
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

3-2011

RestFS: Resources and Services are Filesystems, Too RestFS: Resources and Services are Filesystems, Too

Joseph P. Kaylor

Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kaylor, Joseph P.; Läufer, Konstantin; and Thiruvathukal, George K.. RestFS: Resources and Services are
Filesystems, Too. , Proceedings of Second International Workshop on RESTful Design, Hyderabad, India,
http://dx.doi.org/10.1145/1967428.1967439.

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2011 Joseph P. Kaylor, Konstantin Läufer, and George K. Thiruvathukal

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

RestFS: Resources and Services are Filesystems, Too

Joe Kaylor Konstantin Läufer George K. Thiruvathukal
Department of Computer Science

Loyola University Chicago
Chicago, IL 60611 USA

{jkaylor,laufer,gkt}@etl.luc.edu

ABSTRACT

We have designed and implemented RestFS, a software frame-
work that provides a uniform, configurable connector layer
for mapping remote web-based resources to local filesystem-
based resources, recognizing the similarity between these
two types of resources. Such mappings enable programmatic
access to a resource, as well as composition of two or more
resources, through the local operating system’s standard
filesystem application programming interface (API), script-
able file-based command-line utilities, and inter-process com-
munication (IPC) mechanisms. The framework supports au-
tomatic and manual authentication. We include several ex-
amples intended to show the utility and practicality of our
framework.

1. INTRODUCTION
The broader context for this paper comprises business sce-

narios requiring resource and/or service composition, such
as (intra-company) enterprise application integration (EAI)
and (inter-company) web service orchestration. The
resources and services involved vary widely in terms of the
protocols they support, which typically fall into remote pro-
cedure call (RPC) [1], resource-oriented (HTTP [3] andWeb-
DAV [18]) and message-oriented protocols.

By exploiting the similarity between web-based resources
and the kind of resources exposed in the form of filesystems
in operating systems, we have found it feasible to map the
former to the latter using a uniform, configurable connector
layer. Once a remote resource has been exposed in the form
of a local filesystem, one can access the resource program-
matically using the operating system’s standard filesystem
application programming interface (API). Taking this idea
one step further, one can then aggregate or otherwise orches-
trate two or more remote resources using the same standard
API. Filesystem APIs are available in all major operating
systems. Some of those, most notably, all flavors of UNIX
including GNU/Linux, have a rich collection of small, flex-
ible command-line utilities, as well as various inter-process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WS-REST 2011, March 2011; Hyderabad, India
Copyright 2011 ACM 978-1-4503-0623-2/11/03 ...$10.00.

communication (IPC) mechanisms. These tools can be used
in scripts and programs that compose the various underlying
resources in powerful ways.
Further explorations of the role of a filesystem-based con-

nector layer in the enterprise application architecture have
lead us to the question whether one can achieve a fully com-
positional, arbitrarily deep hierarchical architecture by re-
exposing the aggregated resources as a single, composite re-
source that, in turn, can be accessed in the same form as
the original resources. This is indeed possible in two flavors:
1) the composite resource is exposed internally as a filesys-
tem for further local composition; 2) the composite resource
is exposed externally as a RESTful resource for further ex-
ternal composition. We expect that this hierarchical com-
positionality of resources will facilitate the construction of
complex, robust resource- and service-oriented software sys-
tems, and we hope further to substantiate our position by
including several case studies.
Leveraging our prior work on the Naked Objects Filesys-

tem (NOFS) [9], which exposes object-oriented domain mod-
el functionality as a Linux filesystem in user space
(FUSE) [16], we have implemented RestFS, a (dynamically
re)configurable mechanism for exposing remote RESTful re-
sources and as local filesystems. Several sample adapters
specific to well-known services such as Yahoo! Placefinder
and Twitter are already available. Authentication poses a
challenge in that it cannot always be automated; in prac-
tice, when systems such as OAuth are used, it is often only
the initial granting of authentication that must be manual,
and the resulting authentication token can then be included
in the connector configuration. As future work, we plan to
develop plugins to support resources across a broader range
of protocols, such as FTP, SFTP, or SMTP.

