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Abstract Public health research often relies on individuals’ confidential med-

ical data. Therefore, data collecting entities, such as states, seek to disseminate

this medical data as widely as possible while still maintaining the privacy of

the individual for legal and ethical reasons. One common way in which this

medical data is released is through the use of Web-based Data Query Systems

(WDQS). In this article, we examined WDQS listed in the National Associa-

tion for Public Health Statistics and Information Systems (NAPHSIS) specifi-

cally reviewing them for how they prevent statistical disclosure in queries that

produce a tabular response. One of the most common methods to combat this

type of disclosure is through the use of suppression, that is, if a cell count

in a table is below a certain threshhold, the true value is suppressed. This

technique does work to prevent the direct disclosure of small cell counts, how-

ever, primary suppression by itself is not always enough to preserve privacy

in tabular data. Here, we present several real examples of tabular response

queries that employ suppression, but we are able to infer the values of the

suppressed cells, including cells with 1 counts, which could be linked to auxil-

iary data sources and thus has the possibility to create an identity disclosure.

We seek to stimulate awareness of the potential for disclosure of information

that individuals may wish to keep private through an online query system.

This research is undertaken in the hope that privacy concerns can be dealt

with preemptively rather than only after a major disclosure has taken place.

In the wake of a such an event, a major concern is that state and local officials

would react to this by permanently shutting down these sites and cutting off

a valuable source of research data.

Keywords privacy, confidentiality, health policy, public health, data sharing
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1 Introduction

Interactive web-based data query systems (WDQS) are commonly used by

state public health authorities to provide vital statistics and health surveillance

data for use by researchers and policymakers. According to a compendium

compiled by the National Association of Public Health Information Systems

(NAPHSIS), state-supported WDQS relevant to public health are currently

hosted in a majority of states in the United States (NAPHSIS, 2016). Such

systems typically provide aggregate information to users in response to specific,

and in some cases customized, queries. Although query results are de-identified

and presented only in aggregate form, care must be taken to prevent individu-

als from being re-identified. This can potentially occur when individuals have

rare conditions or attributes (or configurations of attributes), or when ancil-

lary information, such as publicly available voter lists or death registries, can

be linked to files containing sensitive information.

Standards for protecting the privacy of individuals captured in WDQS are

well-established. For instance, the “Handbook on Statistical Disclosure Con-

trol” (HSDC) (Hundepool et al, 2006) describes many methods for protecting

against statistical disclosures in tabular data and Shlomo et al (2015) compare

different methods of statistical disclosure control based on disclosure risk and

data utility measures specifically for flexibility generated tables. The HSDC

classifies methods for protecting tabular data into three broad categories: pre-

tabular, table redesign, and post-tabular.

Pre-tabular methods involve modifying the actual microdata prior to the

table creation step. Methods in this category include, for example, data swap-

ping (Fienberg and McIntyre, 2005, Dalenius and Reiss, 1982), post-randomization

method (PRAM) (Gouweleeuw et al, 1998), and sampling (Skinner, 2009).

Data swapping involves swapping individuals’ records in the microdata in such
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a way that the marginal counts of variables are maintained. After data swap-

ping, a contingency table can be created based on the swapped data. The

resulting table has an added layer of protection by adding uncertainty to the

output. Even if a cell in the table contains a small number, there is uncertainty

as to whether the number is the actual count or not. Therefore, it is difficult

to accurately identify an individual whose data is used in the table. PRAM

aims to prevent statistical disclosures by perturbing each record in a data set,

which practically amounts to adding random noise to each record when the

data are categorical. Once this method is applied to the microdata, as with

data swapping, tables can then be created based on the perturbed data, which

now have an added layer of protection. Finally, sampling is another example

of a pre-tabular method for protecting tabular data. Sampling simply involves

selecting a subset of the data that has been collected, and then creating output

tables based on the sample of the data rather than the entire data itself. This

adds uncertainty to the table in that even if a small number appears in a cell,

one cannot be sure that the number that is being observed is the true number

from the full data set. All of these methods work, to some degree, based on

the concept of uncertainty. The data consumer cannot be sure that the num-

bers they are observing in the cells are exactly correct, which prevents them

from learning any information about an individual with certainty. At the same

time, they are able to learn about the population that they are interested in

studying based on the tables as much of the original structure of the data is

maintained.

