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Generation of a Complete Set of Additive Shape-Invariant Potentials from an Euler Equation

Jonathan Bougie,* Asim Gangopadhyaya,† and Jeffry V. Mallow‡

Loyola University Chicago, Department of Physics, Chicago, Illinois 60660, USA
(Received 13 August 2010; published 19 November 2010)

In supersymmetric quantum mechanics, shape invariance is a sufficient condition for solvability. We

show that all conventional additive shape-invariant superpotentials that are independent of @ can be

generated from two partial differential equations. One of these is equivalent to the one-dimensional Euler

equation expressing momentum conservation for inviscid fluid flow, and it is closed by the other. We solve

these equations, generate the set of all conventional shape-invariant superpotentials, and show that there

are no others in this category. We then develop an algorithm for generating all additive shape-invariant

superpotentials including those that depend on @ explicitly.

DOI: 10.1103/PhysRevLett.105.210402 PACS numbers: 03.65.�w, 11.30.Pb, 47.10.�g

Supersymmetric quantum mechanics (SUSYQM) [1–3]
is a generalization of the ladder operator formalism usually
attributed to Dirac, although Dirac credits Fock [4]. It
makes use of first-order differential operators A� �
�@

d
dx þWðx; aÞ, where the superpotential Wðx; aÞ is a

real function of x, and a is a parameter. We define two
partner Hamiltonians [5]

H� ¼ A�A� ¼ �@
2 d2

dx2
þ V�ðx; aÞ; (1)

where partner potentials V�ðx; aÞ are related to the super-

potential by V�ðx; aÞ ¼ W2ðx; aÞ � @
dWðx;aÞ

dx . Partner

Hamiltonians have the same energy eigenvalues (except

for the ground state), i.e., Eð�Þ
nþ1 ¼ EðþÞ

n and Eð�Þ
0 ¼ 0.

Eigenfunctions of H� are related by c ðþÞ
n�1 /

A�ðx; aÞc ð�Þ
n and c ð�Þ

n / Aþðx; aÞc ðþÞ
n�1. Thus, if the

eigenvalues and the eigenfunctions of H� are known
a priori, they are automatically determined forHþ as well.

If the partner potentials V�ðx; aÞ obey the ‘‘shape in-
variance’’ condition [6,7]

Vþðx; a0Þ þ gða0Þ ¼ V�ðx; a1Þ þ gða1Þ; (2)

then the spectrum for either Hamiltonian can be derived
without reference to its partner. This is due to the existence
of an underlying potential algebra [8–10].

Shape-invariant partners have the same form except for
the value of the parameter ai, where a1 is a function of a0,
i.e., a1 ¼ fða0Þ. The energy eigenvalues of H�ðx; a0Þ are
given by Eð�Þ

n ða0Þ ¼ gðanÞ � gða0Þ, where an � fnða0Þ
indicates f applied n times to a0 [3]. If the parameters
differ only by an additive constant aiþ1 ¼ ai þ @, the
potentials are called ‘‘additive’’ or ‘‘translational’’ shape-
invariant. All exactly solvable potentials discovered thus
far that are expressible in terms of known functions are
additive shape-invariant [3,11]. Several groups found these
potentials by imposing various Ansätz [10,12–14].

Important correspondences exist between quantum me-
chanics and fluid mechanics [15]. SUSYQM is well known

to have a deep connection with the Korteweg-de Vries
equation [16–20], a nonlinear equation that describes
waves in shallow water. We now prove that every additive
shape-invariant superpotential that does not depend on @

explicitly corresponds to a solution of the Euler equation
expressing momentum conservation for inviscid fluid flow
in one spatial dimension. We use this correspondence to
find a systematic method which (i) yields all known such
superpotentials for SUSYQM and (ii) shows that no others
exist. We then extend this method to general additive
shape-invariant superpotentials including those that de-
pend on @ explicitly [14].
Writing Eq. (2) in terms of the superpotential yields

W2ðx; a0Þ þ @
dWðx; a0Þ

dx
þ gða0Þ

¼ W2ðx; a1Þ � @
dWðx; a1Þ

dx
þ gða1Þ: (3)

Equation (3) is a difference-differential equation relating
the square of the superpotentialW and its spatial derivative
computed at two different parameter values: ðx; a0 � aÞ
and ðx; a1 � aþ @Þ. This equation must hold for any value
of @. At this point, we consider only superpotentials that do
not depend explicitly on @ but only depend on @ through the
parameter a; we will call this class ‘‘conventional.’’ We
will later consider general superpotentials that may depend
on @ explicitly. We show that the shape invariance condi-
tion [Eq. (2)] can be expressed as a local nonlinear partial
differential equation; i.e., all terms can be computed at the
same point ðx; aÞ. This will provide a systematic method
for finding superpotentials.
Since Eq. (3) must hold for any value of @, if we expand

in powers of @, the coefficient of each power must sepa-
rately vanish. Provided that W does not depend explicitly
on @, this expansion yields

