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Coordinate realizations of deformed Lie algebras with three generators

R. Dutt,1,* A. Gangopadhyaya,2,† C. Rasinariu,3,‡ and U. Sukhatme3,§

1Department of Physics, Visva Bharati University, Santiniketan, India
2Department of Physics, Loyola University Chicago, Chicago, Illinois 60626

3Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607
~Received 8 June 1999!

Differential realizations in coordinate space for deformed Lie algebras with three generators are obtained
using bosonic creation and annihilation operators satisfying Heisenberg commutation relations. The unified
treatment presented here contains as special cases all previously given coordinate realizations of so~2,1!, so~3!,
and their deformations. Applications to physical problems involving eigenvalue determination in nonrelativis-
tic quantum mechanics are discussed.@S1050-2947~99!01711-4#

PACS number~s!: 03.65.Fd

I. INTRODUCTION

Lie groups and their associated algebras are extensively
used in the analysis of the symmetry properties of physical
systems. For example, realizations of so(2,1) have been used
to obtain the eigenvalues of many quantum-mechanical prob-
lems. Recent studies show that coordinate realizations of
nonlinear Lie algebras may also be interesting in determining
eigenspectra of certain physical problems in an algebraic ap-
proach @1#. The main purpose of this paper is to set up a
unified approach for obtaining differential realizations in
one- and two-dimensional coordinate space for nonlinear Lie
algebras with three generators.

The deformed Lie algebras, which we consider, are de-
scribed by

@J3 ,J1#5J1 , @J3 ,J2#52J2 , @J1 ,J2#5 f ~J3!.
~1!

J6[J16 iJ2 are the well-known raising and lowering opera-
tors. f (J3) is an arbitrary analytic function of the operator
J3 . Note that the special choicef (J3)52J3 corresponds to
so(3) andf (J3)522J3 corresponds to so(2,1). In terms of
the Cartesian generatorsJ1 , J2 , and J3 , the commutation
relations are

@J1 ,J2#5
i

2
f ~J3!, @J2 ,J3#5 iJ1 , @J3 ,J1#5 iJ2 . ~2!

The plan of this paper is as follows. In Sec. II, we review
some simple general properties of Lie algebras. In Sec. III,
we describe how to obtain realizations of Eq.~1! in terms of
bosonic creation and annihilation operators (a† anda) satis-
fying Heisenberg commutation relations@a,a†#51. Al-
though we are using the conventional notationa anda† for
these operators, they do not necessarily have to be Hermitian
conjugates of each other. The Appendix contains a discus-

sion of specific one-dimensional realizations of the Heisen-
berg algebra. In particular, it is shown that realizations in-
volving derivatives higher than the first can all be reduced to
first and zero order. Section IV contains a description of
one-dimensional coordinate realizations of the Lie algebra
given in Eq.~1!. We show that our unified approach repro-
duces all previously known realizations in the literature
@2–6#. Two-dimensional coordinate realizations are de-
scribed in Sec V, along with some applications involving
eigenvalue determination for some nonrelativistic quantum-
mechanical potentials.

II. SOME PROPERTIES OF THE LIE ALGEBRA

For completeness and to establish notation, we describe
some properties of Lie algebras. Some are well known, but
others are new.

~i! The functionf (J3) characterizes the Lie algebra given
in Eq. ~1!. For subsequent work, it is convenient to define the
function g(J3) as follows:

f ~J3![g~J3!2g~J321!. ~3!

For example, for so(3), f (J3)52J3 and one getsg(J3)
5J3(J311). It is easy to check that the functiong(J3) is
not unique—any periodic function of unit period can be
added while maintaining Eq.~3!. Note that the Casimir op-
erator for the Lie algebra of Eq.~1! is given by

C5J2J11g~J3!5J1J21g~J321!. ~4!

This observation is useful for many physical applications.
For instance, we use it in Sec. V for eigenvalue determina-
tion.

~ii ! The operatorsJ1 andJ2 satisfy the important prop-
erty

T~J3!J15J1T~J311!, T~J3!J25J2T~J321!, ~5!

for any analytic functionT(J3). This property is extensively
used in obtaining realizations.

