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Gregory J. Matthews*, Pétala Gardênia da Silva Estrela Tuy and Robert K. Arthur

An examination of statistical disclosure issues
related to publication of aggregate statistics
in the presence of a known subset of the dataset
using Baseball Hall of Fame ballots
DOI 10.1515/jqas-2016-0085

Abstract: Each year the members of the Baseball Writers
Association of America (BBWAA) vote for eligible former
players to be inducted into the Baseball Hall of Fame. The
BBWAA tabulates and releases vote totals, but individual
ballots remain private. However, many voters forgo their
ballot privacy to publish their ballots through various
media channels. These publicly available ballots can be
aggregated to create a subset of the true ballots. Using these
released ballots and the totals released by the BBWAA, this
research assesses what can be learned about the group of
voters who chose to not disclose their ballot. Attributes
of the known and unknown ballot groups are studied by
looking at differences in voting preference for individual
players as well as voting differences between classes of
voters that are defined using latent class analysis (LCA).

Keywords: baseball; latent class analysis; multiple impu-
tation; statistical disclosure.

1 Introduction
Data of a wide range of varieties are important for the
advancement of science, governmental and economic de-
cision making, and the improvement of many areas of
society. These potential positive outcomes fuel the desire
for agencies to collect as much data as possible and, in
many cases (e.g. scientific or government data collection)
the desire to disseminate data as widely as possible for
others to use. While the wide dissemination of data that is
beneficial for research purposes is a noble goal, considera-
tions must be made to prevent the disclosure of sensitive
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information contained in the data. Maintaining individuals’
(or organizations’) privacy is important for both legal and
ethical reasons (among a host of others). As a society, it
is largely agreed that privacy is an important part of a
citizens life. In fact, privacy is viewed as so important
that it is included as a basic human right in the United
Nations Declaration of Human Rights (General Assembly of
the United Nations, 1948). In the United States, legislative
guarantees have been put in place to protect particular
types of data including personal medical and educational
data (HIPAA, 1996; FERPA, 1974).

So, what manners of data release are appropriate for
public consumption? On the one extreme, no data would
be released resulting in no possibility of a disclosure of
a private piece of information. The other extreme would
release all data with no regard for the disclosure of private
information. These two often competing extremes must
both be considered when disseminating data to the public.
Ideally, data are released to the public in ways that are
both useful for research and protective of privacy (often by
anonymizing the data).

However, evenwhen data are anonymized prior to shar-
ing with other entities, disclosure of private information
can still occur. Several high profile examples of these types
of disclosures are described in Sweeney (2002), Narayanan
and Shmatikov (2008) and Homer et al. (2008). In each of
the aforementioned articles, it was demonstrated how to
identify individuals in the data, even though the data in
each case was believed to be anonymized to protect against
the learning of private pieced of information. These types
of disclosures, which are not due to unauthorized access to
the data, are referred to as statistical disclosures.

A common definition of this type of disclosure (i.e. a
statistical disclosure) comes from Dalenius (1977): “If the
release of the statistics Smakes it possible to determine the
value [of confidential statistical data] more accurately than
is possiblewithout access to S, a disclosurehas takenplace.”
Ideally, the pieces of information that can be learned
about an individual would be the same with or without
the release of a statistics such as S. However, while this
property is highly desirable in terms of individual privacy,
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Dwork (2006) demonstrates that this is not achievable.
The insurmountable hurdle here is auxiliary information.
Regardless of what statistics S are released, it is always
possible to possess, at least theoretically, auxiliary infor-
mation that allows a data snooper (i.e. a data user looking
to find information that should be private) to learn a
private piece of information as a result of the release of the
statistics S. As a result of this, much work has focused on
developing methods for statistical disclosure control (SDC).
Thorough reviews of this topic can be found in O’Keefe and
Rubin (2015); Matthews and Harel (2011); Skinner (2009);
Hundepool et al. (2006); Willenborg and de Waal (2001).