A common example of table redesign methods is reduction of detail. Re-

duction of detail involves combining cells together based on collapsing some

of the variable categories together to make one new category. For instance,

rather than release a table with counts that are sorted by age in groups of five
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years, it is safer from a statistical disclosure point of view to use ten or twenty

year age groups resulting in fewer cells in the table.

The HSDC mentions three main methods of post-tabular disclosure control,

namely, cell suppression (Cox, 1980, 1984, Cox et al, 1987), cell perturbation

(Willenborg and de Waal, 2001), and rounding (Cox, 1984, Cox et al, 1987,

Cox, 1987). Cell perturbation adds some amount of noise to each cell to add

some uncertainty to the true value of the cell. Rounding is used to hide true

values of cells by releasing a number in the cell that is relatively close to

the truth. For instance, rather than releasing the actual counts of cells, an

organization that is releasing tabular data may round all of the cells to the

nearest 5 or 10. This guarantees that no cell with a 1, which is the most

vulnerable value from a statistical disclosure point of view, is released.

Finally, cell suppression is a technique that searches for cell counts that

are below some predefined threshold and hides the true count in the cell by

reporting the true value as missing. This technique guarantees that small cell

counts, which are vulnerable to an attack by a malicious data user, will never

be known exactly. The National Center for Health Statistics (NCHS) Research

Data Center Disclosure Manual does not allow its researchers to publish tables

with cell count less than 5; these values must be suppressed (NCHS Research

Data Center, 2012, Page 15). Further, they recommend that categories be

re-categorized so that cell suppression is not needed at all. However, the appli-

cation of cell suppression is not as straight forward as it may seem if one wishes

to provide meaningful disclosure control. Simply suppressing the true values

of cells that all fall below a threshold – these are called primary suppressions

– does not guarantee that disclosures will not take place. For instance, if only

one cell is primarily suppressed in a row, but the row total is provided in the

table, the suppressed value can be easily derived. Therefore, for the sake of

disclosure control, other cells that may not fall below the suppression thresh-
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old may also need to be suppressed. These types of suppression are referred to

as secondary, or complimentary, suppressions. The NCHS Disclosure Manual

also makes it clear that complimentary suppressions are necessary to prevent

disclosures through cell subtraction. As a result, they suggest using cell ag-

gregation rather than suppression (NCHS Research Data Center, 2012, Page

15).

Cell suppression, which is a very common method of disclosure control in

many of the NAPHSIS systems, is especially problematic in the specific setting

where the user has the ability to create many different tables via many differ-

ent queries. HSDC states, about post-tabular methods generally, “post-tabular

methods suffer the problem that each table must be individually protected,

and it is necessary to ensure that the new protected table cannot be compared

against any other existing outputs in such a way, which may undo the protec-

tion that has been applied” (Hundepool et al, 2006, Page 175). Further, they

go on to state a problem specifically about cell suppression, “Disclosive zeroes

need to be suppressed and this method does not protect against disclosure

by differencing. This is a serious problem if more than one table is produced

from the same data source (e.g. flexible table generation)” (Hundepool et al,

2006, Page 176). Both of these statements warn that these methods, generally,

post-tabular and, specifically, cell suppression, simply do not work in many

instances when the user is able to create many different tables based on the

same data set. This is exactly the case with a web-based data query system

(WDQS).

In spite of well-established guidelines for privacy protection related to

WDQS, many systems run by states still perform inadequately with respect

to privacy when data are released in tabular form. Matthews et al (In Press)

reviewed 35 state-affiliated WDQS and found that one of the most common

measures of statistical disclosure control employed by these systems was sup-
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pression of small cell counts in tabular queries. This means that one of the

more common methods of disclosure control that was observed in our review

of the NAPHSIS systems is one of the methods that is least suited to protect

privacy in exactly these types of systems (Hundepool et al, 2006, Pages 175–

176). In fact, Matthews et al (In Press) found that in 9 of the sites reviewed,

true cell values were able to be recovered even with suppression being used

for small cell counts. Further, 18 of the reviewed sites did not appear to be

suppressing any cells counts, and only in 6 sites were no immediate problems

discovered with cell suppression.