~iii ! If operatorsJ1 , J2 , and J3 satisfy the standard
so(3) Lie algebra, so do operatorsJ̃1 , J̃2 , and J̃3 defined
by J̃m5(nMmnJn provided the matrixM satisfiesMTM51
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and detM511. Note that the elements of the matrixM do
not have to be real, but if they are, the matrix is orthogonal.
This property is very useful in relating all the so(3) realiza-
tions currently available in the literature.

~iv! Given operatorsJ1 , J2 , and J3 , which satisfy the
so(3) Lie algebra, one can find operatorsK1 , K2 , andK3 ,
that satisfy a more general algebra

@K1 ,K2#5 iq3K3 , @K2 ,K3#5 iq1K1 , @K3 ,K1#5 iq2K2 ,
~6!

by choosing K15Aq2q3J1 , K25Aq3q1J2 , and K3

5Aq1q2J3 . In particularK15 iJ1 , K25 iJ2 , andK35J3 is
a realization of so(2,1).

~v! Given operatorsJ1 , J2 , and J3 , which satisfy the
standard so(3) Lie algebra, one can find operatorsJ̃1 , J̃2 ,
and J̃3 , which satisfy the deformed algebra of Eq.~1! @7#.
These operators are given by

J̃15J1A~J3 ,C!, J̃25B~J3 ,C!J2 , J̃35J3 , ~7!

where C5J2J11J3(J311) is the Casimir operator of
so(3). Theform of the operators in Eq.~7! was chosen so
that the two conditions@ J̃3 ,J̃6#56 J̃6 are trivially satisfied.
In order to satisfy the third condition@ J̃1 ,J̃2#5 f ( J̃3), one
needs functionsA(J3 ,C) and B(J3 ,C), which satisfy the
following condition:

A~J321,C!B~J321,C!@C2J3~J321!#2B~J3 ,C!A~J3 ,C!

3@C2~J311!J3#5 f ~J3!. ~8!

If A(J3 ,C) andB(J3 ,C) commute, this condition reduces to

H~J3 ,C!@C2J3~J311!#52g~J3!1p~J3!;
~9!

H~J3 ,C![A~J3 ,C!B~J3 ,C!,

wherep(J3) is an arbitrary periodic function of period unity.
It is important to realize that only the productH(J3 ,C) is
fixed by the above constraint equation, but not the individual
functionsA(J3 ,C) and B(J3 ,C). Given Eq.~7!, it is suffi-
cient to restrict our attention to realizations of so(3) in order
to obtain realizations of any deformed Lie algebra with three
generators.

Note that for the special case of so(3) itself, the choice
p(J3)5C givesH(J3 ,C)51. The simplest choice of factors
A(J3 ,C)5B(J3 ,C)51 reproduces the initial so(3) realiza-
tion, whereas a more general choiceB(J3 ,C)5A21(J3 ,C)
yields a new realization. Furthermore, other choices ofp(J3)
give additional new realizations of so(3). In particular, the
choicep(J3)50 gives the realization

J̃152J1

J3~J311!

C2J3~J311!
, J̃25J2 , J̃35J3 ,

which differs from the original one only in one generator
J1 . This freedom in choosing the periodic functionp(J3) is
analogous to gauge fixing in field theories.

An interesting nonlinear example using the above formal-
ism comes from the choiceg(J3)5J3

2(J311)2 and p(J3)
5C2. This choice gives the realization

J̃15J1@C1J3~J311!#, J̃25J2 , J̃35J3 , ~10!

for the deformed Lie algebra corresponding tof (J3)54J3
3.

III. REALIZATIONS OF THE DEFORMED LIE ALGEBRA
IN TERMS OF BOSONIC OPERATORS

In this section, we develop a procedure for obtaining re-
alizations of the Lie algebra defined by Eq.~1! in terms of
bosonic creation and annihilation operatorsa† anda, which
obey the Heisenberg algebra commutator@a,a†#51. The
number operator is defined byN[a†a. It follows that
@N,a†#5a† and @N,a#52a. More generally,

@N,a†m#5ma†m,
~11!

@N,am#52mam ~m50,61,62, . . . !.

