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Abstract

For concurrent/O operationsatomicitydefines
theresultsin the overlappingfile regionssimul-
taneouslyread/writtenby requestingorocesses.
Atomicity hasbeenwell studiedat the file sys-
temlevel, suchas POSIX standard.In this pa-
per, we investigatethe problemsarising from
the implementationof MPI atomicity for con-
current overlapping write accessand provide
a few programmingsolutions. Sincethe MPI
definition of atomicity differs from the POSIX
one,animplementatiorthatsimplyreliesonthe
POSIXfile systemsdoesnot guaranteecorrect
MPI semantics. To have a correctimplemen-
tation of atomic 1/O in MPI, we examinethe

efficiengy of threeapproachesi) file locking,
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2) graph-coloring,and 3) process-ranlorder

ing. Performanceompleity for thesemethods
are analyzedandtheir experimentalresultsare
presentedor file systemsncludingNFS,SGI’s

XFS,andIBM’s GPFS.

1 Intr oduction

Concurrentfile accesshas beenan active re-
searchtopic for mary years. Efforts werecon-
tributed in both software developmentas well
as hardware designto improve the 1/0 band-
width betweencomputationalunits and stor
agesystems. While most of theseworks only
considerexclusive file accessamongthe con-
current /0O requests,more scientific applica-

tions nowadaysrequire data partitioning with



overlap amongthe requestingprocesse$l, 2,
3, 4.

monly usedin multi-dimensionalarray parti-

For instance, ghost cells are com-

tioning such that the sub-arraypartitionedin
one processoverlapswith its neighborsnear
the boundary A coupleexamplesthat usethis
ghostingechniquearelargescalesimulationsn
earthclimate and N-body astrophysicshydro-
dynamicsusing Laplaceequationspoth where
astrongspatialdomainpartitioningrelationship
is present. Figure 1 illustratesan example of

a two-dimensionakrray in a block-block par

titioning pattern,wherea ghostcell represent

data"owned” by more than one process. A
typical run of this large-scaletype of applica-
tions can take from daysto monthsand usu-
ally outputsdataperiodicallyfor the purpose®f
check-pointingaswell asprogressie visualiza-

tion. During check-pointingthe outputof ghost

Accessed by 4 processes concurren
iAccessed byP; and P,
o |

:VFV)JIV P

I:)i+1 ) :

P

Pkét\ P Pya
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Figurel: An exampleof 2D arraypartitioning

with overlappingat the boundary The ghost
cellsof P; overlapswith its 8 neighborprocesses
which resultssomeareasare accessethy more

thanoneprocessesimultaneously

cesscandefineanon-contiguousile view using

cells createsoverlappingl/O from all processes MP| deriveddatatypesandsubsequerifO calls

concurrently The outcomeof the overlapped
file regionsfrom a concurrent/O is commonly
referredasatomicity.

In this paper we examinethe implementa-
tion issuesfor concurrentoverlappingl/O op-
erationsthat abide the MPI atomicity seman-

tics. We first differentiatethe MPI atomicity se-

manticsfrom the definitionin POSIX standard.

The POSIX definition only considersatomicity
at the granularityof read()/wite() calls
in which only a contiguousfile spacecan be

specifiedn asinglel/O requestin MPI, a pro-

can then implicitly accessnon-contiguoudile
regions.SincethePOSIXdefinitionis notaware
of non-contiguoud/O access,t alone cannot
guaranteatomicaccessn MPI, andadditional
efforts are neededabove the file systemto en-
surethe correctimplementatiorof atomic MPI
access.In this work, we studytwo approaches
for atomicityimplementationusingbyte-range
file locking anda procesandshakingtratey.
Using a byte-rangefile locking mechanismis
a straightforvard methodto ensurethe atomic-