Oð@Þ ) W
@W

@a
� @W

@x
þ 1

2

dgðaÞ
da

¼ 0; (4)
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Oð@2Þ ) @

@a

�
W

@W

@a
� @W

@x
þ 1

2

dgðaÞ
da

�
¼ 0; (5)

Oð@nÞ ) @n

@an�1@x
Wðx; aÞ ¼ 0; n � 3: (6)

Thus, all conventional additive shape-invariant superpo-
tentials are solutions of Eqs. (4)–(6). Although this repre-
sents an infinite set, note that if equations at Oð@Þ and
Oð@3Þ are satisfied, all others automatically follow.

Replacing W by �u, x by t, and a by x in Eq. (4), we
obtain

uðx; tÞ @
@x

uðx; tÞ þ @uðx; tÞ
@t

¼ � 1

2

dgðxÞ
dx

: (7)

This is equivalent to the equation for inviscid fluid flow in
the absence of external forces on the body of the fluid:

@uðx; tÞ
@t

þ uðx; tÞ � ruðx; tÞ ¼ �rpðx; tÞ
�ðx; tÞ (8)

in one spatial dimension with the correspondence 1
�

dp
dx ¼

1
2
dg
dx , where u is the fluid velocity at location x and time t, p

is the pressure, and � is the local fluid density. Equation (8)
is one of the fundamental laws of fluid dynamics and was
first obtained by Euler in 1755 [21]. Thus, all conventional
shape-invariant superpotentials form a set of solutions to
the one-dimensional Euler equation.
Note that Eq. (8) is not closed as written. In fluid

dynamics this equation is generally supplemented by the
continuity equation expressing conservation of mass, along
with an equation of state and/or the energy equation and
boundary conditions. These additional constraints do not
apply in SUSYQM. Instead, Eq. (6) supplies the additional
constraint.
Equation (6) is satisfied for all n � 3 as long as

@3

@a2@x
Wðx; aÞ ¼ 0: (9)

The general solution to Eq. (9) is

Wðx; aÞ ¼ aX1ðxÞ þ X2ðxÞ þ uðaÞ: (10)

Substituting this into Eq. (4), and collecting and labeling
terms based on their dependence on X1 and X2, we obtain

X1X2|ffl{zffl}
Term 1

þ
�
�dX2

dx

�
|fflfflfflffl{zfflfflfflffl}

Term 2

þ aX2
1|{z}

Term 3

þ
�
�a

dX1

dx

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Term 4

þ du

da
X2|ffl{zffl}

Term 5

þ
�
uþ a

du

da

�
X1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Term 6

¼ HðaÞ; (11)

where HðaÞ � �u du
da � 1

2
dg
da . To find all possible solutions,

we begin by considering special cases of Eq. (11) where
one or more of the terms X1ðxÞ, X2ðxÞ, or u is zero. After
considering these cases, we will show that all solutions can
be reduced to one of these cases. In our nomenclature,
lowercase Greek letters denote a- and x-independent
constants.

Case 1: X2 and u are not constants, and X1 is constant.
In this case, let X1 ¼ �. ThenW ¼ �aþ uðaÞ þ X2ðxÞ. If
we define ~u � uðaÞ þ�a, we get W ¼ ~uþ X2. So this
case is equivalent to X1 ¼ 0. Then terms 1, 3, 4, and 6 each

become zero, and Eq. (11) becomes� dX2

dx þ du
da X2 ¼ HðaÞ.

Since X2 must be independent of a, du
da and HðaÞ must be

constants. This yields u ¼ �aþ � and � dX2

dx þ �X2 ¼ �.

The solution is X2ðxÞ ¼ �
� þ �e�x. Therefore, W ¼ �aþ

�þ �
� þ �e�x. Defining � ¼ �1, we obtain W ¼

A� Be�x, where A � �� a� �. This is the Morse
superpotential.

Case 2: X1 and u are not constants, and X2 is constant.
Following a similar procedure, this case is equivalent to
X2 ¼ 0. Depending on the values of constants of integra-
tion, this equation yields the Rosen-Morse I, Rosen-Morse
II, Eckart, and Coulomb superpotentials.

Case 3: X1 and X2 are not constants, and u ¼ �aþ �.
We define ~X1 � X1 þ� and ~X2 � X2 þ �, making this
case equivalent to u ¼ 0. Depending on the constants of

integration, this yields the Scarf I, Scarf II, 3D oscillator,
and generalized Pöschl-Teller superpotentials.
Case 4: X2 is not constant, and X1 and u are constant. If

X1 � 0, we get Morse, and X1 ¼ 0 generates the one-
dimensional harmonic oscillator.
Case 5: X1 is not constant, and X2 and u are constant.