To generate realizations of a deformed Lie algebra using
the operatorsa†, a, andN, we choose the following ansatz:

J15PF~N!, J25G~N!Q, J35N1c, ~12!

where c is a constant.P and Q are functions ofa and a†

chosen to satisfy the property

@N,P#5P, @N,Q#52Q. ~13!

Clearly, from Eqs.~11! and~13! it follows that two possible
choices forP(a,a†) area† and 1/a and two possible choices
for Q(a,a†) are a and 1/a†. In fact, one can choose the
linear combination

P5a1~N!a†1a2~N!
1

a
, Q5b1~N!a1b2~N!

1

a†
.

~14!

Using Eq.~13!, it is easy to show thatPNm5(N21)mP and
NmQ5Q(N21)m, so that one has the propertyPT(N)
5T(N21)P andT(N)Q5QT(N21) for any analytic func-
tion T(N). Also, the dependence ona anda† of the products
PQ and QP clearly comes only through the combination
a†a5N.

Our ansatz of Eq.~12! will satisfy the conditions of Eq.
~1! provided

F~N21!G~N21!PQ2G~N!F~N!QP5 f ~N1c!.
~15!

If F(N) andG(N) commute, the above condition becomes

H~N21!PQ2H~N!QP5 f ~N1c!, H~N![F~N!G~N!.
~16!

It only remains to determineH(N) from Eq.~16!. As in Sec.
II, note again that the functionsF(N) and G(N) do not
appear separately but only appear as their productH(N).
Also, note that in Sec. V, we will discuss a situation where
F(N) andG(N) do not commute.

IV. ONE-DIMENSIONAL COORDINATE REALIZATIONS

Here we consider one-dimensional coordinate realizations
for a,a† such that@a,a†#51. Equations~12!, ~14!, and~16!
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now immediately give a realization for the nonlinear algebra
of Eq. ~1!. As an example, we consider the same deformed
Lie algebra with f (J3)54J3

3 as in Sec. II. We make the
simple choiceP5a†5x, Q5a5d/dx, and c50, which
gives PQ5N, QP5N11, and N5xd/dx. Equation ~16!
now readsH(N21)N2H(N)(N11)54N3 whose solution
is H(N)52N2(N11). TakingG(N)51 our coordinate re-
alization is

J152xS x
d

dxD
2S x

d

dx
11D , J25

d

dx
, J35x

d

dx
.

~17!

General coordinate realizations ofa,a† are discussed in
the Appendix. Any of these can be used to generate different
one-dimensional realizations of deformed Lie algebras. Our
formalism is very flexible since there is freedom in choosing
a,a† ~Appendix! and the operatorsP and Q in Eq. ~14!.
Furthermore, onceH(N) has been determined from Eq.~16!,
one has various choices for factorization into the functions
F(N) andG(N), which appear in the final realization given
in Eq. ~12!. Our formalism contains as special cases all the
coordinate realizations published in the literature. We shall
now illustrate this statement for specific realizations dis-
cussed in@4# and @2#.

Filho and Vaidya@4# have discussed physical applications
based on the following representation of so(2,1):

J152
d2

dy2
2

2a

y2
, J25

y2

8
, J352

y

2

d

dy
2

1

4
, ~18!

wherea is an arbitrary constant. In order to obtain this real-
ization as a special case of our formalism, we choosea,a†

by takingu50, h(y)51/y2, andr (y)52y2/4 in Eq.~A2! in
the Appendix. This gives

a52
y3

2

d

dy
2

y2

4
, a†5

1

y2
, N52

y

2

d

dy
2

1

4
.

Furthermore, choosingP5a†, andQ51/a† in Eq. ~14! im-
plies that constraint~16! on H(N) reads

H~N21!2H~N!522N.

The solution isH(N)5N(N11)1b, whereb is an arbi-
trary constant. Choosing the factorizationG(N)51/8 and
F(N)58H(N), Eq. ~12! with c50 andb5(324a)/16 af-
ter simplification gives the Filho-Vaidya realization of Eq.
~18!.

Another example of a differential realization of the
so(2,1) algebra was given by Barut and Bornzin@2#. Their
expressions for the generators are

T15
1

2 S y22n

n2
py

21
j

yn
2ynD , T25

1

n S ypy2 i
n21

2 D ,

~19!