To give a simple example of statistical disclosure that
is relevant to this setting, consider the following example.
Imagine a university course with three students, and after
the first exam the professor releases the average exam score.
If one of the three students makes their exam score public,
the two other students, with a small amount of math, now
know everyone’s exam score exactly. While that is a nearly
trivial (but real!) example, the BBWAA Hall of Fame ballots
presents amore interesting case for potential data snooping.
In this article, we do not focus on SDC methods, rather
we play the role of a data snooper in an attempt to learn
private pieces of information by combining the release of
summary statistics and auxiliary information. The target of
our snooping experiment is the private ballots submitted by
themembers of the BaseballWriters Association of America
(BBWAA) when voting for induction into the Baseball Hall
of Fame Baseball Writers Association of America (2016).
Here we attempt to learn as much as possible about the
voters who chose not to make their ballots public.

Submitted ballots are kept private by the BBWAA, but
they do release the total votes received by each nominee.
It is difficult to learn much about individual voters based
on just these aggregate totals, but with the totals and a
collection of auxiliary information, it is possible to infer
information about the voting habits of individual voters.
The auxiliary information possessed in this case consists
of a true subset of the full data. Since many of the voters
are also writers, a subset of the voters make their complete
ballots public, while many others choose not to.

Sources on the internet, such as the website authored
by Thibodaux (2016), have aggregated these public ballots
to produce a known subset of the full data set. The goal
of this experiment is to use the vote totals released by the
BBWAA and the known subset of ballots to learn about
the voting habits of the voters who did not release their
ballots. One type of private information learned here is
related to the probability of a particular writer voting for a
nominee rather than recreating the exact, unknown ballot
of a writer. Further, we can attempt to identify voting

patterns that are different between the voters who have
public ballots in Thibodaux and the voters whose ballots
remain private. This was attempted through the use of
multiple imputation restricted based on marginal counts
and latent class analysis.

The remainder of the manuscript discusses the process
of voting for induction into the Baseball Hall of Fame
and the data that were collected for this project; results
from both univariate and multivariate analyses of the data;
discussion of our findings; and finally a description of
possible future work.

1.1 Baseball Hall of Fame voting details

The Baseball Hall of Fame (BBHOF) was created to honor
the all-time greatest baseball players. The process by which
a player gets elected to the BBHOF currently consists of
eligible members of the Baseball Writers Association of
America (BBWAA) voting for candidates who meet the
requirements for inclusion on the ballot which is created
by the Screening Committee. There are approximately 625
eligible members of the BBWAA. Once a ballot is generated,
BBWAA electors may vote for up to 10 players on the
ballot and write-in ballots are not allowed. Any player who
receives votes on 75% of the ballots cast gains election into
the BBHOF. Results from the voting process are released
in aggregated form, but an individual’s ballot remains
private and is not released by the BBHOF. The BBHOF does,
however, release the names of the voters who cast a ballot.
For full details of the election process, see Baseball Writers
Association of America (2016).

2 Data and methods
Data were collected from the BBWAA website containing
players and their vote totals for 2014, 2015 and 2016. Accord-
ing to BBWAA website 571, 549, and 440 voters cast ballots
in 2014, 2015, and 2016, respectively.While the BBHOF does
not release individual voter’s ballots, many voters, who
are also writers, make their ballots public in some form.
While these data are publicly available, it is not necessarily
easy to collect and aggregate. However, these data are
publicly available and have been aggregated by Thibodaux
(2016), whose website includes a spreadsheet containing
a collection of publicly available ballots for the years 2014
through 2016. 159 out of 571 (27.85%) were publicly released
for voting in 2014, 203 out of 549 (36.98%) ballots were
known from 2015 voting, and for voting in 2016, 307 out of
440 (69.80%) ballots were known. Vote totals and known
vote totals are summarized in Table 1.
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(Note: The 2014 and 2015 data were collected on April
30, 2015 and the 2016 data were collected on February 3,
2016. More known ballots may have been collected since
then, however, the general concept of this manuscript
is unaffected by the particular date that the data were
collected.)

3 Univariate disclosure results
Each voter can be labeled as belonging to the known or
unknown group based on whether they have voluntarily
released their ballot to the public or not. Using the player
vote totals released by the BBWAAand the publicly released
ballots, it is straight forward to calculate the probability
that a voter whose ballot was not released voted for a
particular player.

