains 3 4 rows/columnsless in

row andcolumn-wisecases,respectively.

3.2 Byte-rangeFile Locking

Thebyte-rangefile locking is amechanismpro-

vided by a file systemwithin its locking pro-

tocol. This mechanismcan be usedto ensure

the exclusive accessto a locked file region. If

a setof concurrentI/O calls containsonly read

requests,the locking protocolis usuallyimple-

mentedto allow a sharedreadlock sothatmore

thanoneprocesscanreadthelockeddatasimul-

taneously. If at leastoneof the I/O requestsis

a write request,the write lock is often granted

exclusively to the requestingprocesses.Most

of theexisting lockingprotocolsis centralman-

agedandits scalabilityis, hence,limited. A dis-

tributedlockingprotocolusedin theIBM GPFS

file systemimprovesthe performanceof grant-

ing lockingrequestsbyhavingaprocessmanage

its grantedlockedfile region for the further re-

questsfrom otherprocesses[8]. Whenit comes

to theoverlappingrequests,however, concurrent

writes to overlappeddatamustbe still sequen-

tial.

Row-wisePartitioning We now usetherow-

wisepartitioningexampleshown in Figure3(a)

to describethe atomicity implementationusing

file locking. In this example,the file view of a

processoverlaps � rows with its previous and

successiveprocesses.Sincethefile storagelay-

out is assumedto be in a row-major order, i.e.

eachrow of size � is storedconsecutively to

its previousandsuccessive row, every process’

file view actuallycoversacontiguousfile space.

Therefore,the concurrentoverlappingI/O can

beimplementedusingasinglewrite() call in

eachprocess.Onafile systemthatsupportsonly

the atomic mode,atomic file resultsare auto-

maticallyguaranteedfor therow-wisepartition-

ing case.On file systemsthatdo no supportthe

atomicmode,wrappingtheI/O call in eachpro-

cesswith byte-rangelocking of the file region

will alsogenerateatomic results. ROMIO, an

MPI-IO implementationdevelopedat Argonne

8

NationalLaboratory, relieson the useof byte-

rangefile locking to implementthecorrectMPI

atomicity in which processesmustobtaina ex-

clusive write lock to theoverlappedfile regions

beforeperformthewrite [9, 10].

Column-wise Partitioning In the column-

wisepartitioningcaseshown in Figure3(b), the

file view of eachprocessis a sub-arrayof size

 �5�6� overlapping� columnswith its left and

right processes.Eachof the rows of size � �
in the file view is not contiguouswith its pre-

vious or successive row in the file storagelay-

out. Thedistancebetweenthefirst elementsof

two consecutive rows in eachprocess’file view

is � . Therefore,the overlappedfile regionsof

two consecutive processesconsistsof non-

contiguousrowsof size � each.Figure4 shows

anMPI codefragmentthatcreatesthefile view

for eachprocessusing a derived data type to

specifythecolumn-wisepartitioningpatternand

usesacollectiveMPI-IO call toperformthecon-

currentwrite.

A straightforward implementation for the

column-wisecaseis to regardeachcontiguous

I/O requestasasingleread()/write() call.

This approachresults write calls from each

processand �7 callsin total. Ona POSIXfile

system,if the �8 requestsareprocessedcon-

currentlywithoutany specificorder, interleaved

results may occur in the overlappedregions.

Sinceprocessingorder of thesewrite requests

sizes[0] = M;

sub_sizes[0] = M; sub_sizes[1] = N / P;

sizes[1] = N;

MPI_Type_commit(&filetype);

MPI_Type_create_subarray(2, sizes, sub_sizes, starts, MPI_ORDER_C,

MPI_File_set_view(fh, disp, MPI_CHAR, filetype, "native", info);

MPI_File_write_all(fh, buf, buffer_size, etype, &status);

MPI_File_close(&fh);

MPI_CHAR, &filetype);

starts[0] = 0; starts[1] = (rank == 0) ? 0 : rank * (N/P - R/2);

if (rank == 0 || rank == P-1) sub_sizes[1] -= R/2;

MPI_File_set_atomicity(fh, 1);

MPI_File_open(comm, filename, io_mode, info, &fh);

7.