ity. In mary situationshowever, file lockingcan



serializewhat were intendedto be concurrent
I/O calls and, therefore,it is necessaryo ex-
plorealternatve approachesProceshandshak-
ing usesinter-processcommunicatiorto deter
mine the accesssequencer agreemenbn the
overlaps, in which two methodsare studied:
graph-coloringandprocess-rankrderingmeth-
ods. Thesetwo methodsorderthe concurrent
I/O requestsn asequencsuchthatnotwo over-
lapping requestscan perform at ary instance.
Experimentaperformanceesultsare provided
for runningatestcodeusinga column-wisepar
titioning patternonthreemachineplatforms:an
Linux clusterrunninganextended\FSfile sys-
tem, an SGI Origin2000running XFS, and an
IBM SPrunning GPFS.The resultsshow that,
in generalusingfile locking generatetheworst
performanceand usingthe process-rankorder

ing performsthe beston all threemachines.

Therestof the paperis organizedasfollows.
Section2 describesheMPI atomicitysemantics
and its differencefrom the POSIX definition.
We explore three potentialapproachegor im-
plementingMPI 1/O atomicityin depthin Sec-
tion 3. In Section4, we presentperformance
resultson threeparallelfile systems.The paper
is concludedn Section5.

2 Concurrent
/0O

Overlapping

The concurrent overlapping 1/0 referredto in
this paperoccurswhenl/O requestdrom mul-
tiple processesreissuedsimultaneouslyo the
file systemandoverlapsexist amongthefile re-
gionsaccessedy theserequests.If all there-
guestsarereadrequeststhefile systemcanuse
the disk cacheto duplicatethe overlappeddata
for therequestingorocessesin this case there
is no conflict in obtainingfile dataamongthe
overlappingprocessesHowever, whenone or
more I/O requestsare write requeststhe out-
comeof the overlappedegions,eitherin file or
in processs memory canvary dependingnthe
implementatiorof thefile system.Thisproblem
is commonlyreferredasthe /O atomicity.

2.1 POSIX Atomicity Semantics

POSIX standarddefinesatomicity suchthatall
the bytesfrom a singlefile 1/0O operationthat
startouttogetherendup togetheywithoutinter
leaving from other1/O operationg5, 6]. The
I/O operationsconfined by this definition in-
clude the systemcalls that operateon regular
files, suchas open(), read(), wite(),
chnod(),| seek(),cl ose(),andsoon.In
this paperwe focuson thethe effect of theread
andwrite callson theatomicity.

The POSIX definition can be simply inter-



pretedasthateitherall or noneof the datawrit-

accessthe POSIX definitionis suitablefor file

ten by a processis visible to other processes.systemghat mainly handlenon-parallell/O re-

The none casecan be either the write datais
cachedin a systembuffer and has not been
flushedto the disk or the datais flushedbut
over-written by other processes.Hence,when

guests. For I/O requestdrom parallelapplica-
tions that frequently issue non-contiguoudile
accesgequestdrom multiple process,POSIX
atomicity may improperly describesuchparal-

POSIX semanticss appliedto the concurrent lel accesgpatternsandimposelimitation for the

overlappingl/O operationsthe dataresultedin
the overlappedregionsin disk shall consistof
datafrom only one of the write requests. In
otherwords,nointerleaveddatafrom morethan
one processshall appearin the overlappedre-
gions. Otherwise,in non-atomicmode,the re-
sult of theoverlappedegionis undefinedi.e. it
may comprisemixed datafrom morethanone
write request. Many existing file systemssup-
port the POSIX atomicity semantics,such as
NFS,UFS,IBM PIOFS, GPFS,Intel PFS,and
SGIXFS.

POSIX atomicity mainly considersthe 1/0O
calls definedwithin the POSIX scopein which
its read and write calls sharea commonchar
acteristic: one I/O requestcan only accessa
contiguoudile region specifiedby afile pointer
andtheamountof datastartingfrom the pointetr
Thereforetheoverlappediatawritten by two or
morePOSIXI/O callscanonly beacontiguous

regionin file. Many POSIXfile systemsmple-

I/O parallelism.

