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PHYSICAL REVIEW A VOLUME 60, NUMBER 5 NOVEMBER 1999
Coordinate realizations of deformed Lie algebras with three generators

R. Dutt}* A. Gangopadhyay&! C. Rasinarit’* and U. Sukhatmi&®
Department of Physics, Visva Bharati University, Santiniketan, India
’Department of Physics, Loyola University Chicago, Chicago, lllinois 60626
3Department of Physics, University of lllinois at Chicago, Chicago, lllinois 60607

(Received 8 June 1999

Differential realizations in coordinate space for deformed Lie algebras with three generators are obtained
using bosonic creation and annihilation operators satisfying Heisenberg commutation relations. The unified
treatment presented here contains as special cases all previously given coordinate realizati@nb,af8),
and their deformations. Applications to physical problems involving eigenvalue determination in nonrelativis-
tic quantum mechanics are discussgil050-29479)01711-4

PACS numbd(s): 03.65.Fd

[. INTRODUCTION sion of specific one-dimensional realizations of the Heisen-
berg algebra. In particular, it is shown that realizations in-
Lie groups and their associated algebras are extensivelolving derivatives higher than the first can all be reduced to
used in the analysis of the symmetry properties of physicalirst and zero order. Section IV contains a description of
systems. For example, realizations of so(2,1) have been usede-dimensional coordinate realizations of the Lie algebra
to obtain the eigenvalues of many quantum-mechanical prokgiven in Eq.(1). We show that our unified approach repro-
lems. Recent studies show that coordinate realizations afuces all previously known realizations in the literature
nonlinear Lie algebras may also be interesting in determining2—6]. Two-dimensional coordinate realizations are de-
eigenspectra of certain physical problems in an algebraic agscribed in Sec V, along with some applications involving
proach[1]. The main purpose of this paper is to set up aeigenvalue determination for some nonrelativistic quantum-
unified approach for obtaining differential realizations in mechanical potentials.
one- and two-dimensional coordinate space for nonlinear Lie

algebras with three generators. Il. SOME PROPERTIES OF THE LIE ALGEBRA
The deformed Lie algebras, which we consider, are de- ) i )
scribed by For completeness and to establish notation, we describe
some properties of Lie algebras. Some are well known, but
[3:3.9:1=3., [J39-1=-J, [I:.0.1=1(Ja). others are new.
s B s B : (1) (i) The functionf(J3) characterizes the Lie algebra given

in Eq. (1). For subsequent work, it is convenient to define the
J.=J;=%iJ, are the well-known raising and lowering opera- function g(Js) as follows:
tors. f(J3) is an arbitrary analytic function of the operator
J;. Note that the special choiddJ;)=2J; corresponds to f(J3)=09(Js)—9(Js—1). ©)
so(3) andf(J3)=—2J; corresponds to so(2,1). In terms of
the Cartesian generatods, J,, andJs, the commutation
relations are

For example, for §@8), f(J3)=2J; and one getx(Jj)
=J3(J3+1). It is easy to check that the functig(Js) is
not uniqgue—any periodic function of unit period can be
added while maintaining Eq3). Note that the Casimir op-

i ; e
[J;,d5]= Ef(\]s), [J,,03]=1d1, [J3,91]=id,. (2 erator for the Lie algebra of Edl) is given by

_ | _ C=J.3,+9(J3)=3,J +9g(Js—1). @
The plan of this paper is as follows. In Sec. II, we review
some simple general properties of Lie algebras. In Sec. IlIThis observation is useful for many physical applications.
we describe how to obtain realizations of E#) in terms of ~ For instance, we use it in Sec. V for eigenvalue determina-
bosonic creation and annihilation operatoas énda) satis-  tion.
fying Heisenberg commutation relatiorfs,a’]=1. Al- (ii) The operators), andJ_ satisfy the important prop-
though we are using the conventional notatioanda' for  erty
these operators, they do not necessarily have to be Hermitian
conjugates of each other. The Appendix contains a discus- 1(J3)J+=J:T(J3+1), T(J3)I-=J_T(J3—1), (5

for any analytic functiorT (J3). This property is extensively
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and detM = + 1. Note that the elements of the matik do J,=J,[C+I3(J3+1)], I_=J_, J3=J5, (10
not have to be real, but if they are, the matrix is orthogonal.
This property is very useful in relating all the so(3) realiza-for the deformed Lie algebra correspondingf(d3)=4J§.
tions currently available in the literature.