12.

11.

10.

9.

8.

6.

5.

4.

3.

2.

1.

Figure4: An MPI codefragmentthatperforms

the column-wiseaccess. The shadearea il-

lustrateshow to createthe derived data type,
9 �;:=<?>A@CBD< , which is usedto defineprocess’s file

view at line 10.

canbearbitrary, thesamescenariocanalsooc-

cur on other file systemseven if file locking

wrapsaroundeachI/O call. Enforcingtheatom-

icity of individual read()/write() calls is

notsufficient to enforceMPI atomicity. In order

to do so,thefile lock muststartat theprocess’s

first file offsetandendat thevery lastfile offset

the processwill write, virtually the entirefile.

All rowsof theoverlappedregionwill beac-

cessedatomically.

Though POSIX defines a function,

lio listio(), to initiate a list of non-

contiguousfile accessesin a singlecall, it does

not explicitly indicateif its atomicitysemantics

areapplicable.If POSIXatomicity is extended

to lio listio(), the MPI atomicity can

be guaranteed by implementing the non-

contiguousaccesson top of lio listio().

Otherwise,additionaleffort suchasfile locking

9

is necessaryto ensuretheMPI atomicity.

3.3 ProcessorHandshaking

An alternativeapproachto avoid usingfile lock-

ing is throughprocesshandshaking.Through

inter-processcommunicationthe overlapping

processesnegotiate with eachother to obtain

thedesirableaccesssequenceto theoverlapped

regions. In this section,we discusstwo pos-

sible implementationsof processhandshaking:

graph-coloringandprocess-rankorderingmeth-

ods.

3.3.1 Graph-coloring Approach

GivenanundirectedgraphE(��FHGJILK5M in which

G representsa setof verticesand K represents

a set of edgesthat connectthe vertices,a N -
coloringis a function OQPRGTS UV,WIYX!I[Z\Z]Z^N`_ such

that for all a�Icb�deG , if OfF=agMh� OiFjbkM , then

FjalImbkMn�doK ; thatis, noadjacentverticeshave the

samecolor. The graph-coloringproblemis to

find theminimumnumberof colors, N , to color

a givengraph.SolvingtheMPI atomicityprob-

lem canbeviewedasa graph-coloringproblem

if the I/O requestingprocessesare regardedas

the verticesand the overlappingbetweentwo

processesrepresentsthe edge. Whenapplying

graph-coloringto theMPI atomicityimplemen-

tation, the I/O processesarefirst dividedinto N
groups(colors)in which no two processesin a

groupoverlaptheir file views. Then, the con-

then

R iiR [j] : the j element ofth

C [j] : the j element ofi
th C i

Ci

1. for each column i = 0 . . . P−1

i
thC : the i column of W

Given an overlapping P

W [i][j] = 1 if process i overlaps j and i j

For each process, do the following:

3. self Cself C i

4. W* collect

for i = 0 . . . P−1

if

myColor

return

5.

6.

7.

8.

*

2. if i self and C [i]self 1

selfR [i] = 0

thR : the i row of Wi

x P matrix, W, where

C

from process i, for i = 0 . . . P−1

0 otherwise

= i

then

Figure 5: A greedygraph-coloringalgorithm

that finds the color id for eachI/O processin

variablemyColor.

currentI/O is carriedout in N steps.Note that

processsynchronizationbetweenany two steps

is necessaryto ensurethat no processin one

groupcanproceedwith its I/O beforetheprevi-

ousgroup’s I/O completes.Thegraph-coloring

approachfulfills the requirementof MPI atom-

icity while maintainingat leasta degreeof I/O

parallelism.

Thegraph-coloringmethodologyis a heuris-

tic which hasbeenstudiedfor a long time and

is provedto beNP-hardfor generalgraphs[11].