2.2 MPI Atomicity Semantics

MPI standard2.0 [7] extendsits atomicity se-
manticsby takinginto consideratiorof the par
allel 1/0 operations. The MPI atomic mode
is definedas: in concurrentoverlappingMPI
I/O operationstheresultsof the overlappede-
gions shall containdatafrom only one of the
MPI processethatparticipatesn thel/O opera-
tions. Otherwisejn the MPI non-atomiamode,
the result of the overlappedregions is unde-
fined. The major differenceof the MPI atom-
icity from POSIX definition lies on the useof
MPI file view, a new file conceptintroducedin
MPI 2.0. A processfile view is createdoy call-
ing MPl _Fi | e set view) throughan MPI
derived datatype that specifiesthe visible file
rangeto the process. When usedin message

passingthe MPI derved datatype is a power-

mentthe atomic /O by serializingthe process ful mechanisnfor describingthe memorylay-

of therequestsuchthatthe overlappedegions
canonly beaccessetly oneprocessat arny mo-

ment. By consideringonly the contiguousfile

outof amessagéuffer. This corvenienttool is
extendedin MPI 2.0 for describingthefile lay-
out for processfile view. Sincea derveddata



type canspecifyalist of non-contiguousile re-

gions, the visible datato a processanalsobe

non-contiguous Whenperformingan MP1 1/O

requestthevisible regionsarelogically consid-
eredasa continuousdatastreamcoming/going
from/to the file systemto/from the requesting
process.

Similar to POSIX, MPI atomicity con-
siders a call to MPI _Fil eread xxx()/
MPI Filewit xxx() asa singlel/O re-
guest. Unlike overlapin POSIX /O, the over
lappedfile regions betweentwo processesan
alsobenon-contiguous file, generatingnulti-
ple overlappindfile regionsin oneMPI I/O call.
If the underlyingMPI 1/0O implementatiorcon-
sidersheaccesso eachcontiguoudile segment
asasingleread()/wite() calltothefile
systemthentherewill be multiple callsissued
simultaneouslyrom aprocesgo thefile system.
Although the atomicity of accessingo a con-
tiguousoverlappedregion is guaranteedn the
POSIXcompliantfile systemsthe MPI atomic-
ity whichdemandstomicityacrossoneor more
regions of overlap cannotsimply rely on the
POSIX /O calls. Additional effort is required
to implementa correct MPI atomicity seman-
tics. Thefactthat MPI derived datatypespro-
vide more programmingflexibility when spec-
ifying non-contiguoudile layoutincreaseghe
complity of enforcingatomicity in MPI on
POSIXfile systems.

Figure2 shavs anexampleof two concurrent
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Figure2: An exampleof two concurrentover-
lapping writes wherea 2D array is partitioned
columnwisewith afew columnsoverlappedin
theMPI atomicmode thedatain theoverlapped
regioncanonly comefrom eitheroneof thepro-
cessesln thenon-atomianode theresultis un-
definedfor example,interleared.

MPI write requestsn atomic and non-atomic
modes. The file views of both processesp,
and P, consistof 6 non-contiguoudile sey-
ments,assumingthe two-dimensionalarray is
storedin row major. If the MPI implementa-
tion considerswriting eachof the file segment
asa singlecall to write(), thentherewill
be 12 write requestsn total and the process-
ing order of theserequestsin the file system
canbe arbitrary The resultin the overlapped
columnscan,hencecontaininterleareddata,as
illustratedin the MPI non-atomicmode. Even
with POSIX atomicity, the sameoutcomewill
occurin a POSIXfile systemsinceit only con-
sidergher ead()/wri t e() callindividually.



Thereforethe MPI implementatiorcannotsim-
ply rely onthefile systento provide thecorrect

file atomicity.