2. RELATED WORK

2.1 Representational State Transfer (REST)
Partly in response to the complexity of the W3C’s WS-*

web service specifications [2], resource-oriented approaches
such as the representational state transfer (REST) architec-
tural style [5] have received growing attention during the
second half of this decade. In REST, addressable, intercon-
nected resources, each with one or more possible represen-
tations, are usually exposed through the HTTP protocol,
which is itself stateless, so that all state is located within
the resources themselves. These resources share a uniform
interface, where resource-specific functionality is mapped to
the standard HTTP request methods GET, PUT, POST,

DELETE, and several others. Clients of these resources can
access them directly through HTTP, use a language-specific
framework with REST client support, or rely on resource-
and language-specific client-side bindings.

2.2 Inter-Process Communication Through
the Filesystem

Most methods of IPC can be represented in the filesys-
tem namespace in many operating systems. Pipes, domain
sockets and memory-mapped files can exist in the filesystem
in UNIX [10]. While pipes are uni-directional, allowing one
program to connect at each end point, other IPC methods
such as UNIX domain sockets allow for multiple client con-
nections and permit data to be written in both directions.
With this capability, it is possible for output from several
programs to be aggregated by one program instead of a 1:1
model as is allowed by pipes. Other methods of IPC, such
as memory-mapped and regular files, allow several programs
to collaborate through a common, named store of data.

Composition of the files in filesystems is also possible
through layered or stackable filesystems. Mechanisms for
this differ amongst operating systems. In 4.4BSD-Lite,
Union Mounts [13] allowed for filesystems to be mounted
in a linear hierarchy. Changes to files lower in the hier-
archy would override files in the higher part of the hierar-
chy. The Plan 9 distributed operating system allowed for
the filesystem namespace to be manipulated through the
mount, unmount, and bind system calls [14, 15]. In our own
research, we have implemented the Online Layered Filesys-
tem (OLFS), which allows for a flexible layering and inheri-
tance scheme through folder manipulation [8]. Each of these
approaches manipulates the filesystem namespace and con-
sequently allows for changes in configuration and how IPC
resources are located. This capability can help provide for
new and interesting ways to share data between programs.

Although not as widespread, some operating systems im-
plement more advanced IPC such as network connections,
specific protocols such as HTTP or FTP, and other services
through the filesystem namespace. An excellent example of
this is the Plan 9 operating system. Plan 9’s filesystem layer,
the 9P protocol, is used to represent user interface windows,
processes, storage files, and network connections. In Plan 9,
it is possible through filesystem calls to engage in IPC in a
more uniform way on a local machine and across separate
machines.

In terms of inter-machine file-based IPC, it has been pos-
sible for many years to coordinate and share data among
processes by writing to files on network filesystems. As long
as the network filesystem has adequate locking mechanisms
and an adequate solution to the cache coherency problem,
it is possible to perform IPC through file-based system calls
over a network filesystem.

Other than coordination through network filesystems or
specialized operating system mechanisms like 9P, much inter-
machine IPC has been through abstractions on top of the
network socket. Remote procedure call approaches such as
RPC or RMI have provided a standard way for processes to
share data and coordinate with each other. Other socket-
based approaches include the HTTP protocol and abstrac-
tions on top of HTTP, such as SOAP and REST.

2.3 The Shift from Kernel Mode to User Mode
Filesystem Development

In very early systems, development of new filesystem code
was a challenge because of high coupling with storage device
architecture and kernel code.

In the 1970s, with the introduction of MULTICS, UNIX,
and other systems of the time, more structured systems with
separated layers became more common. UNIX used a con-
cept of i-nodes, which were a common data structure that
described structures on the filesystem [17]. Different filesys-
tem implementations within the same operating system ker-
nel could share the i-node structure; this included on-disk
and network filesystems. Early UNIX operating systems
shared a common disc and filesystem cache and other struc-
tures related to making calls to the I/O layer that managed
the discs and network interfaces.