BecausetheoverlappingI/O patternspresentin

mostof the scienceapplicationsarehardly ar-

bitrary, a greedysolutionmaysuffice. Figure5

givesa simplegreedygraph-coloringalgorithm

that first usesa ���.� booleanmatrix, p , to

indicateif thereis anoverlapbetweentwo pro-

cessesandstartscoloringtheprocessesby look-

10

Odd processes write

0 2

N

P P

31P

Even processes write

M

P

1
1
0

0
1
0
1

: color 0

: color 1

0
1

1
0

*

W =

W =

1
0

0

1
0

0

0
0
10

0

1

0
1

1
0

0
1
0
1

0

Figure6: An exampleof column-wiseoverlap-

ping I/O usingthegraph-coloringapproach.All

I/O requestsare performedin 2 steps: even-

rankedprocesseswrite at thefirst stepfollowed

by thewritesfrom odd-rankedprocesses.

ing for the lowest ranked processeswhosefile

views do not overlap with any processin that

color. Let’s now considerthecolumn-wisepar-

titioning example. Figure6 shows the overlap-

ping matrix using this greedyalgorithm. It is

obvious that for the two-dimensionalcolumn-

wisepartitioningcase,two colorsareenoughto

maintainMPI atomicity: the even-ranked pro-

cessesperform their I/O requestsprior to the

odd-rankedprocesses,asillustratedin Figure6.

3.3.2 Process-rankOrdering

Another process-handshakingapproachis to

have all processesagreeon a certainaccesspri-

ority to theoverlappedfile regions.An example

is to usea policy wherethe higherranked pro-

cesswins the right to accesstheoverlappedre-

P

N

M

Process file views

0P 1 P2 PP−1

N
P

N
P

N
P

N
P

2
R
2 2

RR
2

R

Figure7: Theprocessfile viewsfor thecolumn-

wiseoverlappingI/O usingprocessrank order-

ing approach.With the overlappingaccessre-

moved,all � I/O requestscanbeperformedsi-

multaneouslywhile MPI atomicity is guaran-

teed.

gionswhile otherssurrendertheirwrites.A cou-

ple of immediateadvantagesof this approach

aretheeliminationof overlappingaccessandthe

reductionof the overall I/O amount.Theover-

headof this methodis there-calculationo each

process’s file view by markingdown the over-

lappedregions with all higher-rank processes’

file views.

Consideringthecolumn-wisepartitioningex-

ample, Figure 7 illustratesthe processes’file

viewswhenusingtheprocess-rankorderingap-

proach. The file view for process� , &q�#�r�
�s*t, , is a �o/$ sub-arraywhile thefile views

for processes& and �u*v, are �'Fw/ $ *.3 4 M and

 ��Fw/$ %x3 4 M , respectively. Comparedto Fig-

ure 6, eachprocesssurrendersits write for the

right-most� columns.

11

3.4 Scalability Analysis

In thecolumn-wisepartitioncase,thefile lock-

ing approachresultsin 1��*1Fj��*u� � M bytes,

nearly the entirefile, being locked while each

processis writing. In fact, oncea processis

grantedits write locking request,no otherpro-

cessescan accessto the file. As a result, us-

ing byte-rangefile lockingserializestheI/O and

dramaticallydegradestheperformance.

The purposeof proposingthe two process-

handshakingapproachesis trying to maintain

the I/O scalabilitywithout the useof file lock-

ing. The overheadof the graph-coloringap-

proachis thecommunicationcostof exchanging

thefile views, but this approachdoesnot sacri-

fice I/O parallelism.Thefile views areusedto

constructthe overlappingmatrix locally. With

arelativesmallnegotiationoverhead,thegraph-

coloringapproachmaintainsa certaindegreeof

I/O parallelism. To constructthe overlapping

matrix, thegraph-coloringapproachusesa log-

ical bit to indicateif an overlapexists between

two processes.In theprocess-rankorderingap-

proach,the exact overlappedbyte rangesmust

beknow in orderto calculatethelocal file view.

Thisoverheadis expectedto benegligible when

comparedto the performanceimprovementre-

sulting from the removal of all overlappingre-

quests.Additionally, theoverall I/O amounton

the file systemis reducedsincethe lower-rank

processessurrendertheir accessesto the over-

Table1: Systemconfigurationsfor thethreepar-

allelmachinesonwhichtheexperimentalresults

wereobtained.