3 Implementation Strategies

Thedesignof existing file systemsseldomcon-
sider concurrentoverlappingl/O requestsand
mary implementationstratgies that are in-
tendedfor performanceenhancemenactually
hinder the parallelismof overlappingl/O. For
example,in mostclient-serer type of file sys-
tems, stratgjies suchas read-aheadnd write-
behind are adoptedin which read-aheadre-
fetchesseveralfile blocksfollowing thedataac-
tualrequestedo theclient’s systemcachen an-
ticipation of programs sequentiareadingpat-
tern and write-behindaccumulatesereral re-
guestsan orderto betterutilize theavailablel/O
bandwidth. The read-aheadgnd write-behind
policies often work againstthe goals of ary
file systenrelyingonrandom-accessperations
which areusedcommonlyin parallell/O opera-
tions. Underthe useof thesetwo policies, two
overlappingprocesse®f a concurrentl/O op-
erationcan physically cachemore overlapping
datathanlogically overlapsn theirfile views. It
is alsopossiblethatthe overlappingdataof two
processess cachedby otherprocessebecause
of thereadahead.

Thefile cacheconsisteng problemhasbeen

studiedextensvely in mary client-serer based

6

file systems.Themostcommonlyimplemented
cachingschemas to consultthe sener’s modi-
fication time for the datacachedon the clients
beforeissuingthe 1/0 requestgo the seners.
Obviously, communicationoverheadbetween
sener and clients for cachevalidationand re-
freshing can becomesignificantfor a concur
rent overlappingl/O requestdueto the unnec-
essarydata transfers. Although this problem
canbe alleviated by disablingthe useof read-
ahead/write-throughthe performancegain of
thereducedoverheadmnay not offsetthe perfor
mancelossof disablingcaching. In this work,
our discussions not limited to specificfile sys-
temsandwe assumé¢hegeneral/O requestgan
startat arbitrary file space. We now examine
two potentialimplementatiorstratgiesfor MPI
atomicity and analyzetheir performancecom-

plexity:

1. Using byte-range file locking — This
approachuses the standardUnix byte-
rangefile locking mechanisnto wrap the
read/writecall in each processsuch that
theexclusiveaccespermissiorof theover-
lappedregioncanbegrantedo therequest-
ing process.While afile region is locked,
all read/writerequestgo it will directly go
to the file sener. Therefore,the written

dataof a processis visible to other pro-

cesseafterleaving the locking modeand

the subsequentead requestswill always



obtainfleshdatafrom the senersbecause 3.1 Row and Column-wise 2D Ar-

of theuseof thereadlocks.

. Using processhandshaking — This ap-
proachusesMPI communicationto per
form inter-processnegotiation for writing
to the overlappedile regions. Theideais
a preferablealternatve to usingfile lock-
ing. However, for file systemsthat per
form read-aheadnd write-behind, a file
synchronizationcall immediately follow-
ing every write call is requiredto flush out
all information associatedvith the writes
in progress. A cacheinvalidation shall
alsoperformin eachprocesdeforereading
from the overlappedregions suchthat the
fleshdatais obtainedfrom seners. Under
this strategy cateyory, we further discuss
two negotiation methods: graph-coloring

andprocess-rankrdering.

ray Partitioning

Given P processegarticipatinga concurrent
I/O operation the row-wise partitioningpattern
dividesa two-dimensionahrrayalongits most
significantaxis while the column-wisedivides
it alongtheleastsignificantaxis. Thefollowing
assumptionareusedn thesepartitioningexam-

ples:

e All P processesoncurrentlywrite their
sub-arrayso asinglesharedile.

e Thelayoutsof the 2-dimensionakrrayin
process’memory and disk storageare in
row-majororderwhereaxis Y is the most

significantaxisand X is theleast.

e The sub-arrayspartitionedin every two
processewith consecutie rank id num-
bers overlap with each other for a few
rows/columnson the boundaryalong the

partitioningaxis.

e Theglobalarrayis of size M x N andthe

numberof overlappedrows/columnss R,

In orderto help describingthe above threeap-
proachesn termsof dataamountandfile lay-
outs, we use two concurrentoverlapping /O

casesas examples. Thesetwo casesemploy

whereR < M /P andR < N/P.