T35
1

2 S y22n

n2
py

21
j

yn
1ynD .

Herepy52 iy21 (d/dy) y, n is an arbitrary positive integer,
and j is an arbitrary constant. To make contact with our
formalism, using~iii ! from Sec. II, we first rotateT1 , T2 ,
and T3 to the new operatorsJ15 iT3 , J252T1 , and J3
5 iT2 . This gives

J15 iyn, J252 i S y22n

n2

d2

dy2
12

y12n

n2
2

j

ynD ,

J35
y

n

d

dy
1

n11

2n
.

Next, let us takeu50, h(y)5yn, and r (y)52@n(2c21)
21#/(nyn) in Eq. ~A2! of the Appendix. This implies

a5
y12n

n

d

dy
2

n~2c21!21

2nyn
, a†5yn,

N5
y

n

d

dy
1

n11

2n
2c.

Further, choosinga15 i , b251, anda25b150 in Eq.~14!,
we find a solution of Eq.~16! of the form H(N)5b2N2

1b1N1b0 with b252 i /b2 , b152 i (2c11)/b2 , and b0
52 ( i /b2) @(2c11)2/42j21/(4n2)#. Finally, the factor-
ization H5FG with F51, concludes the proof that Eqs.
~19! are a particular case of our formalism. Note that the
initial rotation of generators seems to be essential in getting
the realizations of@2#.

Similarly, our formalism also gives the one-dimensional
realizations described in Refs.@3# and @6#.

V. TWO-DIMENSIONAL COORDINATE REALIZATIONS

In this section we will introduce realizations of so(2,1)
using two coordinates. In contrast to the one-coordinate re-
alizations, we now allow the functionsF andG appearing in
Eq. ~12! to be functions ofN as well as an internal coordinate
x and its derivatived/dx. It is important to observe that due
to this generalization, the functionsF andG no longer com-
mute with each other, and as a result, Eq.~15! must be used.

To construct explicit realizations of so(2,1), we choose
P5a†5exp(if) and Q5 1/a† 5exp(2if), i.e., a25b150
in Eq. ~14!. The simplest choice of the operatora, which
satisfies@a,a†#, is a52 i exp(if)]/]f. This givesN5a†a
52 i ]/]f. As a simple example, we consider

F~N!5F2
]

]x
1WS x,2 i

]

]f D G ,
~20!

G~N!5F ]

]x
1WS x,2 i

]

]f D G ,
whereW is a function to be determined. Substitution in Eq.
~15! yields
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FW2S x,2 i
]

]f
21D2

dWS x,2 i
]

]f
21D

dx
G

2FW2S x,2 i
]

]f D1

dWS x,2 i
]

]f D
dx

G
5 f S 2 i

]

]f
1cD . ~21!

The left-hand side of this equation depends onx while the
right-hand side does not. In order to get a two-dimensional
realization one needs a solution of Eq.~21!. In supersymmet-
ric quantum mechanics, this equation is well known to be the
shape-invariance condition. Its solutions are shape-invariant
superpotentials@8#. One solution is

W52 i
]

]f
tanhx1B sechx. ~22!

In this case, an explicit calculation yieldsf (2 i ]/]f 1c)5
22 (2 i ]/]f)11. This implies that we are dealing with a
deformed Lie algebra withf (J3)522J312c11. For the
choicec521/2 this is the so(2,1) algebra and its realization
is

J15eifF2
]

]x
2 i

]

]f
tanhx1B sechxG ,

J25F ]

]x
2 i

]

]f
tanhx1B sechxGe2 if, J352 i

]

]f
1

1

2
.

There are several other solutions possible@9# and they can be
derived analytically using a point canonical transformation
described in Ref.@10#.

The above realizations have interesting applications. The
operatorJ1J2 is given by

J1J25F 2
d2

dx2
1W2S x,2 i

]

]f
21D

2

dWS x,2 i
]

]f
21D

dx
G .