In this setting, we are interested in looking for signif-
icant differences in the proportion of votes that a player
received between the known and unknown groups of voters.
To summarize the differences between the two groups of
voters for a specific player, the odds ratio between the two
groups is calculated. Specifically, the odds ratio for the j-th
player is

θj =
pk,j

1−pk,j
pu,j

1−pu,j

Table 1: Total ballots cast, total ballots known, and percentage of
ballots known for the years 2014, 2015 and 2016.

Year Total ballots Known ballots % Known

2014 571 159 27.85%
2015 549 203 36.98%
2016 440 307 69.80%

where pk, j and pu, j are the proportion of voters in the
known and unknown groups, respectively, who voted for
player j. A Fisher’s exact test can then be performed to test
the hypothesis that H0: θj = 1 versus H1: θj ̸= 1 for j = 1,
2, · · · , J. If the null hypothesis is rejected, that means that
there is a statistically significant different in the proportion
of votes received by player j between the known and
unknown groups. The family-wise error rate was chosen to
be α = 0.05 and a Holm correction Holm (1979) was used
to account for testing multiple hypotheses. Tables 2 and
3 summarize the results of the comparisons between the
odds of voting for each player in the known and unknown
subsets of the data.

Of the 30 tests performed on the 2014 data, after adjust-
ing for multiple hypothesis testing, the null hypothesis was
rejected in five tests: Bagwell, Piazza, Raines, Schilling, and
Thomas. In all of these cases, the group of known voters
was more likely to vote for the player than a voter in the
group that did not release their ballots. In 2015, which had
a greater percentage of known ballots, the null hypothesis
was rejected in 4 out of the 27 tests when accounting for
multiple hypothesis testing. Players included in this group
are Bagwell, Piazza, Schilling, and P. Martinez. Again in
all of these cases, the group of voters in the known ballot
group were more likely to vote for a player than the group
of voters with unknown ballots. In 2016, only 3 out of 25
odds ratios were found to be significant: Bagwell, Schilling,
and Mussina. These results are graphically summarized in
Figures 1–3.

4 Multivariate results
In the univariate analysis, differences in voting patterns
between the known and unknown groups were considered
individually for each player. However, we also seek to
find underlying classes of voters. This requires study of

Table 2: Significant odds ratios and unadjusted p-values for each player for the years 2014, 2015 and 2016.

Players 2014 2015 2016

OR p-values OR p-values OR p-values

Bagwell 1.96 <0.001a 1.83 <0.001a 2.39 <0.001a
Piazzab 2.32 <0.001a 2.02 <0.001a 1.58 0.11
Raines 2.24 <0.001a 1.48 0.030 1.88 0.01
Schilling 2.02 <0.001a 1.95 <0.001a 2.58 <0.001a
Mussina 1.34 0.23 1.85 0.0028 2.09 <0.001a
Thomasb 4.27 <0.001a
P. Martinezb 10.20 <0.001a

aSignificant after using the Holm correction.
bElected to Baseball Hall of Fame.
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Table 3: Non-significant odds ratios and unadjusted p-values for
each player for the years 2014, 2015 and 2016.

Players 2014 2015 2016

OR p-values OR p-values OR p-values

Shefleld 0.95 0.89 1.66 0.2
Smith 0.6 0.02 0.70 0.083 0.61 0.03
Morris 0.63 0.02
Mattingly 0.35 0.03 0.64 0.22
Kent 1.05 0.94 0.85 0.61 1.67 0.12
Walker 0.89 0.84 0.86 0.68 0.89 0.79
Madduxa 5.97 0.09
Garciaparra 0.32 0.02 0.42 0.4
Glavinea 1.64 0.26
Alou 0 0.28
Sosa 0.61 0.29 0.73 0.48 0.9 0.96
Martinez 1.25 0.34
McGriff 0.72 0.36 0.54 0.03 0.49
Gonzalez 0 0.37
Boone 0 0.53
Gordon 0 0.53
Delgado 0.52 0.25
Percival 0.57 1
Nomo 0.52 0.88
Snow 0 0.93
Gagne 0 0.93
Rogers 0 1
Benitez 0 1
Jones 0 1
Palmeiro 1.01 1
Erstad 0 1
Anderson ∞ 1
Eckstein 0.44 1
Edmonds 1.16 1
Griffeya ∞ 0.03
Hoffman 0.88 0.65
Kendall 0 0.17
Sweeney 0.22 0.45
Wagner 1.11 0.89
Bonds 1.45 0.07 1.46 0.04 1.19 0.47
Clemens 1.29 0.22 1.34 0.12 1.15 0.58
Biggioa 1.21 0.44 1.69 0.04
Trammell 1.16 0.59 0.92 0.76 1.46 0.09
E. Martinez 1.14 0.55 1.54 0.05
Johnsona 3.92 0.06
Smoltza 1.89 0.01
McGwire 0.79 0.54 1.06 0.88 1.14 0.79
aElected to Baseball Hall of Fame.