To simplify the discussionwe assumeall
I/O requestsarewrite requests.

commonlyseenaccesgatternsn mary scien- Figure3 illustratesthetwo partitioningpatterns

tific applications: row-wise and column-wise on P = 4 processesin the row-wise case the

partitioningon atwo-dimensionaarray

file view of process is asub-arrayof size M’ x
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(@) Row-wise partitioning  (b) column-wise partitionin

Figure3: Row-wise andcolumn-wisepartition-
ing on a 2-dimensionalarray The file views
of every two consecutie processesverlapwith

eachotherin R rows/columnsalongY’/X axis.

N,whereM' = 4 + R if0<i<P—1.1In
the column-wisecase,the file view of process
i is of size M x N, where N’ = X + R for
0<i< P—1.Fortheprocess =0or P —1,
the file view containsZ rows/columnslessin

row andcolumn-wisecasesrespectrely.

3.2 Byte-rangeFile Locking

Thebyte-rangdile locking is amechanisnpro-
vided by a file systemwithin its locking pro-
tocol. This mechanisntan be usedto ensure
the exclusive accesdo a locked file region. If
a setof concurrent/O calls containsonly read
requeststhe locking protocolis usuallyimple-
mentedo allow a sharedeadlock sothatmore
thanoneprocessanreadthelockeddatasimul-
taneously If atleastoneof thel/O requestss

a write requestthe write lock is often granted

8

exclusively to the requestingprocesses.Most
of theexisting locking protocolsis centralman-
agedandits scalabilityis, hencelimited. A dis-
tributedlocking protocolusedin theIBM GPFS
file systemimprovesthe performanceof grant-
ing lockingrequestdy having aprocessnanage
its grantedlocked file region for the furtherre-
guestdrom otherprocessef8]. Whenit comes
totheoverlappingequestshowever, concurrent
writes to overlappeddatamustbe still sequen-

tial.

Row-wise Partitioning  We now usethe row-
wise partitioningexampleshowvn in Figure3(a)
to describethe atomicity implementatiorusing
file locking. In this example,thefile view of a
processoverlapsR rows with its previous and
successie processesSincethefile storagday-
outis assumedo bein a row-majororder i.e.
eachrow of size N is storedconsecutiely to
its previous andsuccessie row, every process’
file view actuallycoversa contiguoudile space.
Therefore,the concurrentoverlappingl/O can
beimplementedisingasinglewr i t e() callin
eachprocessOnarfile systenthatsupportonly
the atomic mode, atomic file resultsare auto-
maticallyguaranteedor the row-wise partition-
ing case.Onfile systemghatdo no supportthe
atomicmode,wrappingthel/O callin eachpro-
cesswith byte-rangdocking of the file region
will also generateatomic results. ROMIO, an
MPI-10 implementationdevelopedat Argonne



National Laboratory relieson the useof byte-
rangefile locking to implementthe correctMPI
atomicity in which processesnustobtaina ex-
clusive write lock to the overlappedile regions
beforeperformthewrite [9, 10].

Column-wise Partitioning In the column-
wise partitioningcaseshovn in Figure3(b), the
file view of eachprocesss a sub-arrayof size
M x N' overlappingR columnswith its left and
right processeskEachof the M rows of size N’

in the file view is not contiguouswith its pre-
vious or successie row in the file storagelay-

out. The distancebetweerthefirst elementsof

two consecutie rows in eachprocessfile view

is N. Thereforethe overlappedile regionsof

two consecutie processesonsistsof M non-
contiguougows of size R each.Figure4 shavs

an MPI codefragmentthatcreateghefile view

for eachprocessusing a derived datatype to

specifythecolumn-wisepartitioningpatternand
usesacollectve MPI-IO callto performthecon-
currentwrite.

A straightforvard implementationfor the
column-wisecaseis to regard eachcontiguous
I/O requestasasingler ead() /wri t e() call.
This approachresults M write calls from each
processand PM callsin total. OnaPOSIXfile
system,if the PM requestsare processedon-
currentlywithout ary specificorder interleared
results may occur in the overlappedregions.