Cplant Origin 2000 IBM SP

File system ENFS XFS GPFS

CPUtype Alpha R10000 Power3

CPUSpeed 500MHz 195MHz 375MHz

Gigabit Colony
Network Myrinet

Ethernet switch

I/O servers 12 - 12

PeakI/O

bandwidth
50MB/s 4 GB/s 1.5GB/s

lappedregions.

4 Experiment Results

We implementedthe column-wisepartitioning

exampleusingstandardUnix I/O calls andob-

tainedexperimentalresultsfrom threeparallel

machines:ASCI Cplant,anAlphaLinux cluster

at SandiaNationalLaboratory;the SGI Origin

2000at theNationalCenterfor Supercomputing

Applications (NCSA); and Blue Horizon, the

IBM SPat SanDiego SupercomputingCenter

(SDSC).Themachineconfigurationsarebriefly

describedin Table 1. Cplant is a Linux clus-

ter runningthe ExtendedNetwork File System

(ENFS)in whicheachcomputenodeis mapped

to oneof theI/O serversin a round-robinselec-

tion schemeat boot time [12]. Basically, ENFS

is anNFSfile systemwith a few changes.The

12

process-rank ordering

16

graph-coloring

8
number of processes

IBM SP Array size: 4096 x 32768

4

process-rank ordering

CPlant Array size: 4096 x 32768

number of processes
1684

4 8 16
number of processes

IBM SP Array size: 4096 x 262144

file locking

16
number of processes

Origin2000 Array size: 4096 x 262144

Origin2000 Array size: 4096 x 32768

number of processes
1684

process-rank ordering

file locking
graph-coloring

8

graph-coloring

CPlant Array size: 4096 x 262144

number of processes
168

process-rank ordering

file locking
graph-coloring

4

process-rank ordering
graph-coloring

4

16
number of processes

CPlant Array size: 4096 x 8192

process-rank ordering

number of processes
168

process-rank ordering process-rank ordering

file locking
graph-coloring

Origin2000 Array size: 4096 x 8192

number of processes
1684 4

graph-coloring
file locking

IBM SP Array size: 4096 x 8192

graph-coloring
process-rank ordering

graph-coloring
file locking

84

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
) 10

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

6

8

12

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

0
5

10
15
20
25
30
35
40

0

2

4

16
14

10
8
6
4
2
0

45

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

5

20

15

10

5

0

35
40
45

25

20

15

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

10

5

0

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

20

15

10

5

0

30

0

2

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

0

10

4

6

8

10

16
14
12
10
8
6
4
2
0

12

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

15
20
25

Figure8: Performanceresultsof runningthe column-wisepartitioningexperimentson a Linux

Cluster, anIBM SP, andanSGIOrigin200.Threefile sizeswereused:32MB, 128MB, and1GB.

most notableis the absenceof file locking on

Cplant. Accordingly, our performanceresults

on CPlantdo not include the experimentsthat

usefile locking. ENFSalsoperformsthe opti-

mizationthatNFSusuallydoes,includingread-

aheadandwrite-behind.

We ran the experimentswith the threearray

sizes:�y&WzW{n�}|R,~zyX (32MB), �y&�zW{7���WXW��{W| (128

MB), and �y&WzW{t��X�{yXk,[��� (1GB). On all three

machines,we used4, 8, and16 processorsand

theresultsareshown in Figure8. Notetheper-

formanceof file locking is theworstof the im-

plementationsof MPI atomicity. The poor re-

sultsarealsoexpectedasdiscussedin Section

3.2thatfile lockinghinderstheI/O concurrency.

In mostof the cases,the process-rankordering

strategy out-performedgraph-coloring.

5 Conclusions

In this paper, we examinedthe atomicity se-

manticsfor boththePOSIXandMPI specifica-

tions. Thedifferencebetweenthemthenumber

of non-contiguousregionsin eachI/O requests.

13

While POSIX considersonly one contiguous

file spaceI/O, a singleMPI I/O requestcanac-

cessnon-contiguousfile spaceusingMPI’s file

view facility. We compareda few implemen-

tation strategies for enforcingatomicwrites in

MPI includingfile locking, graph-coloring,and

process-rankordering.Theexperimentalresults

showed that using file locking performedthe

worstwhenrunningatwo-dimensionalcolumn-

wisepartitioningcase.Sincefile locking is ba-

sicallyacentralmanagedmechanism,theparal-

lelism of concurrentI/O requests,especiallyfor

overlappingI/O, can be significantly degraded

by using it. The two alternatives proposedin

this papernegotiateprocessesI/O requestorder

of accesspriority throughprocesshandshaking.