the two groups from a multivariate perspective. Our goal
is to be able to make statements comparing the relative
proportions of latent classmembership between the known
and unknown voter groups.

To accomplish this, our approach is two-fold: First, the
unknown ballots were imputed M= 10 times, subject to
the restrictions of the known vote totals and 10 vote limit
per ballot. Using the set of imputed ballots, latent class
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Figure 1: A side by side bar plot comparing the proportion of votes
for each player in the known (left bar) and unknown (right bar)
groups for the year 2014. p-Values from the Fisher exact test
were adjusted using the Holm correction to account for multiple
testing and significant results are presented with dark and light
red representing significance at the α = 0.01 and α = 0.05 level,
respectively.

analysis (LCA) was performed to look for structure in the
patterns in the voting, and then results of the LCA were
combined across the imputations.

Ballots belonging to voterswho kept their ballot private
were imputed using the chained equation approach, or fully
conditional specification (FCS), (Van Buuren et al., 2006)
and implemented with the R package MICE (Van Buuren
and Oudshoorn, 2007). Specifically, we view each ballot
as an observation and each player on the ballot as a
variable. Each row consists of a vector of 0’s and 1’s with
a 1 meaning a voter voted for a player and 0 otherwise.
We then build a logistic regression model for each player
to predict the probability that a voter voted for a specific
player conditional on which other players they voted for.
The unknown ballots are imputed using these models,
which ensures that combinations of players who are more
or less likely to be voted for together are preserved in the
unknown ballots. Additionally, this imputation was subject
to restrictions on both the row (i.e. voters) and column (i.e.
players) totals. The rows are subject to the constraint that
each ballot must have at most 10 votes, and the column
totals are constrained by the known vote total for each
player that are released by the BBWAA. These constraints
were imposed using what is essentially a version of an
acceptance/rejection algorithm. Basically, an unknown
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Figure 2: A side by side bar plot comparing the proportion of
votes for each player in the known (left bar) and unknown (right
bar) groups for the year 2015. p-Values from the Fisher exact test
were adjusted using the Holm correction to account for multiple
testing and significant results are presented with dark and light
red representing significance at the α = 0.01 and α = 0.05 level,
respectively.
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Figure 3: A side by side bar plot comparing the proportion of votes
for each player in the known (left bar) and unknown (right bar)
groups for the year 2016. p-Values from the Fisher exact test
were adjusted using the Holm correction to account for multiple
testing and significant results are presented with dark and light
red representing significance at the α = 0.01 and α = 0.05 level,
respectively.

ballot is imputed with a candidate ballot, and it is rejected
if it violates and of the constraints otherwise it is accepted.
This procedure is repeated until all of the unknown ballots
were imputed and all constraints are satisfied.

For each of the ten imputations, LCAwas performed on
each imputed data set to classify voters into distinct classes
based on the patterns of voters. Here, we performed LCA
with a covariate, namely an indicator variable for whether
the ballot was known or unknown. LCA was implemented
here with the poLCA (Linzer and Lewis, 2011) package in R.

Finally, results of the LCA for each imputed data
set were combined across imputations using appropriate
combining rules (Little and Rubin, 1987) to reach a final
overall estimate of the ratio of latent class odds comparing
the public and private ballot groups. An odds ratio near 1
indicates that there is no difference in the prevalences of
each latent class between the groupof knownandunknown
ballots, whereas an odds ratio significantly different than 1
indicates that there are different prevalence rates of the two
classes between the groups of known and unknown ballots.