Since processingorder of thesewrite requests

9

MPI_File_open(comm, filename, io_mode, info, &fh);

MPI_File_set_atomicity(th, 1);

sizes[0] = M; sizes[1] = N;

sub_sizes[0] = M; sub_sizes[1]=N/P;

if (rank == 0 || rank == P-1) sub_sizes[1] -= R/2;

starts[0] = 0; starts[1] = (rank == 0) ? 0 : rank * (N/P - R/2);

MPI_Type_create_subarray(2, sizes, sub_sizes, starts, MPI_ORDER_C,
MPI_CHAR, &filetype);

MPI_Type_commit(&filetype);

MPI_File_set_view(fh, disp, MPI_CHAR, filetype, "native", info);

MPI_File_write_all(fh, buf, buffer_size, etype, &status);

MPI_File_close(&fh);

© ® N 0k wDN PR

PR
N B o

Figure4: An MPI codefragmentthatperforms
the column-wiseaccess. The shadeareail-

lustrateshow to createthe derived datatype,
filetype, which is usedto defineprocesss file

view atline 10.

canbearbitrary the samescenarioccanalsooc-
cur on other file systemseven if file locking
wrapsaroundeachl/O call. Enforcingtheatom-
icity of individualread()/wite() callsis
notsufficientto enforceMPI atomicity. In order
to do so,thefile lock muststartatthe processs
firstfile offsetandendatthevery lastfile offset
the processwill write, virtually the entirefile.
All M rows of theoverlappedegionwill beac-

cessecdhtomically

Though POSIX defines a
liolistio(), to initiate a list of non-

function,

contiguoudile accessem asinglecall, it does
not explicitly indicateif its atomicity semantics
areapplicable.If POSIXatomicityis extended
toliolistio(), the MPI atomicity can
be guaranteedby implementing the non-
contiguousaccesontopof I io_listio().

Otherwise additionaleffort suchasfile locking



IS necessaryo ensurghe MPI atomicity.

3.3 ProcessomHandshaking

An alternatve approacho avoid usingfile lock-
ing is through processhandshaking. Through
inter-processcommunicationthe overlapping
processesigjotiate with each other to obtain
the desirableaccessequencéo the overlapped
regions. In this section,we discusstwo pos-

sible implementation®f processhandshaking:

graph-coloringandprocess-rankrderingmeth-

ods.

3.3.1 Graph-coloring Approach

GivenanundirectedgraphG = (V, E) in which

Given an overlapping & P matrix, W, where
R 1 if processioverlapsjandg |

Wil = o erce psjandt |

0 otherwise

R, -the i row of W

Ci -the " column of W

R; [i] :the [ element oR;
C; [i] :the " element of,

For each process, do the following:

1. for eachcolumni=0...P-1

2 if i7sdf and Cy [I]#Z 1 then

3 Csatf < Caat V Ci

4. W* < collect C; from process i, fori=0...P-1
5 for i=0...P-1

6 if Regs [11=0 then

7 myColor = i

8 return

Figure 5: A greedygraph-coloringalgorithm
that finds the color id for eachl/O processin

variablemyColor.

currentl/O is carriedout in k£ steps. Note that

processsynchronizatiorbetweenary two steps

V represents setof verticesand E representsis necessaryto ensurethat no processin one

a set of edgesthat connectthe vertices,a k-

coloringis afunctionC : V' — {1,2, ...k} such
that for all u,v € V, if C(u) = C(v), then
(u,v) ¢ E;thatis, noadjacenwerticeshave the
samecolor. The graph-coloringproblemis to

find the minimum numberof colors, %, to color
agivengraph.Solvingthe MPI atomicity prob-
lem canbeviewedasa graph-coloringproblem
if the I/O requestingorocessesre regardedas
the verticesand the overlappingbetweentwo

processesepresentshe edge. Whenapplying
graph-coloringo the MPI atomicityimplemen-
tation, the I/O processearefirst dividedinto &

groups(colors)in which no two processe# a

groupoverlaptheir file views. Then,the con-

groupcanproceedwith its I/O beforethe previ-

ousgroups I/0O completes.The graph-coloring
approacHulfills the requiremenof MPI atom-
icity while maintainingat leasta degreeof 1/0

parallelism.