Withoutusingacentralizedlockingmechanism,

thesetwo approachgreatlyimprovetheI/O per-

formance.

Thestrategiesof graph-coloringandprocess-

rankorderingrequireeveryprocessawareof all

the processesparticipatedin a concurrentI/O

operation.In thescopeof MPI, only collective

calls have this property. Note that MPI collec-

tive I/O is differentfrom the concurrentI/O in

which a concurrentI/O is for moregeneralI/O

cases.An MPI non-collective I/O operationcan

also be concurrent. File locking seemsto be

the only way to ensureatomic resultsin non-

collective I/O callsin MPI, sincetheconcurrent

processesare unknown. Otherwise,given the

participatingprocesses,I/O optimizationssuch

asthe processhandshakingapproachproposed

in this papercanbe appliedto improve perfor-

mance.

6 Acknowledgments

This work wassupportedin part by DOE lab-

oratories,SNL, LANL and LLNL and in part

by NSF EIA-0103023. It was also supported

in part by NSF cooperative agreementACI-

9619020throughcomputingresourcesprovided

by theNationalPartnershipfor AdvancedCom-

putationalInfrastructureattheSanDiegoSuper-

computerCenter. We alsoacknowledgetheuse

of theSGIOrigin2000atNCSA.

References

[1] P. Crandall, R. Aydt, A. Chien, and

D. Reed. Input-OutputCharacteristicsof

ScalableParallel Applications. In Super-

computing ’95, Dec1995.

[2] N. Nieuwejaar, D. Kotz, A. Purakayastha,

C. Ellis, andM. Best. File-AccessChar-

acteristicsof ParallelScientificWorkloads.

IEEE Transactions on Parallel and Dis-

tributed Systems, 7(10):1075–1089,Oct

1996.

[3] E.Smirni,R.Aydt,A. Chien,andD. Reed.

I/O Requirementsof Scientific Applica-

tions: An Evolutionary View. In the

14

Fifth IEEE International Symposium on

High Performance Distributed Computing,

pages49–59,1996.

[4] E. Smirni and D. Reed. Lessonsfrom

Characterizingthe Input/OutputBehavior

of ParallelScientificApplications.Perfor-

mance Evaluation: An International Jour-

nal, 33(1):27–44,Jun1998.

[5] IEEE/ANSIStd.1003.1.Portable Operat-

ing System Interface (POSIX)-Part 1: Sys-

tem Application Program Interface (API)

[C Language], 1996.

[6] IEEEStd.1003.1-2001.System Interfaces,

2001.

[7] Message Passing Interface Forum.

MPI-2: Extensions to the Message

Passing Interface. http://www.mpi-

forum.org/docs/docs.html,July1997.

[8] F. Schmuckand R. Haskin. GPFS: A

Shared-DiskFile Systemfor Large Com-

puting Clusters. In the Conference on

File and Storage Technologies (FAST’02),

pages231–244,Jan2002.

[9] Rajeev Thakur, William Gropp, and Ew-

ing Lusk. Users Guide for ROMIO: A

High-Performance, Portable MPI-IO Im-

plementation. MathematicsandComputer

ScienceDivision, ArgonneNationalLab-

oratory, October1997. TechnicalReport

ANL/MCS-TM-234.

[10] R. Thakur, W. Gropp, and E Lusk. On

ImplementingMPI-IO Portablyand with

High Performance.In the Sixth Workshop

on I/O in Parallel and Distributed Systems,

pages23–32,May 1999.

[11] M. Garey andD. Johnson.Computers and

Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman,New

York, 1979.

[12] SandiaNational Laboratory. Computa-

tional Plant. http://www.cs.sandia.gov/

Cplant.

15

	Scalable Implementations of MPI Atomicity for Concurrent Overlapping I/O
	Recommended Citation
	Authors

	tmp.1321474891.pdf.Am6tr