Newer UNIX-like systems such as 4.2 BSD and SunOS in-
cluded an updated architecture called v-nodes [12]. The goal
was to split the filesystem’s implementation-independent
functionality in the kernel form the filesystem’s implementa-
tion-dependent functionality. Mechanisms like path parsing,
buffer cache, i-node tables, and other structures became
more shareable. Also, operations based on v-nodes became
reentrant, thereby allowing new behavior to be stacked on
top of other filesystem code or to modify existing behav-
ior. V-nodes also helped to simplify systems design and to
make filesystems implementations more portable to other
UNIX-like systems. Many modern UNIX-like systems have
a v-nodes-like layer in their filesystems code.
With the advent of micro-kernel architectures, filesystems

being built as user-mode applications became more com-
mon and popular even in operating systems with monolithic
kernel architectures. Several systems with different design
philosophies have been built. We describe three of these
systems that are most closely related to NOFS: FUSE [16],
ELFS [7], and Frigate [11].

The Extensible File System (ELFS hereafter) is an object-
oriented framework built on top of the filesystem that is
used to simplify and enhance the performance of the inter-
action between applications and the filesystem. ELFS uses
class definitions to generate code that takes advantage of
pre-fetching and caching techniques. ELFS also allows de-
velopers to automatically take advantage of parallel storage
systems by using multiple worker threads to perform reads
and writes. Also, since ELFS has the definition of the data
structures, it can build efficient read and write plans. The
novelty of ELFS is that the developer can use an object-
oriented architecture and allow ELFS to take care of the
details.
Frigate is a framework that allows developers to inject be-

havioral changes into the filesystem code of an operating sys-
tem. Modules built in Frigate are run as user-mode servers
that are called to by a module that exists in the operating
system’s kernel. Frigate takes advantage of the reentrant
structure of v-nodes in UNIX-like operating systems to al-
low the Frigate module developer to layer behavior on top of
existing filesystem code. Frigate also allows the developer to
tag certain files with additional metadata so that different
Frigate modules can automatically work with different types
of files. The novelty of Frigate is that developers do not need
to understand operating-systems development to modify the
capabilities of filesystem code, and they can test and debug
their modules as user-mode applications. But they still need
to be aware of the UNIX filesystem structures and functions.

File Systems in Userspace (FUSE hereafter) is a user mode

cept presents some challenges in our exploration. When try-
ing to compose some web services that are built around hu-
man interaction through rich user interfaces, it can be diffi-
cult to create a program that can interact with these services
in a simple way.

One example of this is the CAPTCHA human test. To
reduce “spam” in the form of email and as entries on blogs,
many websites incorporate a form that requests the user
perform a small test such as recognizing a sound or inter-
preting letters on an image to prove to the system that the
user of the web service is in fact a human. Often, after these
initial interactions, it is possible for simple interaction with
RestFS, but because of them it is not always straightforward
to automate the entire interaction with a web service. Other
forms of non machine readable interactions such as the use
of images, sounds, or video can present complications for
composing web services with RestFS.

Another example would be web services that make use of
the user interface for complex validation or additional busi-
ness rules. While not an ideal design, such web services still
exist on the internet. Because local programs will interact
with the application tier and not the presentation tier of a
web service, any logic that exists in the presentation tier re-
quired for proper communication with the application tier
must be duplicated in whatever local composition is made
of the web service.

4. ARCHITECTURE OF RESTFS
RestFS was inspired by two other bodies of work: Plan 9’s

9P protocol and netfs [14], and Representational State Trans-
fer or REST [5]. While exploring REST, we realized that the
GET, PUT, POST, and DELETE HTTP methods mapped
well into filesystem operations and that there were a few
ways that we might map RESTful services onto the filesys-
tem. Another important observation that we made at the
time is how other forms of inter-process communication and
especially sockets have been the basis for composing pro-
grams and services. We felt after our exploration of lay-
ered filesystems research with the OLFS filesystem that the
filesystem held the possibility to mediate the composition
of web services. With these observations in hand and with
the NOFS filesystem framework we set about developing a
filesystem to support communication with and composition
of web services.