As a result, in this manuscript, we focus on the details of suppression tech-

niques employed by WDQS and illustrate problems with using suppression

as a method of statistical disclosure control for flexibly generated tables us-

ing actual examples from various systems. It is our hope that through this

manuscript institutions will become more aware of the potentially privacy is-

sues when releasing data in tabular format and will take necessary steps to

ensure that privacy for individuals in maintained.

The remainder of this article discussed the methods that were used in eval-

uating different query systems in section 2. Section 3 presents actual observed

examples of ways in which cell suppression is being employed in some online

query systems. Finally, section 4 concludes with a discussion of the impact of

these findings.

2 Methods

The National Association for Public Health Statistics and Information Sys-

tems’ (NAPHSIS) website provides a catalog of Web-based Data Query Sys-

tems (WDQS) (NAPHSIS, 2016) by state that provide a wide array of vital

statistics. In the process of performing a full review of the types of disclosure
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control techniques in place by these various systems, it became clear that cell

suppression was one of the most popular methods for controlling statistical

disclosure in spite of the limitations of the method specifically in this setting.

Additionally, many of these query systems that were performing cell suppres-

sion were implementing the technique in a manner that would often allow an

astute user to infer the exact values of the suppressed cell counts rendering

cell suppression nearly meaningless in terms of protecting sensitive pieces of

data.

Therefore, as a test, in cases where a WDQS was employing cell suppres-

sion, attempts were made by the authors to infer the suppressed values of

the cells. To demonstrate that one need not employ sophisticated and/or time

consuming techniques to recover suppressed values, the time spent trying to

recover suppressed values was limited to no more than 30 minutes for each

WDQS. This demonstrates that these disclosures are not the result of com-

plex analyses, but, rather, are based on simple attack methods that are well

established in the statistical disclosure literature.

Examples of queries (or possible a set of queries) where suppressed values

can be recovered were captured with screen shots of the table (or tables).

These screen shots act merely as a record and are not presented fully in this

manuscript to offer ambiguity in which query system produced the table in

which the suppressed cells were able to be recovered. Here we simply present

generic tables, devoid of any identifiers, each demonstrating an example of

how suppressed cell values can be recovered using different techniques. While

these tables are presented as generic, we stress the fact that all of these are

actual examples that were observed by at least one WDQS in the NAPHSIS

database.
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3 Results

Among those WDQS that claimed to incorporate SDC strategies, some form

of suppression was most commonly employed, although the standards used

(e.g., minimum cell size tolerated, whether both primary and secondary cell

suppression strategies were attempted) varied dramatically. Some WDQS’s

suppressed cell counts only below 10 whereas other systems suppressed cells

only for values below 3. In practice virtually all the systems reviewed did not

employ SDC techniques that were effective in preventing users from obtaining

results that placed individuals at risk of a statistical disclosure. In the following

sections we will illustrate the shortcomings of many public health WDQS

using actual examples. Again, to protect the privacy of the individuals whose

personal information may be compromised, we present the results of actual

queries while hiding the identity of the query systems from which they were

obtained.

3.1 Examples of disclosure

In general, there are a wide array of issues involved in statistical disclosure

control that are beyond the scope of this manuscript and for a full overview

see O’Keefe and Rubin (2015), Matthews and Harel (2011), Skinner (2009), or

Willenborg and de Waal (2001). One main issue of statistical disclosure control

is the study of techniques for modifying microdata in such a way that it can

be released to researchers or the public in such a manner that the data is both

useful and sensitive to the privacy of the individuals involved. There are many

examples of de-identified microdata being disseminated to the public that was

able to be re-identified such as Sweeney (2002), Narayanan and Shmatikov

(2008), and Barbaro and Zeller (2006). For guidelines for de-identifying per-

sonal health information microdata see El Emam and Fineberg (2009), for
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instance. Here, however, we are only interested in disclosures occurring from

data released in tabular format as output from the WDQSs examined here.