The graph-coloringmethodologyis a heuris-
tic which hasbeenstudiedfor a long time and
is provedto be NP-hardfor generalgraphg11].
Becausehe overlappingl/O patterngpresenin
mostof the scienceapplicationsare hardly ar-
bitrary, a greedysolutionmay suffice. Figure5
givesa simplegreedygraph-coloringalgorithm
thatfirst usesa P x P booleanmatrix, W, to
indicateif thereis anoverlapbetweenwo pro-

cesseandstartscoloringthe processeby look-

10
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Figure6: An exampleof column-wiseoverlap-
ping I/0 usingthegraph-coloringapproachAll

I/O requestsare performedin 2 steps: even-
ranked processewvrite at thefirst stepfollowed

by thewritesfrom odd-rankedprocesses.

ing for the lowestranked processesvhosefile
views do not overlap with any processin that
color. Let’'s now considerthe column-wisepar
titioning example. Figure 6 shavs the overlap-
ping matrix using this greedyalgorithm. 1t is
obvious that for the two-dimensionalcolumn-
wise partitioningcase two colorsareenoughto
maintainMPI atomicity: the even-ranled pro-
cessegerform their I/O requestsprior to the

odd-ranledprocessessillustratedin Figure6.

3.3.2 Process-rankOrdering

Another process-handshakingpproachis to
have all processeagreeon a certainaccesri-
ority to the overlappedile regions.An example
is to usea policy wherethe higherranked pro-

cesswins theright to accesshe overlappede-

oz z

IR

oz

Pz
I Jr
oz
o

PP, Pp_

Processfile views

Figure7: Theprocesdile viewsfor thecolumn-
wise overlappingl/O usingprocessank order
ing approach.With the overlappingaccesge-
moved, all P I/O requestsanbe performedsi-
multaneouslywhile MPI atomicity is guaran-

teed.

gionswhile otherssurrendetheirwrites. A cou-
ple of immediateadvantagesof this approach
aretheeliminationof overlappingaccessndthe
reductionof the overall /O amount. The over
headof this methodis there-calculatioro each
process file view by markingdown the over-
lappedregions with all higherrank processes’

file views.

Consideringhe column-wisepartitioningex-
ample, Figure 7 illustratesthe processesfile
views whenusingthe process-rankrderingap-
proach. The file view for process, 0 < i <
P—1,isaM x % sub-arraywhile thefile views
for processe8 andP — 1 areM x (¥ — £) and
M x (% + &), respectiely. Comparedo Fig-
ure 6, eachprocesssurrendersts write for the

right-mostR columns.
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3.4 Scalability Analysis

In the column-wisepartition case thefile lock-
ing approachresultsin M N — (N — N') bytes,
nearly the entirefile, beinglocked while each
processis writing. In fact, oncea processis
grantedits write locking requestno other pro-
cessegan accesdo the file. As a result, us-
ing byte-rangdile locking serializeghel/O and

dramaticallydegradeghe performance.

The purposeof proposingthe two process-
handshakingapproachess trying to maintain
the I/O scalabilitywithout the useof file lock-
ing. The overheadof the graph-coloringap-
proachis thecommunicatiortostof exchanging
thefile views, but this approachdoesnot sacri-
fice I/O parallelism. Thefile views are usedto
constructthe overlappingmatrix locally. With
arelative smallnegotiationoverheadthegraph-
coloringapproachmaintainsa certaindegreeof
I/O parallelism. To constructthe overlapping
matrix, the graph-coloringapproactusesalog-
ical bit to indicateif anoverlapexists between
two processesln the process-rankrderingap-
proach,the exact overlappedbyte rangesmust
beknow in orderto calculatethelocalfile view.
This overheads expectedo beneggligible when
comparedo the performancamprovementre-
sulting from the removal of all overlappingre-
guests.Additionally, the overall I/O amounton
the file systemis reducedsincethe lowerrank

processesurrendertheir accesse$o the over-

Tablel: Systenmconfigurationgor thethreepar
allelmachine®nwhichtheexperimentatesults

wereobtained.