In Unix, network communication is performed through
system calls like accept, connect, listen, send or recv. By
contrast, in Plan 9, network communication is performed
through file operations in netfs under a special folder ‘/net’
in the Plan 9 filesystem. In addition to folders separating
types of network connections into UDP and TCP, there are
two types of folders in netfs: connection/configuration files
and stream files. Connection/configuration files contained
details about IP addresses, port numbers, and socket op-
tions. Once fully configured it is possible to read from and
write to the special stream files in netfs to send and receive
data from a remote computer.

The use of files for networking and the separation of files
into configuration and streams offer very important advan-
tages over the family of calls used in UNIX and other op-
erating systems for networking. The first advantage is that
no additional system calls other than the ones necessary for
filesystem interaction are needed to work with the network.
Calls like connect, listen, send, recv, accept, and others are

<?xml version="1.0" encoding="UTF-8"?>
<RestfulSetting>

<FsMethod>utime</FsMethod>
<WebMethod>get</WebMethod>
<FormName></FormName>
<Resource>
ajax/services/search/web?v=1.0&q=Brett%Favre

</Resource>
<Host>ajax.googleapis.com</Host>
<Port>80</Port>
<OAuthTokenPath></OAuthTokenPath>

</RestfulSetting>

Figure 6: An example RestFS configuration file for

a Google Search

not necessary when the network can be managed through the
filesystem. The other important advantage is in the separa-
tion of responsibility between the files. With the separation,
it is possible for one process to manage configuration of the
network connection while another process is responsible for
reading and writing to the connection as if it were a normal
file. In this way, software that is capable of working with
just file I/O calls does not need to be extended to support
networking code; it need only be supplemented with some
prior configuration. Another important advantage of using
the filesystem for network communication is that it allows
for network connections to be named in a namespace that
has a longer lifetime than programs that may take advan-
tage of a network connection. For example, a program may
read from and write to a network file and work correctly for
some time. If that program crashes, it can be re-launched
and resume working with the network file without having to
re-establish any connections. This capability also allows the
programs on either end point of the connection to change
over time without resetting the connection.

4.1 Configuration Files in RestFS
In RestFS, when a file is created, it is created as a pair con-

sisting of a resource and a configuration file that are bound
to each other. For example, if a file called “GoogleSearch” is
created, then a companion configuration file called“.Google-
Search” will also be created in skeleton form.
This skeleton is now populated manually to contact a spe-

cific web service. In the example shown in Figure 6, the re-
source file has been configured to contact the Google search
service and perform a GET HTTP request when the utime
filesystem call is performed on the GoogleSearch file. When
this occurs, RestFS will make a call to the web service and
place the results in the resource file.
The Web Application Description Language (WADL) [6]

has been proposed as a RESTful counterpart to the Web Ser-
vice Definition Language (WSDL) [2]. We are currently in-
vestigating ways to use WADL in conjunction with RestFS,
in particular, to populate RestFS configuration files from
WADL service descriptions.

4.2 Implementation of Configuration Files in
RestFS

Since RestFS is implemented as a NOFS application filesys-
tem, implementing files that are represented as XML is
straightforward. The individual elements are implemented
as accessors and mutators in a Java class called RestfulSet-

RespondToEvent(event_type, settings, current_file_data) {
if(settings.triggering_call == event_type) {

response = IssueWebRequest(settings.URI,
settings.WebMethod, current_file_data);

SetCurrentFileData(response);
}

}

Figure 7: RestFS resource file triggering handler

ting. NOFS manages passing values to and from the meth-
ods of this class through reflection. The settings objects in
the XML file are managed by the resource files that we will
discuss shortly.

4.3 Resource Files in RestFS
As stated before, resource files in RestFS contain the state

of a current request or response with a web service. Resource
files can be configured to be triggered to respond to web
service calls upon being opened, before deletion, when the
resource file’s timestamp is updated, before the resource file
is read from, and after the resource file has been written to.
This triggering capability is accomplished through the im-
plementation of the NOFS IListensToEvents interface. With
this interface, the RestFS resource file is notified by NOFS
when actual calls to FUSE are encountered. Once a trigger-
ing call is encountered, the handler method in Figure 7 is
run.