There are many different types of potential disclosures when releasing data in

this manner and section 5.2 of Hundepool et al (2006) describe these, which

include identity disclosure, individual and group attribute disclosure, and dis-

closure by differencing. Further, there are many types of risks based on the

motives of an adversarial data user. El Emam (2010) describes what they refer

to as prosecutor risk, journalist risk, and marketer risk. These different types

of risks described vary based on the background information of an adversary

and their motives. Prosecutor risk, for instance, involves an adversary who

is trying to re-identify a particular individual about whom some background

information is know and the individual is known to be in the data set of inter-

est. Journalist risk involves trying to target a known individual, but it is not

known whether the individual is actually contained in the data with certainty,

and marketer risk is when an adversary attempts to re-identify as many of the

observations in the released data as possible.

One of the most common types of disclosure, identity disclosure, occurs

when an individual can be identified in the released data. This would occur,

for example, if a table appeared with a cell count of one indicating that the set

of characteristics for that particular cell were unique. This situation presents

the possibility that the individual whose record accounts for the one in a table

cell can be linked to an individual’s identity. This type of event, locating a

cell count of 1, in and of itself, does not create a disclosure, however, it often

leads to other situations in which other types of disclosures take place and,

therefore, is to be avoided.

Another type of disclosure, attribute disclosure, occurs when new informa-

tion is discovered about an individual from the released data. This could occur

in the current setting if, upon discovering a cell with a 1 count in it based en-
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tirely on demographic characteristics, a subsequent query was made inquiring

about some attribute of this individual. This would lead to a situation where

a data user would have a combination of demographic characteristics that

uniquely defined an individual in the data as well as information about some

attribute of this individual. If this type of disclosure occurs in conjunction

with an identity disclosure, a link can then be made between the identity of

an individual and a learned attribute, such as disease status or cause of death.

While cell counts of 1 are a problem in terms of statistical disclosure control

in tables, only getting rid of 1’s will not solve the problem entirely. Another

type of disclosure, group attribute disclosure, occurs when all individuals in

group have the same attribute. This could occur if a user identifies a cell with

a small cell count, such as 2. If, upon subsequent querying, the user learns that

all members of this sub-group have the same disease, for example, a private

attribute has been learned about each of these individuals. Notice, that an

identity disclosure does not need to take place for this to occur. No record in

the data has been identified as belonging to a specific individual, but, rather,

we have learned something all individuals in the sub-group.

One last type of disclosure relevant to this situation occurs form the use dif-

ferencing. Hundepool et al (2006) describes three types of potential disclosures

by differencing which are geographical differencing (Duke-Williams and Rees,

1998), linking, and differencing of sub-populations. In the context of the query

systems we evaluated, differencing of sub-populations is very simple approach

for subverting suppression of small cell counts by releasing organizations. For

example, say an individual was looking for men who died in a certain county

at the age of 33. For a small county, this number may be very small and, if

suppression were being used, would likely be suppressed. However, rather than

querying men who died at exactly the age of 33, provided the WDQS allows

this type of query, one could query the number of men in a county who died
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Table 1 Query Result. All Deaths. Year: 2000, Age: Under 15

Male Female Total
Black 5 1 6
White 50 38 88

Total 55 39 94

who were 32 or younger followed by a query of men who died in the county

who were 33 or younger. These two queries are likely to return results that are

not suppressed because the counts are likely to be sufficiently large. However,

the difference between these two queries is exactly the suppressed value of the

original query. Fraser and Wooten (2005) propose a method to protect tabular

data against disclosure by differencing.

3.1.1 No Suppression

As an example of a potential disclosure in the presence of no employed methods

of disclosure control, consider the following set of two queries. In the first query,

the request is for a table based on all deaths of individuals under the age of

15 occurring in the year 2000 separated by race on the rows and gender in

the columns. An example of a query appears in table 1. From this table, a

user learns that based on year of death, age group, race, and gender that a

unique combination can be created. The one in the upper right cell of this

table indicates that only one black female under the age of 15 died in this

state. Therefore, a subsequent query based on data of all deaths in the year

2000 of individuals under the age of 15 whose gender was female and race was

black is based on only one data point. Therefore, if we based a query on this

data and stratify by some attribute that we are interested in learning, say

cause of death, without any disclosure control, the exact cause of death can

be learned. Table 2 is based on the one data point that was identified from
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Table 2 Query Result. All Deaths. Year: 2000, Age: Under 15, Race: Black, Gender: Female

Cause of Death Count
Heart Disease 0

Cancer 0
HIV/AIDS 1
Homicide 0
Suicide 0

a previous query and is now stratified by cause of death. This second query

allows us to learn that the cause of death was HIV/AIDS.