This yields special cases of Scarf I and Scarf II and the
centrifugal term of the Coulomb and 3D oscillator.
Case 6: X1 is constant, and X2 is constant. In this case,

the superpotential has no x dependence, regardless of the
value of u. This is a trivial solution corresponding to a flat
potential, and we disregard it.
These special cases generate all known conventional

additive shape-invariant superpotentials [3,11], as shown
in Table I.
Now that we have considered these special cases, we can

systematically obtain all possible solutions. HðaÞ is inde-
pendent of x. Therefore, when any solution is substituted
into Eq. (11), it must yield an x-independent sum of terms
1–6. There are many ways in which these terms could add
to a sum independent of x. We begin with the simplest
possibility, in which each term is individually independent
of x. In this case, term 3 states that X1 must be a constant,
independent of x. In addition, term 1 dictates X1X2 must be
constant as well. These two statements can be true only if
X2 and X1 are constant separately; this reduces to the trivial
solution of case 6.
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Therefore, assuming that each term is separately inde-
pendent of x yields only the trivial solution. However, there
is also the possibility that some of the terms depend on x,
but when added to other terms, the x dependence cancels to
yield a sum that is independent of x. If a group of n terms
taken together produces an x-independent sum, and if no
smaller subset of these terms adds up to a sum independent
of x, we call this group ‘‘irreducibly independent of x.’’

If, for example, term 2 depends on x and term 5 depends
on x, but the sum of these two terms is x-independent, then
we consider the set of terms f2; 5g to be a two-term set that
is irreducibly independent of x. Let us investigate this
example further.

In this case,� dX2

dx þ du
da X2 is independent of x. However,

X2 and dX2

dx must each depend on x, or this would be

reducible. Since term 2 does not depend on a, duda must be

constant for the x dependence of terms 2 and 5 to cancel.
So u ¼ �1aþ �2. Substituting this into terms 2 and 5

yields � dX2

dx þ �1X2 ¼ �3. The solution is X2 ¼
�3

�1
� �4e

�1x. For this solution to work, the sum of the

remaining terms 1, 3, 4, and 6 must also be independent
of x. We first ask if this could be true by making all of the
remaining terms each independent of x. This is possible
only if X1 ¼ 0. Thus, the combination where terms 1, 3, 4,
and 6 are each individually independent of x and f2; 5g is an
irreducibly independent set is an example of case 1 above
(since X1 ¼ 0) and yields the Morse superpotential.

We continue in this manner, checking whether each two-
term irreducible set yields solutions when combined with
the remaining terms, each independent of x as in the
example above. In each case, we find either that the equa-
tion reduces to one of the special cases examined earlier or
that no solution is allowed (for instance, term 1 and term 3
cannot be irreducibly independent of x since one is inde-
pendent of a and the other is linear in a).

Once these combinations are exhausted, we consider
combinations of two-term irreducible sets with other
two-term irreducible sets as well as single-term constants.
Then we examine three-term irreducible sets, all the way
up to the full six-term equation.

As a final example, we check whether there are any
solutions for the full six-term irreducible set. We note
that the first two terms are independent of a, while terms
3 and 4 are linear in a. We do not know a priori the
functional form of u. However, we do know that any x
dependence in terms 1 and 2 cannot be canceled by terms 3
and 4, since terms linear in a cannot cancel terms inde-
pendent of a. For an irreducible set, the sum of the first two
terms must have an x dependence that is canceled by
a-independent terms from u and du

da in terms 5 and 6, and

terms 3 and 4 must have an x dependence that is canceled
by terms linear in a. Since term 5 contains du

da , it could

include terms independent of a, terms linear in a, and/or
other forms of a dependence. However, it cannot fully
cancel the x dependence of the first four terms or the set
will be reducible.
We conclude that the only way for the solution to be

irreducible is if uþ a du
da ¼ 	 du

da þ�aþ � for constants�,

�, and 	. This gives u ¼ �a
2 þ ð	þ ��

2 Þ þ 

a�� . By collect-

ing terms of the same power in a, we find that the terms
proportional to 1

ða��Þ2 mandate that 
ðX2 þ �X1Þ is a con-

stant. This leaves only two possibilities. First, 
 ¼ 0, in
which case u depends only linearly on a, and this reduces
to case 3 above. Otherwise, X2 þ �X1 must be a constant.
In this case, X1 differs from X2 by only a multiplicative
constant; by shifting the zero of a, we can absorb X2 into
X1, and this reduces to case 2 above. Thus, any solution for
the full set of terms can be reduced to one of the special
cases.
By examining all possible combinations of terms, we

have found that no new solutions are admitted by any
combinations that are not included as one of our special
cases. Thus, we have found all known additive shape-
invariant superpotentials that do not depend explicitly on
@ and have proven that no more can exist.
However, a new family of ‘‘extended’’ shape-invariant

potentials was recently discovered by Quesne [14] and
expanded elsewhere [22]. These potentials are generated
from our system by generalizing our formalism to include
superpotentials that contain @ explicitly. In this case, we
expand the superpotential W in powers of @:

Wðx; a; hÞ ¼ X1
n¼0

@
nWnðx; aÞ: (12)

By substituting Eq. (12) in Eq. (3), significant algebraic
manipulation yields

X1
n¼1

@
n

�Xn
k¼0

WkWn�k þ @Wn�1

@x
� Xn

s¼0

Xs
k¼0

1

ðn� sÞ!

� @n�s

@an�s WkWs�k þ
Xn�1

k¼0

1

ðk� 1Þ!
@kþ1

@ak@x
Wn�k�1

�
�
1

n!

@ng

@an

��
¼ 0:

TABLE I. The complete family of conventional additive
shape-invariant superpotentials.

Name Superpotential Special cases

Harmonic oscillator 1
2!x X1 ¼ u ¼ 0

Coulomb e2

2ð‘þ1Þ � ‘þ1
r X2 ¼ 0

3D oscillator 1
2!r� ‘þ1

r u ¼ 0
Morse A� Be�x X1 ¼ 0
Rosen-Morse I �A cotx� B

A X2 ¼ 0
Rosen-Morse II A tanhxþ B

A X2 ¼ 0
Eckart �A cothxþ B

A X2 ¼ 0
Scarf I A tanx� B sec x u ¼ 0
Scarf II A tanhxþ Bsechx u ¼ 0
Gen. Pöschl-Teller A cothx� Bcosechx u ¼ 0
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As this must hold for any value of @, the following equation
must hold separately for each positive integer value of n:

Xn
k¼0

WkWn�k þ @Wn�1

@x
� Xn

s¼0

Xs
k¼0

1

ðn� sÞ!
@n�s

@an�s WkWs�k

þ Xn
k¼1

1

ðk� 1Þ!
@k

@ak�1@x
Wn�k �

�
1

n!

@ng

@an

�
¼ 0:

(13)

For n ¼ 1, we obtain

2
@W0

@x
� @

@a
ðW2

0 þ gÞ ¼ 0; (14)

yielding 2 @kW0

@ak�1@x
¼ @k

@ak
ðW2

0 þ gÞ for k � 1. We have

shown that all conventional superpotentials W ¼ W0 are
solutions of this equation. Higher order terms can be
generated from applying Eq. (13) for all n > 1.

As an example, we choose the 3D oscillator solution:
W0 ¼ 1

2!x� a
x . For n ¼ 2, the expansion yields

@W1

@x
� @

@a
ðW0W1Þ ¼ 0;

and for n ¼ 3, we obtain

@W2

@x
� @ð2W0W2 þW2

1 Þ
@a

� 1

2

@2W0W1

@a2
þ 2

3

@3W0

@a2@x
¼ 0:

These two coupled equations are solved by W1 ¼ 0 and
W2 ¼ ð4x!Þ=ð2aþ x2!Þ2. The next order equations are
solved by W3 ¼ 0 and W4 ¼ ð4x!Þ=ð2aþ x2!Þ4.
Generalizing these, we get

W0 ¼ 1

2
!x� a

x
; W2nþ1 ¼ 0;

W2n ¼ ð4x!Þ=ð2aþ x2!Þ2n;
yielding a sum that converges to

Wðx; a; @Þ ¼ 1

2
!x� a

x

þ
�

2!x@

!x2 þ 2a� @
� 2!x@

!x2 þ 2aþ @

�
:

With the identification a ¼ ð‘þ 1Þ@, and @ ¼ 1,

W ! !x

2
� ‘þ 1

x
þ

�
2!x

!x2 þ 2‘þ 1
� 2!x

!x2 þ 2‘þ 3

�
:

This is the extended superpotential found by Quesne [14].
We have thus obtained a system of partial differential

equations that must be satisfied for all shape-invariant
superpotentials. For conventional cases that do not depend
on @, we have shown that the shape invariance condition is
equivalent to an Euler equation expressing momentum

conservation for fluids and an equation of constraint. For
extended cases in which the superpotential depends explic-
itly on @, we developed an algorithm that is satisfied by all
additive shape-invariant superpotentials.
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