When the triggering call is made on the resource file,
RestFS will check the current contents of the file. If the
file contains a JSON object, the object will be parsed and
passed as arguments to the web service call. For example,
the JSON object {”description” : ”student”, ”name”: ”Joe”}
would translate to the URI http://host/service?description=
student&name=joe.

After the triggering call, the response from the web service
is placed in the resource file. The file can then be read
from or written to until another triggering call is made and
another response is stored in the file. If the application
requires the contents of the resource file to always be up to
date for reads, the triggering call can be set to update the
file before each read. If the contents of the file need to be
sent after each write, the triggering call can be set to to issue
the web request after each write.

4.4 Authentication in RestFS
As many RESTful web services support the OAuth au-

thentication model, we decided to add special OAuth file
and folder types to assist in establishing authorization for
web services. In RestFS, there is one special folder ‘/auth’
in the root of every mounted RestFS filesystem. When a
folder is created in the ‘/auth’ folder, a config, status, veri-
fier, and token file are created; this structure is shown in Fig-
ure 8). The config file, shown in Figure 9, takes the OAuth
API-Key, secret, and set of URLs to communicate with to
establish an authorization token. These fields are typically
provided by the service provider for a RESTful web service.

Once all of the appropriate fields are written to the con-
figuration file, RestFS will contact the web service to obtain
authorization. Depending upon the implementation there
are a few possibilities. If the service requires human inter-
action to accept a PIN or pass a CAPTCHA test, the URL

/

auth

twi t ter

config

status

verif ier

token

Figure 8: An example of an OAuth configuration in

RestFS

<?xml version="1.0" encoding="UTF-8"?>
<OAuthConfigFile>

<Key>asdf3244dsf</Key>
<AccessTokenURL>
https://api.twitter.com/oauth/access_token

</AccessTokenURL>
<UserAuthURL>
https://api.twitter.com/auth/authorize

</UserAuthURL>
<RequestTokenURL>
https://api.twitter.com/oauth/request_token

</RequestTokenURL>
<Secret>147sdfkek</Secret>

</OAuthConfigFile>

Figure 9: An example OAuth configuration file for

Twitter

Programming Environment. Prentice Hall Professional
Technical Reference, 1983.

[11] Ted H. Kim and Gerald J. Popek. Frigate: an
object-oriented file system for ordinary users. In
COOTS’97: Proceedings of the 3rd conference on
USENIX Conference on Object-Oriented Technologies
(COOTS), pages 9–9, Berkeley, CA, USA, 1997.
USENIX Association.

[12] S. R. Kleiman. Vnodes: An architecture for multiple
file system types in Sun UNIX. In Proc. Summer
USENIX Technical Conf., pages 238–247, 1986.

[13] Jan-Simon Pendry and Marshall Kirk McKusick.
Union mounts in 4.4BSD-lite. In TCON’95: Proc. of
the USENIX 1995 Technical Conf., pages 3–3,
Berkeley, CA, USA, 1995. USENIX Association.

[14] Rob Pike, Dave Presotto, Sean Dorward, Bob
Flandrena, Ken Thompson, Howard Trickey, and Phil
Winterbottom. Plan 9 from Bell Labs. Computing
Systems, 8(3):221–254, Summer 1995.

[15] Rob Pike, Dave Presotto, Ken Thompson, Howard
Trickey, and Phil Winterbottom. The use of name
spaces in Plan 9. SIGOPS Oper. Syst. Rev.,
27(2):72–76, 1993.

[16] M. Szeredi. Filesystem in userspace.
http://fuse.sourceforge.net, February 2005.

[17] K Thompson. UNIX implementation, pages 26–41.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1986.

[18] J. Whitehead and Y. A. Goland. WebDAV: A network
protocol for remote collaborative authoring on the
web. In Proc. 6th European Conference on
Computer-Supported Cooperative Work (ECSCW),
1999.

	RestFS: Resources and Services are Filesystems, Too
	Recommended Citation

	Untitled