In summary, what a data user has learned is that within a given state only

one black female under the age of 15 died in the year 2000, and that the cause

of death for this individual was HIV/AIDS. Granted, no definite disclosure

has yet occurred. However, it is not difficult to imagine a way of identifying

exactly who this individual is especially in the digital age. Further, assuming

that this individual could be identified, they are not the only person who’s

privacy have been potentially compromised. Specifically, in this case a user

has learned that a child has died of HIV/AIDS. This likely indicates that the

mother and/or father of this child is carrying the virus, which they then passed

on to their child. This is an especially important aspect of this example to note

that private attributes of individuals’ who are not even in this database are

potentially at risk here.

3.1.2 Suppression

Encouragingly, many states at the very least acknowledge the issue of potential

statistical disclosure and have taken steps to control this. One of the most

commonly observed methods of disclosure control among the state systems

examined here was cell suppression. However, simple implementation of this

method is not enough to control disclosures in many situations. For example,
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assume that the suppression rule for a query system is to return all cells with

a cell count less than or equal to 3 as missing values. This is done in an

attempt to prevent small cell counts, especially 1’s, from appearing in table

cells, which could lead to identity and attribute disclosure. However, consider

the following query based on data from a particular county of all men between

the ages of 20-24 who died in 2008 separated by race in the columns. The

results of this query are presented in table 3. The returned table contains

three cells: one for black, one for white, and one for total. As a result of a

small cell count in the cell corresponding to a race of black, the true value is

suppressed in compliance with disclosure control protocols set forth by this

table. Rather than returning the true value of the cell, an “X”, for example, is

placed in the table where the actual value would have appeared. However, even

with suppression correctly applied to this table, it should be obvious, without

even submitting another query, that the true value that is suppressed is a 1.

The cause of this problem here is that only primary suppression (Cox, 1980)

is applied to the table, whereas, from a disclose perspective, complementary

suppression would aid in limiting disclosures here. Complementary suppression

(Cox, 1980) involves suppressing cells that by themselves do not meet the

requirement for suppression, but can be used to aid in discovering the true

values of the primarily suppressed cells.

Returning to the original table, now that a 1 has been identified in a sup-

pressed cell, a subsequent query can be used to attempt to create an attribute

disclosure about this individual. This query is based on the same data as

the original query with additional subletting to include only those individuals

whose race is black. Based on the first query, it is known that the total number

of data points that this query is based on is 1. Therefore, any resulting table

can only have a 1 in it, even if the value is suppressed. The results of a query of

this kind can be found in table 4. From this table, we can infer that the cause
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Table 3 County: X, Age: 20-24, Sex: Male, Year: 2008

Race Count
Black X
White 9
Total 10

of death for this individual was cancer. In review, a data user has learned,

based only on these two queries, that there was one black male who died in

a given county in the year 2008 who was between the ages of 20-24 and that

the cause of death was cancer. Further, the data user has learned all of this

information using only two queries even in the presence of cell suppression to

control against disclosures. This is a particularly troubling example because

the operators of this query system are aware that statistical disclosure poses

a threat to individual privacy, which can be inferred by their attempts to ad-

dress this risk, but the disclosure controls are being implemented in such a

way as to be practically doing almost nothing.