4.1 Imputation

Let yij be the i-th observation (i.e. voter) and the j-th variable
(i.e. player on the ballot) where i = 1, 2, . . .,N and j = 1,
2, . . ., J where each variable is partially observed (if a voter
released their ballot). yij = 1 if the i-th voter voted for the
j-th player and is 0 otherwise. We then define y.j to be the
column vector containing 0’s, 1’s andmissing values for the
j-th player, and theobserved andmissingparts of y.j areyobs.j
and ymis

.j , respectively. Thus Yobs = (yobs.1 , yobs.2 , . . . , yobs.J ),
Ymis = (ymis

.1 , ymis
.2 , . . . , ymis

.J ) and Y = (Yobs , Ymis). Yobs is
a nobs × J matrix and Ymis is a nmis × J matrix and nobs +
nmis = N.

FCS (Van Buuren et al., 2006) for multivariate imputa-
tion creates a model for the j-th variable conditional on all
of the remaining J − 1 variables, and missing values of the
j-th variable are imputed using this model. This process is
then repeated for each of the J variables imputing values
for all of the missing data.

In this setting, we make the assumption that the
covariance structure of the public ballots and the private
ballots are the same, which we believe to be a reasonable
assumption here. Further, the imputations are bound by
two restrictions: (1) vote totals received by each player and
(2) a maximum of ten votes per ballot. Formally,

Ymis1J ≤ 101nmis

and
1′nobsY

obs + 1′nmisY
mis = V
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where 1J and 1nmis are each a column vector of length J and
nmis, respectively, consisting of all 1’s, V = (v1, v2, . . . , vJ),
and Vj = y’obs.j 1nobs + y’mis

.j 1nmis is the total votes received
by player j for j = 1, 2, . . ., J. We are interested in drawing
imputations from

P(Ymis|Yobs , Ymis1J ≤ 101J , 1′nmisY
mis = V − 1′nobsY

obs)

These restrictions were incorporated by first generat-
ing 100,000 synthetic ballots as candidates to potentially
become imputed values for Ymis. Synthetic ballots that
did not conform to the restriction Ymis1J ≤ 101nmis were
removed from the potential ballots. From the remaining
synthetic ballots that did conform to this restriction, a ballot
was randomly sampled and used to impute a value of Ymis.
This alone, however, does not satisfy the second restriction
1′nmisY

mis ≤ V and an iterative algorithm was incorporated
to satisfy this condition. This worked by iterating through
each player j and sampling from the potential candidate
ballots that satisfy the first restriction (i.e. vote totals per
ballot) until the second condition (i.e. Player j’s vote total is
equal to vj). This process was repeated by iterating through
the players j = 1, 2, . . ., J until 1′nmisY

mis = V. The resulting
imputation contains imputed ballots with 10 or fewer
votes, conforms to the player vote total restrictions, and
maintains the covariance structure of the observed public
ballots.

This imputation algorithm described previously is
implemented here using R (R Development Core Team,
2007) with the function “mice” in the package MICE
(Van Buuren and Oudshoorn, 2007). By default the “mice”
function uses logistic regression when imputing binary
data, and this is the setting that was chosen to impute the
unobserved voting dat in this study.

4.2 Latent class analysis

Latent class analysis (LCA) (Collins and Lanza, 2010) is
used to identify subgroups, types or classes of individu-
als. This type of modeling is used to identify patterns of
responses based on observed characteristics and relates
these patterns to a set of latent classes. The latent variable,
or construct, is not observed directly but rather indirectly
measured through two or more observed variables.