(iv) Given operatorsl;, J,, andJs, which satisfy the || REALIZATIONS OF THE DEFORMED LIE ALGEBRA

so(3) Lie algebra, one can find operatérs, K,, andK;, IN TERMS OF BOSONIC OPERATORS

that satisfy a more general algebra ) ) o
In this section, we develop a procedure for obtaining re-

[Ki,Kol=ig3Ks, [Ko,Kil=ig1Ky, [K3,Ki]=i05Ks, alizations of the Lie algebra defined by H4) in terms of
(6) bosonic creation and annihilation operatafsanda, which
. obey the Heisenberg algebra commutafara’]=1. The
by choosing Ky=v0,03d1, Ko=v0301d2, and Kz pymper operator is defined bj=a'a. It follows that
=V0102J3. In particularK,=iJ4, K,=iJ,, andKz=1J;3 is [N,a']=a' and[N,a]= —a. More generally,
a realization of so(2,1).

(v) Given operatorsl, , J_, andJ;, which satisfy the [N,a™]=ma™,
standard so(3) Lie algebra, one can find operalarsJ_, (12)
~ . . [N,am"]=—ma” (m=0,+1,+2,...).
and J;, which satisfy the deformed algebra of BG) [7].
These operators are given by To generate realizations of a deformed Lie algebra using

the operatora’, a, andN, we choose the following ansatz:

J,=J.AJ5,C), I_=B(J3,C)_, I;=J3, (7
_ . J.=PF(N), J_=G(N)Q, Js=N+c, (12

where C=J_J, +J3(J3+1) is the Casimir operator of

so(3). Theform of the operators in Eq(7) was chosen so wherec is a constantP and Q are functions ofa anda'

that the two conditionJs,J. ]=+J. are trivially satisfied. ~chosen to satisfy the property

In order to satisfy the third conditiofd. ,J_]=f(J;), one [N.P]=P, [N,Q]=-Q. (13)
needs functionsA(J;,C) and B(J3,C), which satisfy the ' ’ '
following condition: Clearly, from Egs(11) and(19) it follows that two possible

choices forP(a,a’) area’ and 1A and two possible choices
A3~ 1C)B(J3~1.0)[C—JI3(J5~1)]-B(J3,C)AJ3,C)  for Q(a,a’) area and 14". In fact, one can choose the

X[C—(Ja+1)Is]=F(Ja). (8) linear combination
i iti 1 1
If A(J;,C) andB(J3,C) commute, this condition reduces to P:al(N)aT-Faz(N)a, Qzﬂl(N)a+IB2(N);-
H(J3,C)[C=J3(I3+1)]=—0(I3) +p(J3); (14
C)
H(J3,C)=A(J3,C)B(J3,C), Using Eq.(13), it is easy to show tha®N™=(N—1)"P and

. . . ) ) . N™Q=Q(N—-1)™ so that one has the proper§T(N)
Wher_ep(Jg) is an arb|t_rary periodic function of period unlty. =T(N-1)P andT(N)Q=QT(N— 1) for any analytic func-
It is important to realize that only the produkl(Js;,C) is tion T(N). Also, the dependence @anda’ of the products

fixed by the above constraint equation, but not the individualPQ and QP clearly comes only through the combination
functionsA(J3,C) andB(J3,C). Given Eq.(7), itis suffi- 1o\

cient to restrict our attention to realizations of so(3) in order 1 ansatz of Eq(12) will satisfy the conditions of Eq.
to obtain realizations of any deformed Lie algebra with three(l) provided

generators.