Table 5 presents the results of a query of all females aged 25-44 in a certain

county by year and race. Cell suppression is implemented here as intended,

however, because row and column totals are not suppressed the values that

are suppressed can be filled in exactly with nothing more than subtraction. In

both of these examples, suppression is implemented as intended, but, in both

cases, the actual benefits from a disclosure control perspective are essentially

nonexistent. Further, these tables, by themselves, do not protect the values of

the suppressed cells, and, therefore, these tables could not even be released in

static form. Here, however, a user has the ability to flexibly create other tables,

they don’t even need to use that extra flexibility to learn the true values of

suppressed and supposedly protected cell values.
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Table 4 County: X, Age: 20-24, Sex: Male,Year: 2008, Race: Black

Race Count
All Causes X

Cancer X

Table 5 County: X, Age: 20-24, Sex: Male,Year

Year Black White Other Total
1990 82 6 X 89
1991 65 X X 73
Total 147 10 X 162

3.1.3 Subverting Suppression with multiple queries

The previous examples involving suppression demonstrated instances where

the true values of suppressed cells can be learned directly from one query.

However, in other situations it may only take one or a few additional queries

to infer the true values of suppressed cells. Consider, for example, that a data

user discovers from a previous query that there was only one white male in a

given county who died in the year 2008 who was between the ages of 25-44 at

the time of his death. The user can then submit a query based on only this

subset of attributes and separate the rows by cause of death. By restricting

the data to certain causes of death, the user can eventually get to a result as

in table 6. Therefore, the user knows the cause of death is either an accident

or a suicide. While the cause of death is not known for sure at this point, it

could be argued that this is already a disclosure as the user has learned that

the cause of death was not natural.

However, with only one additional query, restricting cause of death to only

accidents, the exact cause of death can be learned. Whereas the true value

in the accidents cell was previously suppressed, in table 7 it is no longer sup-

pressed, and it is revealed that the true value is zero. Now that the user knows
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that there were zero accident deaths, the exact cause of death here is reveled to

have been suicide. Again, in summary the user has a very specific and unique

demographic description of this individual and, through multiple queries, was

able to subvert suppression and learn the exact cause of death. Imagine if a

health provider ever release a raw data record with demographic information

that is this specific along with cause of death. This would probably not be

tolerated.

One aspect of this example that should be noted is that the true value of a

suppressed cell was learned because a cell with a zero in it was not suppressed.

Often it is assumed that there is no danger in releasing the true value of a

cell if that value is a zero. However, knowing that a cell is zero decreases the

uncertainty that a data user has about the true values of suppressed cells. Cell

values of zero can not simply be ignored from a disclosure perspective. They

are an important part of reducing disclosures in tabular count data.

Next, consider a table as in figure 1 based on data of all African-American

men who died in 2009 in a given state broken out by county and age group.

Due to suppression rules, small cell counts are being suppressed. It also ap-

pears that, along with primary suppression, secondary suppression is also being

applied here as indicated in the state’s explanation about suppression found

below the returned table. It is encouraging to see that some states recognize

that primary suppression by itself is simply not enough to prevent disclosures,

and this state has taken the next step in privacy by using secondary sup-

pression. As a result, this table, considered alone, appears to be adequately

protecting the true values of the suppressed cells, though it is unclear why

some cells have unsuppressed ones appearing in the table. Assuming that the

cells with one counts are determined to not pose a risk of disclosure, the cells

that are suppressed can be easily learned by submitting only one more well

created query. In this instance, a user can simply repeat the exact same orig-
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Table 6 County: X, Age: 25-44, Sex: Male,Year: 2008, Race: White, Cause of death: Acci-
dents or Suicide

Cause of Death Count
Accidents X

Suicide X
Total 1

Fig. 1 An example of an implementation of complementary suppression that still allows
suppressed values to be recovered.

inal query and just remove the breakdown by age. This returns a table with

only one column, where each row is the total count for a county. As a result

of this query, the suppressed row totals from the original table, which were

missing due to secondary suppression, can be filled in. This allows a user to

fill in every suppressed cell value in the table so that, practically speaking,

any protection originally provided by cell suppression is essentially voided by

performing only one additional query and arithmetic.
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Table 7 County: X, Age: 25-44, Sex: Male,Year: 2008, Race: White, Cause of Death: Ac-
cidents