As before, let j = 1, 2, . . ., J be the number of observed
variables (i.e number of players on the ballot) and the
number of response categories for the j-th variable is
Rj = 2 for all j = 1, 2, . . ., J, and rj, a specific level of the
j-th variable, can take on values of either 0 or 1. Thus,
the contingency table containing all possible ballots will
haveW = 2 J cells with each cell of the contingency table

associated with a unique response pattern, zw, and its
frequency. For each voter, their vector of responses (i.e
ballot) of the J variables, that is (r1, . . . , rJ), is equal to
some zw in the contingency table withW cells. If we let Z be
a J dimensional vector-valued random variable associated
with all W ballots possibilities then for each pattern of
response, there exists an associated P(Z = zw) such that∑︀W

w=1 P(Z = zw)= 1.
The model has two types of parameters: (1) conditional

probabilities, that are the probabilities of the response
rj = 0 or rj = 1 given the k-th latent class; and (2) preva-
lences, or unconditional probabilities, that are the proba-
bilities of belonging to the k-th class of the latent variable
L. These parameters are estimated using the method of
maximum likelihood estimation and, since no closed form
solution exists in this case, the likelihood is maximized
using numerical optimization techniques. Considering an
LCA model with J observed dichotomous variables and one
categorical latent variable L with C classes, the marginal
probability that Z = zw is

P(Z = zw) =
C∑︁

c=1
P(Z = zw|L = c)P(L = c).

and the estimated probability of belonging to each class is

P(L = c|Z = zw) =
P(Z = zw|L = c)P(L = c)

P(Z = zw)
.

4.2.1 LCA with covariates

Including covariates in LCA is possible through a logistic
regression model in which the dependent variable is latent
(Agresti and Hoboken, 2008), and we seek to predict the
probability of belonging to a particular latent class given
some set of covariates. In our setting, we are trying to
model the probability that a voter belongs to a particu-
lar latent class conditional on the configuration of their
ballot. If we let I(zwj = rj) be the indicator function equal
to 1 when zwj = rj and 0 otherwise, where zwj is the j-th
element of the w-th possible ballot configuration and X
is the random variable representing whether a ballot is
known or unknown, then the latent class model can be
expressed as

P(Z = zw | X = x) =
C∑︁

c=1
γc(x)

J∏︁
j=1

1∏︁
rj=0

ρI(zwj=rj)
j,rj |c ,

where γc(x) = P(L = c | X = x) is the probability of be-
longing to a latent class given the covariates, ρj,rj |c is the
probability that the j-th value of the vector Z is equal
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to rj given that L = c, and P(Z = zw | L = c, X = x) =∏︀J
j=1

∏︀1
rj=0 ρ

I(zwj=rj)
j,rj |c . With a single covariate X, γc(x) can

be expressed as

γc(x) = P(L = c | X = x) =
expβ0c+β1cx

1 +
∑︀C−1

c=1 expβ0c+β1cx

with the reference category corresponding to the latent
class C.

In our setting, xi is equal to 0 or 1 if the i-th voter’s ballot
is unknown or known, respectively. Logistic regression for
LCA produces an estimate of the effect of the covariate, x,
on each latent class compared to the other latent classes.
In LCA with covariates, regression coefficients, β, are
estimated rather than prevalences.

4.2.2 Combining rules

Ultimately, based on model fitting criteria, the model with
C = 2 latent classes was chosen as the best fitting model.
In this case, for each imputation there is only one β0 and β1
estimate. Using Rubin’s combining rules (Little and Rubin,
1987) we can combine the estimates of across imputations
as follows:

Q̄M =
M∑︁

m=1

β(m)1
M

BM =
M∑︁

m=1

(β(m)1 − Q̄M)2

M − 1

ŪM =
M∑︁

m=1

var(β(m)1 )
M .

Q̄M is the overall estimate of β and TM = (1+ 1
M )BM + ŪM

is the used to estimate the variance of this estimate, Q̄M. In
this setting, we argue that each imputed data set is actually
a completed population because we are not interested
in some larger theoretical population; the collection of
all voters who voted in a particular year is our target
population. Therefore, when each imputed data set is
treated as a population we must set ŪM = 0 giving us
TM = (1 + 1

M )BM.