Note that for the special case of so(3) itself, the choice ~F(N—-1)G(N—1)PQ—-G(N)F(N)QP=f(N+c).
p(J3)=C givesH(J;,C)=1. The simplest choice of factors (15
A(J;,C)=B(J3,C)=1 reproduces the initial so(3) realiza- .
tion, whereas a more general choB€J;,C)=A"1(J;,C) If F(N) andG(N) commute, the above condition becomes
yields a new realization. Furthermore, other choicep(df) _ _ _ _
give additional new realizations of €). In particular, the HIN=DPQ-H(N)QP=T(N+c), H(N)_F(N)G((Nl)é)
choicep(J3)=0 gives the realization
It only remains to determinkl (N) from Eq.(16). As in Sec.
Il, note again that the functions(N) and G(N) do not
appear separately but only appear as their prodi(dt).

_ _ o _ Also, note that in Sec. V, we will discuss a situation where
which differs from the original one only in one generator g(N) andG(N) do not commute.

J, . This freedom in choosing the periodic functip(Js;) is
analogous to gauge fixing in field theories.

An interesting nonlinear example using the above formal-
ism comes from the choicg(Js) :Jg(JSJr 1)? and p(Js) Here we consider one-dimensional coordinate realizations
=C2. This choice gives the realization for a,a’ such thafa,a']=1. Equationg12), (14), and(16)

N Js(dat1l) - -
Ji=- Y CoJadat D)’ J.=J_, J3=J;,

IV. ONE-DIMENSIONAL COORDINATE REALIZATIONS
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now immediately give a realization for the nonlinear algebraHerep, = — iy ~1(d/dy)y, nis an arbitrary positive integer,
of Eq. (1). As an example, we consider the same deformednd ¢ is an arbitrary constant. To make contact with our
Lie algebra withf(J;)=4J3 as in Sec. Il. We make the formalism, using(iii) from Sec. Il, we first rotatél,, T,
simple choiceP=a'=x, Q=a=d/dx, and c=0, which and T to the new operatord,=iT3, J,=—T,, and J;
gives PQ=N, QP=N+1, and N=xd/dx. Equation(16) =iT,. This gives
now readsH(N—1)N—H(N)(N+1)=4N? whose solution

is H(N)=—N?(N+1). TakingG(N)=1 our coordinate re-

alization is —jyn =i I _ =
J.=iy", J_ i ” dy2+ 2y
d\?/ d
J+:—X<Xd—x) (Xd_)(+l , J,:d—x, J3:Xd—x. y d N1
7 BThay

General coordinate realizations afa’ are discussed in
the Appendix. Any of these can be used to generate differeri¥ext, let us take#=0, h(y)=y", andr(y)=—[n(2c—1)
one-dimensional realizations of deformed Lie algebras. Our-1]/(ny") in Eq. (A2) of the Appendix. This implies
formalism is very flexible since there is freedom in choosing

a,a’ (Appendi® and the operator® and Q in Eq. (14). y' " d  n(2c-1)-1
Furthermore, oncel(N) has been determined from E4.6), a= —— , al=y"
one has various choices for factorization into the functions n dy 2ny"

F(N) andG(N), which appear in the final realization given

in Eq. (12). Our formalism contains as special cases all the yd n+l

coordinate realizations published in the literature. We shall N= p ®+ W_C'

now illustrate this statement for specific realizations dis-
cussed if4] and[2].
Filho and Vaidyd 4] have discussed physical applications Further, choosingr; =i, 8,=1, anda,= ;=0 in Eq.(14),

based on the following representation of so(2,1): we find a solution of Eq(16) of the form H(N)=hb,N?
+b1N+b0 W|th b2: - i/Bz, bl: _| (2C+ 1)/B2, a.nd bo
42 24 y2 yd 1 =— (i/B,) [(2c+1)%/4— ¢—1/(4n?)]. Finally, the factor-
Ji=2———, J.=%, J3=——-, (18 ization H=FG with F=1, concludes the proof that Egs.
dy2 y2 8 2dy 4