H [ cplant | origin2000] 1BM SP |

File system| ENFS XFS GPFS
CPUtype Alpha R10000 Pawver3

CPUSpeed| 500MHz | 195MHz | 375MHz

_ Gigabit Colory

Network Myrinet Ethernet switch
I/O seners 12 12
Peakl/O

bandwidth 50MB/s 4GB/s 1.5GB/s

lappedregions.

4 Experiment Results

We implementedthe column-wisepartitioning
exampleusingstandardJnix 1/O calls andob-
tained experimentalresultsfrom three parallel
machinesASCI Cplant,anAlphaLinux cluster
at SandiaNational Laboratory;the SGI Origin
2000attheNationalCenterfor Supercomputing
Applications (NCSA); and Blue Horizon, the
IBM SP at SanDiego Supercomputingenter
(SDSC).Themachineconfigurationarebriefly
describedn Table 1. Cplantis a Linux clus-
ter runningthe ExtendedNetwork File System
(ENFS)in which eachcomputenodeis mapped
to oneof thel/O senersin around-robinselec-
tion schemeat boottime [12]. Basically ENFS
is anNFSfile systemwith a few changes.The
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Figure 8: Performanceesultsof runningthe column-wisepartitioning experimentson a Linux
ClusteranIBM SBE andanSGIOrigin200.Threefile sizeswereused:32MB, 128MB, and1GB.

most notableis the absenceof file locking on
Cplant. Accordingly, our performanceresults
on CPlantdo not include the experimentsthat
usefile locking. ENFSalsoperformsthe opti-
mizationthatNFSusuallydoes,ncludingread-
aheadandwrite-behind.

We ran the experimentswith the threearray
sizes:4096 x 8192 (32MB), 4096 x 32768 (128
MB), and 4096 x 262144 (1GB). On all three
machineswe used4, 8, and 16 processorand
theresultsareshown in Figure8. Notethe per

formanceof file locking is the worstof the im-

plementationof MPI atomicity The poor re-
sults are also expectedas discussedn Section
3.2thatfile locking hindersthel/O concurreny.

In mostof the casesthe process-rankrdering

stratgy out-performedyraph-coloring.

5 Conclusions

In this paper we examinedthe atomicity se-
manticsfor boththe POSIXandMPI specifica-
tions. Thedifferencebetweerthemthe number

of non-contiguousegionsin eachl/O requests.
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While POSIX considersonly one contiguous
file spacd/O, asingleMPI 1/O requestanac-
cessnon-contiguousdile spaceusingMPI’s file
view facility. We compareda few implemen-
tation stratgiesfor enforcingatomicwrites in
MPI includingfile locking, graph-coloringand
process-rankrdering.The experimentalesults
shaved that using file locking performedthe
worstwhenrunningatwo-dimensionatolumn-
wise partitioningcase. Sincefile locking is ba-
sically acentralmanagedanechanismtheparal-
lelism of concurrent/O requestsespeciallyfor
overlappingl/O, can be significantly degraded
by usingit. The two alternatves proposedin
this papemegotiateprocesseO requesbrder
of accesriority throughprocesandshaking.
Withoutusinga centralizedockingmechanism,
thesetwo approachgreatlyimprove thel/O per
formance.

The stratgiesof graph-coloringandprocess-
rankorderingrequireevery processwareof all
the processegarticipatedin a concurrentl/O
operation.In the scopeof MPI, only collective
calls have this property Note that MPI collec-
tive 1/0O is differentfrom the concurrent/O in
which a concurrent/O is for moregenerall/O
casesAn MPI non-collectve I/0O operationcan
also be concurrent. File locking seemsto be
the only way to ensureatomic resultsin non-
collective I/O callsin MPI, sincethe concurrent
processesre unknovn. Otherwise,given the

participatingprocessesl/O optimizationssuch

asthe processhandshakingpproachproposed
in this papercanbe appliedto improve perfor

mance.
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