4.3 Results

After performingmultiple imputation LCA identifies (based
on AIC) two latent classes in each of the three years.
Figures 4–6 summarize our results by showing the log
odds ratio comparing the odds of voting for a player in
latent class 1 versus latent class 2. These were computed

2014
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Figure 4: Log odds ratio comparing the likelihood of a voter from
class 1 or class 2 voting for a particular player in 2014.
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Figure 5: Log odds ratio comparing the likelihood of a voter from
class 1 or class 2 voting for a particular player in 2015.

by first looking at the probabilities of voting for a specific
player given that a voter belonged to latent class 1 or 2. As
an example, consider Barry Bonds in 2016. The estimated
probability that a voter in latent class 1 voted for Barry
Bonds was 0.9955 whereas the corresponding probability
for a voter who belonged to latent class 2 was 0.0172.
Therefore, we can calculate the odds ratio between these
two groups as follows:

0.9955
1−0.9955
0.01722

1−0.01722
= 12625.6.
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Figure 6: Log odds ratio comparing the likelihood of a voter from
class 1 or class 2 voting for a particular player in 2016.

For the sake of displaying all of these odds ratios on a
reasonable scale, the log of each of these odds ratios
is considered. For Barry Bonds this is log(12625.6) =
9.4435 and can be seen in the rightmost bar in Figure 6.

The height of each bar therefore represents the log of
the odds ratios comparing the likelihood of voting for a
player given that a voter is in latent class 1 versus latent
class 2. Red bars indicate that a voter in latent class 1 was
more likely to vote for a player than a voter in latent class
2, whereas blue bars represent to opposite (i.e. a voter in
latent class 2 was more likely to vote for this player than a
voter from latent class 1.).

In all three years, the three largest differences in
favor of latent class 1 are Bonds, Clemens, and McGwire.
These three players have all been strongly linked to perfor-
mance enhancing drugs in the Mitchell Report (Mitchell,
2007). Several other players linked to performance en-
hancing drugs show up in latent class 1 including Sosa,
Piazza, Sheffield, and Palmeiro. Latent class 1, therefore,
can reasonable be considered to be a latent class re-
lated to players associated with performance enhancing
drugs (PED’s).

Latent class 2 simply seems to be the opposite in that
it is characterized by players not associated with PED’s
or other performance enhancing drugs. The players who
had the highest odds ratios in favor of class 2 in 2014 were
Benitez, Glavine, Mussina, Smith, Maddux, and Biggio,
in 2015 were E. Martinez, Smith, Smoltz, McGriff, Biggio,
and Mussina, and in 2016 were Edmonds, McGriff, Wagner,
Hoffman, Garciaparra and Smith.

Tables 4–6 show the probability that a voter belongs
to latent class 1 or latent class 2 given that they are in the
known or unknown voting group for the years 2014, 2015,
and 2016, respectively. So, for example, in 2014, the group
of voters with known ballots (i.e. they released their ballots
publicly) had a 40.63% chance of belonging to latent class
1 (i.e. the pro-PED’s group). This is as opposed to a 34.61%
chance that a voter with an unknown ballot belonged to
latent class 1. Further the odds of falling into latent class 1
vs latent class 2 are 1.293 times larger in the known group
compared to the unknown group with a 95% confidence
interval of (1.073, 1.557).

In 2015, the odds ratio was slightly larger at 1.387 with a
95% confidence interval (1.234, 1.560) and in 2016 the odds
ratio dropped belong both 2014 and 2015 to 1.168 with a
95% confidence interval of (1.077, 1.278). These odds ratios
and intervals are summarized in Table 7. Notably, in all
three years the 95% confidence interval does not contain 1
indicating that the probability of a voter falling into latent
class 1 is significantly between the known and unknown
group of voters in all three years.

Table 4: Probability of belonging to class 1 or class 2 given that a
voter is in the known or unknown group for 2014.

Known Unknown

Class 1 (pro-PED’s) 0.4063 0.3461
Class 2 (anti-PED’s) 0.5937 0.6539

Class 1 corresponds to the group that is more likely to vote for
players related to PED’s and class 2 is the group less likely to vote
for players related to PED’s.

Table 5: Probability of belonging to class 1 or class 2 given that a
voter is in the known or unknown group for 2015.

Known Unknown

Class 1 (pro-PED’s) 0.417 0.3401
Class 2 (anti-PED’s) 0.583 0.6599

Class 1 corresponds to the group that is more likely to vote for
players related to PED’s and class 2 is the group less likely to vote
for players related to PED’s.