Cause of Death Count
Accidents 0

4 Disclosure by differencing

In addition to the aforementioned problems with suppression, some query sys-

tems failed to address a potential attack via differencing of tables (Australian

Bureau of Statistics, 2005). This type of disclosure could occur when a user

poses a query with very specific row or column specifications. This would cause

many of the values in the returned cells would be small and thus sensitive. For

example, suppose a user wanted to know how many instances of a disease there

were by year for a specific age (e.g. 35). If these are small counties these values

will likely be very small and therefore suppressed. Table 8 show a possible

query result for a situation like this and suppresses all of the counts because

they are too small (Columns 1 and 2). However, rather than querying how

many 35 year olds have a specific condition from a certain county, a user could

pose two additional queries that are slightly different and learn the exact val-

ues of the suppressed cells in the original query. For example, a user could ask

how many people 35 years of younger have the condition and then how many

people 34 years or younger have the condition. By posing the queries this way,

in this state, the results will often be large enough to avoid most system’s

suppression rules for small cells. While this type of disclosure is certainly a

problem even for static tables, it is an especially troublesome problem when

many queries are allowed and tables can be flexibly generated.
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Table 8 Differencing: Race: White, Gender: F, County: A, Age: 35

Year Age=35 Year Age≤34 Year Age ≤ 35
1991 X 1991 23 1991 24
1992 X 1992 25 1992 26
1993 X 1993 22 1993 24
1994 X 1994 22 1994 23
1995 X 1995 19 1995 21
1996 X 1996 17 1996 18
Total 8 Total 128 Total 136

Each set of two columns in table 8 displays the results of each of three

individual queries. The first two columns show the results when querying by

race, gender, county, and specific age, in this case 35. The individual values are

suppressed due to small cell counts. However, by changing the query criteria

of age to less than or equal to 34, no results in the resulting query, columns

3 and 4, are suppressed due to small cell counts. A data snooper could then

query again changing the age criteria to less than or equal to 35 resulting in the

table displayed in columns 5 and 6, again with nothing suppressed because the

counts are large enough. As a result of the manner in which these queries were

devised, the difference between the result of the third query and the second

query will result in exactly the suppressed values of the first query. This is an

example of disclosure by difference that was actually observed in a WDQS,

which, essentially renders suppression meaningless in this context. This is yet

another example where the large amount of flexibility a user has in posing the

query, while extremely useful, presents many potential privacy problems.

5 Conclusion

The results of this inquiry into the privacy protection measures utilized in

state authorized WDQS are cause for serious concern. While many systems

recognized the need to employ statistical disclosure control techniques, the
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most common method employed was cell suppression, which is particularly

poorly suited for this specific setting (i.e flexible table generation). Further,

many systems that employed cell suppression deployed it inadequately. We

would encourage organizations that release tabular data to follow the guide-

lines put forth in the Handbook for Statistical Disclosure Control (Hundepool

et al, 2006).

As a result sensitive information from individuals whose attributes made

them easily identifiable are freely available to those who choose to seek that

information. Potential privacy issues related to causes of death were aston-

ishing, ranging from HIV to cancer. Most distressing is that this information

was so easily obtained; In no case did any of the disclosures presented above

require more than 30 minutes of work.

Aside from the obvious invasion of privacy that such disclosures may entail,

the pernicious (malicious?) use of such data can easily be used to cause tangible

harm to individuals. Unscrupulous employers and insurers, currently under

mandates by the ACA to not deny coverage for pre-existing conditions and

with lifetime coverage limits eliminated, might be well rewarded for vetting

potential employees and insured infectious diseases such as HIV that might be

transmitted to loved ones or cancers that might have a genetic basis.

Given the explosion of de-identified patient data that will be available

with the emergence of Health Information Exchanges (HIEs), it is critical

that we develop query systems that will not compromise privacy. In addition

to the public health importance of these data, many HIEs will rely on the

dissemination of ostensibly de-identified data as part of their business plan.

As we have seen, even the provision of aggregate data poses privacy risks,

and the release of record-level information, so critical to efforts to provide

population assessments, improve treatment outcomes, and facilitate quality

improvement, carries even greater risks.
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Data use agreements are a critical tool in safeguarding privacy, but consider

this: would a hospital or healthcare provider allow open access to a medical

records office so long as all visitors signed a pledge that they would not look

at anything they weren’t supposed to? Of course not, yet without restrictions

on access to what is provided in WDQS this is essentially what a data use

agreement does.
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