(19 are a particular case of our formalism. Note that the

] . o initial rotation of generators seems to be essential in getting
wherea is an arbitrary constant. In order to obtain this real-the realizations of2].

ization as a special case of our formalism, we chomge Similarly, our formalism also gives the one-dimensional
by taking#=0, h(y) = 1/y<, andr(y) = —y“/4in Eq.(A2) in  realizations described in Refg] and[6].
the Appendix. This gives

2 1 y d 1 V. TWO-DIMENSIONAL COORDINATE REALIZATIONS
v2

2dy 4° y ~ 2dy 4° In this section we will introduce realizations of so(2,1)
using two coordinates. In contrast to the one-coordinate re-

Furthermore, choosing=a’, andQ=1/a" in Eq. (14) im- alizations, we now allow the functior'sandG appearing in

plies that constraintL6) on H(N) reads Eq.(12) to be functions oN as well as an internal coordinate
x and its derivativad/dx. It is important to observe that due
H(N—1)—H(N)=—2N. to this generalization, the functiofsandG no longer com-
mute with each other, and as a result, Eid)) must be used.
The solution isH(N)=N(N+1)+ 3, where 3 is an arbi- To construct explicit realizations of so(2,1), we choose

trary constant. Choosing the factorizati@®(N)=1/8 and P=2'=exp(¢) and Q= 1/a’ =exp(-i¢), i.e., a;= B, =0
F(N)=8H(N), Eq.(12) with c=0 andB=(3—4a)/16 af- I Eq. (14). 'Trhe_ S|mple_st choice of the_ope_ratar WhISh
ter simplification gives the Filho-Vaidya realization of Eq. Satisfies(a,a’], is a=—i exp(¢)d/o¢. This givesN=a'a
(18). =—idld¢. As a simple example, we consider

Another example of a differential realization of the

so(2,1) algebra was given by Barut and Borng2h Their 9
expressions for the generators are FIN)=| =~ +W|x,—I 70 |
20
T,-1 TN S T L P J 0
(19
2—-n
Tszl y p2+ £+y” ] whereW is a function to be determined. Substitution in Eq.
2\ n2 7 oyn (15) yields
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.0 d?
dW(X,—I——l) J,J = ——+(m—-1)B%-(m—1)2—(m—1)]sech x
W[ x,—i 21|~ i dx?
" dd dx
q _d +B(2(m—1)+1)sechx tanhx |,
2( W ) X, 'a¢
—| WA X, —i—— |+
o dx which is just the Hamiltonian for the Scarf potentialith
P m—1 being one of the parameters. The Scarf potential is
:f(_i_+c ] (21)  well known to be shape invariant, hence exactly solvable
d¢p [11]. We can also determine these eigenvalues using familiar

algebraic methods of so(2,1). The CasimifisJ? and Eq.
The left-hand side of this equation dependsxowhile the  (4) gives J,J_=J2—J;—J?. Since the eigenvalues of

right-hand side does not. In order to get a two-dimensionahng j, arej(j+1) andm—1/2, respectively, we find
realization one needs a solution of E81). In supersymmet-

ric quantum mechanics, this equation is well known to be the 1\2
shape-invariance condition. Its solutions are shape-invariant E= ( m— E) -
superpotential§8]. One solution is

(R
m—i)—j(1+1).

Now substitutingj =n—m-+ 3 [3], one gets

J
W i a¢tanhx+Bsechx. (22 E —(m-12—(m-n—1)>, n=012... (23
In this case, an explicit calculation yield§—id/d¢ +c)=  (Note thatE,=0 as expected from unbroken supersymmet-
—2(—idldp)+1. This implies that we are dealing with a ric quantum mechanics.
deformed Lie algebra wittf(J3)=—2J;+2c+1. For the With a change of variable and appropriate similarity
choicec= — 1/2 this is the so(2,1) algebra and its realizationtransformations of(N) and G(N) [10], we can relate all
is solvable potentials of Ref8] to J,J_ of this algebra and

hence derive information about their spectrum algebraically.
In this paper, differential realizations in coordinate space
, for nonlinearly deformed Lie algebras with three generators