Table 6: Probability of belonging to class 1 or class 2 given that a
voter is in the known or unknown group for 2016.

Known Unknown

Class 1 (pro-PED’s) 0.4469 0.4089
Class 2 (anti-PED’s) 0.5531 0.5911

Class 1 corresponds to the group that is more likely to vote for
players related to PED’s and class 2 is the group less likely to vote
for players related to PED’s.
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Table 7: Odds ratios for belonging to latent class 1 (pro-PED’s)
vs. latent class 2 (anti-PED’s) comparing the group or known and
unknown ballots.

Year Odds ratio (confidence interval)

2014 1.293 (1.073, 1.557)
2015 1.387 (1.234, 1.560)
2016 1.168 (1.077, 1.278)

An odds ratio of 1 here indicates that an individual voter in the
known group is more likely to be in latent class 1 than latent class 2.

5 Discussion
BBWAAmembers cast private ballots each year to decide
which players get inducted into the Baseball Hall of Fame.
The BBWAA aggregates these ballots and releases vote
totals for all players, but does not release individual ballots.
However, some of the voters choose to release their ballots
to the public. In this manuscript, the aggregate voting
results released by the BBWAA along with a subset of
ballots voluntarily released by certain voters were used
to attempt to learn as much as possible about the voting
behaviors of the writers who wished to keep their ballots
private. We first examined the difference in the odds of
voting for individual players between the two groups of
voters (i.e known ballots vs unknown ballots). We then
went on to use multiple imputation to create plausible
ballots for the unknown group of voters based on the
correlation structure of voters in the known group and
the restriction that each ballot can contain a maximum
of 10 players. With ballots imputed, latent class analysis
was then used to look for class structure in the voting
habits of the BBWAA. Results of latent class analysis were
combined across imputations, and differences based on
class membership between individuals whose ballots were
known were compared to those individuals whose ballots
were unknown in an effort to learn about the group of
individuals who did not publicly release they ballots.

5.1 From a privacy standpoint

While in this example, nothing specific can be learned
about an individual voter with certainty, we do discover
some major differences between the groups pertaining to
individual players and further we find that the group of
voters who did not release their ballots are less likely than
the group of voters with known ballots to vote for players
actually or perceived to be connected to PED’s. While
specific voters who do not release their ballot maintain a
high degree of privacy, their privacy is certainly weakened

by learning the probability that they voted one way or the
other for a specific player in a smaller group of people,
and with the addition of latent class analysis we can learn
about the likelihood of an individual in a specific group
(i.e. known or unknown ballots) belonging to one of two
well defined classes (i.e. pre-PED’s vs anti-PED’s). Further,
this weakened privacy is a direct result of the individuals
who participated in the voting deciding to relinquish their
right to a private ballot and publishing their ballots through
various media channels. This raises the question about
what an individual participant in a database who does
not value their own privacy owes to another participant
in the same database who does value they privacy, since
an individuals’ wish to maintain the privacy of their own
data is dependent in some way on the other participants
maintaining the privacy of their own data.

5.2 From a baseball standpoint

Players identified in latent class 1 were overwhelmingly
associated with performance enhancing drugs, both in
the Mitchell Report and in other investigative journalism.
While no player can be shown authoritatively not to have
used PEDs, players in latent class 2 seemed to be among
those with the cleanest reputations (e.g. GregMaddux, Tom
Glavine). For this reason, the primary difference between
classes seems to come from the reputation of the player as
a PED user.

The difference in support for these two classes de-
pending on whether a voter released their ballot or not
is consistent with older voters taking more conservative
attitudes toward PED users, which is also noted in Pollis
(2015). While some voters consider all players independent
of any allegations of PED use, others strongly consider a
player’s resume in the context of their reputation for steroid
use. Voters who have publicly denounced steroid users or
announced that they would not support them tend to have
covered baseball for longer periods of time. Similarly, voters
who do not release their ballots tend to have be longer-
servingmembers of the BBWAA. As one of the most divisive
issues of the last decade, it makes sense that PEDusewould
emerge as the major explanatory variable in the LCA, and
that older writers would separate out from younger ones in
this analysis.
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