When acting on factorized basis functionseimfc(x), one
gets

J1J25F2
d2

dx2
1W2~x,m21!2

dW~x,m21!

dx G ,

which is recognized to be the standard Hamiltonian of super-
symmetric quatum mechanics. For the choice of Eq.~22! the
result is

J1J25F2
d2

dx2
1~m21!2@B22~m21!22~m21!#sech2 x

1B~2~m21!11!sechx tanhxG ,

which is just the Hamiltonian for the Scarf potential1 with
m21 being one of the parameters. The Scarf potential is
well known to be shape invariant, hence exactly solvable
@11#. We can also determine these eigenvalues using familiar
algebraic methods of so(2,1). The Casimir isC[J2 and Eq.
~4! gives J1J25J3

22J32J2. Since the eigenvalues ofJ2

andJ3 are j ( j 11) andm21/2, respectively, we find

E5S m2
1

2D 2

2S m2
1

2D2 j ~ j 11!.

Now substitutingj 5n2m1 1
2 @3#, one gets

En5~m21!22~m2n21!2, n50,1,2, . . . ~23!

~Note thatE050 as expected from unbroken supersymmet-
ric quantum mechanics.!

With a change of variable and appropriate similarity
transformations ofF(N) and G(N) @10#, we can relate all
solvable potentials of Ref.@8# to J1J2 of this algebra and
hence derive information about their spectrum algebraically.

In this paper, differential realizations in coordinate space
for nonlinearly deformed Lie algebras with three generators
were obtained using bosonic creation and annihilation opera-
tors. We have presented a unified formalism that contains as
special cases all previously given coordinate realizations of
so(2,1),so(3), andtheir deformations. Although we have fo-
cused on deformations of the type specified by Eq.~1!, co-
ordinate realizations for other types of deformations have
also been recently studied@12#.
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APPENDIX: DIFFERENTIAL REALIZATIONS OF a
AND a†

In this appendix, we discuss differential coordinate real-
izations of operatorsa anda†, which satisfy the Heisenberg
commutation relation@a,a†#51. The simplest choice is

a5
d

dx
, a†5x. ~A1!

1The Scarf Hamiltonian is described by a potentialV2(x,a0 ,B)
5@B22a0(a011)#sech2 x1B(2a011)sechx tanhx1a0

2 . The ei-
genvalues of this system are@8# En5a0

22(a02n)2.
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As we shall see shortly, these operators are the basic building
blocks for all other realizations, including those with higher-
order derivatives. Note that although the notationsa anda†

are being used, we are not requiring the two operators to be
Hermitian conjugates of each other.

Given any two operatorsa(x, d/dx) and a†(x, d/dx)
such that@a,a†#51, several simple transformations can be
used to generate new operatorsã and ã†, which satisfy

@ ã,ã#†51. These transformations are:
~i! rotations in the (a,a†) plane,

ã5a cosu1a† sinu, ã†52a sinu1a† cosu;

~ii ! change of variablesx5h(y),

ãS y,
d

dyD5aS h~y!,
1

h8~y!

d

dyD ,

ã†S y,
d

dyD5a†S h~y!,
1

h8~y!

d

dyD ,

where prime denotes the derivative with respect toy;
~iii ! similarity transformations,

ã5f21~x!af~x!, ã†5f21~x!a†f~x!;

~iv! additions of arbitrary functions of the other operator,

ã5a1l~a†!, ã†5a†; ã5a, ã†5a†1m~a!.

Successive use of the first three transformations applied to
Eq. ~A1! yield

a5
cosu

h8~y!

d

dy
1~h~y!sinu1r ~y!cosu!,

~A2!

a†5
2sinu

h8~y!

d

dy
1@h~y!cosu2r ~y!sinu#,

whereh(y) and r (y) are arbitrary analytic functions of co-
ordinatey. It is easy to check that these are the most general
operators linear ind/dy which satisfy@a,a†#51.

A natural question to ask is whether one can construct
differential coordinate realizations with second- and higher-
order derivatives. This is, in fact, possible by starting with
any first-order realization@say, Eq.~A1! or Eq. ~A2!# and
using transformation~iv! to generate higher-order deriva-
tives. For example, using Eq.~A1! and takingm(a)5a2 in
transformation~iv! gives the realization

ã5
d

dx
, ã†5x1

d2

dx2
.

Although this procedure can be readily extended to get real-
izations of the Heisenberg algebra involving derivatives of
any desired order, it must be kept in mind that only the
realizations involving first-order derivatives are fundamental.
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