_ g 4
J+=e'¢{— — —i—-tanhx+ B sechx

x ¢ were obtained using bosonic creation and annihilation opera-

tors. We have presented a unified formalism that contains as

la . d h —ig o9 1 special cases all previously given coordinate realizations of
- lax ! ﬁtan x+Bsechx|e™?,  Jg=—i Ers t5 so0(2,1),s0(3), antheir deformations. Although we have fo-

cused on deformations of the type specified by @&g, co-

There are several other solutions possjBleand they can be ordinate realizations for other types of deformations have
derived analytically using a point canonical transformation2/SC Peen recently studigdZ].
described in Ref[10].
The above realizations have interesting applications. The ACKNOWLEDGMENTS
operatorJ,J_ is given by A.G. and R.D. would also like to thank the Physics De-
partment of the University of lllinois at Chicago for warm
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dx? d¢ gratefully acknowledged.
J
d\/\/(X,—i %— 1) APPENDIX: DIFFERENTIAL REALIZATIONS OF a
_ 3 AND a'
X

In this appendix, we discuss differential coordinate real-
izations of operatora anda’, which satisfy the Heisenberg

. - . . 1 d)
When acting on factorized basis functioas'")(x), one commutation relatiofia,a’]=1. The simplest choice is

gets

d2 dW(x,m—1) a=—, a'=x (A1)

= —_— — 2 —_— [—
J.J_ dx2+W (X,m—1) ax

which is recognized to be the standard Hamiltonian of super- The Scarf Hamiltonian is described by a poten¥al(x,a,B)
symmetric quatum mechanics. For the choice of 8) the  =[B?—ay(a,+1)]sech x+ B(2ay+ 1)sechx tanhx+aj3. The ei-
result is genvalues of this system af8] E,=a3— (ap—n)?.
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As we shall see shortly, these operators are the basic building Successive use of the first three transformations applied to
blocks for all other realizations, including those with higher-Eq. (A1) yield
order derivatives. Note that although the notatiarsnda’

are being used, we are not requiring the two operators to be cosé d
Hermitian conjugates of each other. =— d—+(h(y)sin 0+r(y)cosh),
Given any two operators(x, d/dx) and a'(x, d/dx) h'(y) @y
such thafa,a']=1, several simple transformations can be (A2)
- ~% : : o
u~se~d Tt:) generate new operfsttcasand. a', which satisfy af— sing i+[h(y)cosa—r(y)sin6],
[a,a]'=1. These transformations are: h'(y) dy

(i) rotations in the &,a") plane,

~ ‘L . ] N whereh(y) andr(y) are arbitrary analytic functions of co-
a=acosf+a’'sing, a =-—asind+a coso, ordinatey. It is easy to check that these are the most general
operators linear iml/dy which satisfy[a,a’]=1.

(if) change of variables=h(y), A natural question to ask is whether one can construct

d 1 d differential coordinate realizations with second- and higher-
a y,_) :a< h(y),——), order derivatives. This is, in fact, possible by starting with
dy h'(y) dy any first-order realizatiofisay, Eq.(A1) or Eq. (A2)] and
using transformation(iv) to generate higher-order deriva-
~y + 1 tives. For example, using E¢A1) and takingu(a)=a? in
a y,@ =a'l h(y W@ ) transformation(iv) gives the realization

where prime denotes the derivative with respecy;to ~ d d?

(iii) similarity transformations, a=gx @=xt 5.

S -1 TH_ =LAt Ay
a=¢ag(x), a=¢(x)aléx); Although this procedure can be readily extended to get real-
(iv) additions of arbitrary functions of the other operator, izations of the Heisenberg algebra involving derivatives of
any desired order, it must be kept in mind that only the
a=a+\(ah), a'=a’; a=a, a'=a’+u(a). realizations involving first-order derivatives are fundamental.
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