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Abstract— Through high-throughput RNA sequencing (RNA-

seq), transcriptomes for a single cell, tissue, or organism(s) can 
be ascertained at a high resolution. While a number of 
bioinformatic tools have been developed for transcriptome 
analyses, significant challenges exist for studies of non-model 
organisms. Without a reference sequence available, raw reads 
must first be assembled de novo followed by the tedious task of 
BLAST searches and data mining for functional information. We 
have created a pipeline, PyRanger, to automate this process. The 
pipeline includes functionality to assess a single transcriptome 
and also facilitate comparative transcriptomic studies. 

Keywords—de novo transcriptomics, RNA-seq, comparative 
gene expression 

I. INTRODUCTION 
Sequencing technologies continue to increase their 

throughput, decrease in cost, and increase the length of reads 
produced. As a result genomic, metagenomic, transcriptomic, 
and metabolomic sequencing projects of new ecological niches 
and non-model organisms is now attainable. Precisely defining 
the genes present and expressed (the transcriptome) of a single 
organism or a complex community is critical for our 
understanding of life. A number of tools [1-4] and complete 
pipelines [5-8] have been explicitly developed for 
transcriptome studies. Based upon mapping raw reads to a 
reference genome, these tools are able to quantify expression 
and compare expression profiles between samples. When no 
reference genome is available, however, transcriptome analysis 
can be computationally challenging in addition to being labor 
intensive. The standard practice is to perform de novo 
sequencing followed by homology searches via BLAST and 
this methodology has been employed for the examination of 
numerous species and niches, e.g. [9-12]. To streamline this 
process, we have developed PyRanger for the analysis of non-
model species, from raw sequencing reads to comparisons 

between samples. While our motivation for development was 
for investigation of transcriptomic datasets (as exemplified in 
our proof-of-concept presented here), the pipeline can be 
applied to metagenomic and genomic studies as well. 

II. IMPLEMENTATION 
PyRanger (www.putonti-lab.com/software.html) integrates 

existing tools and custom parsers to expedite the evaluation of 
one to many individual samples through four steps: 

1. Assembly Optimization: Fastq files are first examined 
using the Perl script VelvetOptimiser 
(http://bioinformatics.net.au/software.velvetoptimiser.s
html); this tool identifies the optimal parameters for 
assembly. 

2. De novo Assembly: The fastq files are assembled using 
the Velvet [13] de novo assembler (written in C) with 
the optimal k-mer value identified in the prior step. 
The Velvet assembler includes two executables: 
velveth and velvetg; the former prepares the dataset for 
velvetg, the assembler. 

3. Identifying Functionality: The assembled sequences 
(contigs) are next compared against the reference 
protein database (determined by the user). This 
database can be a near-neighbor or more distant, well-
annotated species or a conglomeration of species. 
Functionality is assessed via a local blastx search 
through the BLAST+ suite (written in C++) [14]. 

4. Analysis: Functionality was developed in C++ to 
automate parsing of the BLAST results and facilitate 
the comparing multiple samples. Thus metagenomes or 
transcriptomes from different locations, time points, 
environmental conditions, etc. can be evaluated. 
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Each stage in the pipeline and its associated software is 
called through a single Python module; this provides flexibility 
as the user can substitute/add tools to meet his/her preferences 
and update components as new versions become available. The 
computational resources required of the pipeline are practical 
and expect minimal scripting expertise. Users can specify 
individual parameters through the use of a single configuration 
file. The pipeline is designed to be run on a UNIX machine 
with a minimum of 16GB of RAM. Run-time is dependent 
upon the assembly of the reads (Velvet) and BLASTing the 
contigs. 

III. PROOF-OF-CONCEPT 
The transcriptomes of three avian species were used as a 

test for our pipeline. Extant avian species emerged over 100 
million years ago (MYA) [15] giving rise to a broad array of 
diverse species. Only two complete bird genomes have been 
sequenced to date – chicken (Gallus gallus) and zebra finch 
(Taeniopygia guttata). These two are quite distant relatives to 
many bird species (e.g. the molecular divergence between the 
ostrich and the chicken is approximated at 80-90 MYA [16]). 
As such, it is not surprising that there is significant variation 
amongst extant bird species; in fact genome sequencing and 
transcriptomic studies of some species cannot rely on the 
available genomes as a reference as they are too divergent. 

Thus, to test our pipeline three avian transcriptomic data 
sets were selected: the kiwi (Apteryx australis) SRX026541 
[10], the duck (Anas platyrhynchos) SRX026109 [9], and the 
rock pigeon (Columba livia) SRX159811 [17]. The size of the 
transcriptomic data (in FASTQ format) ranged from ~41 Mb to 
10 Gb. Each sample was processed by the pipeline three times, 
for three different databases – chicken, zebra finch and mouse 
(Mus musculus). As expected, more BLAST hits were found 
when comparing the kiwi, duck and rock pigeon contigs to 
chicken and zebra finch. Significantly more hits were found to 
chicken (a likely factor of the more complete annotation 
available rather than kinship). Comparing the transcriptomes 
reveals a number of genes expressed in a single species, pair of 
species or all three species (Fig. 1). It is of note, that these 
transcriptomes are from different tissues, further contributing 
to the variation in the genes identified within the three species. 
For each hit, protein information is provided for further 
downstream analysis. 

Fig. 1. Comparison of the BLAST hits to the three transcriptomes 

IV. CONCLUSIONS AND FUTURE DIRECTIONS 
The PyRanger pipeline presented here expedites functional 

analysis when investigating species or mixed communities, 
particularly when near-neighbor reference sequences are not 
available. This approach can be applied for studies across all 
domains of life, from viral species and/or communities to 
eukaryotic genomes or transcriptomes, the latter being 
demonstrated in our proof-of-concept study. Future 
developments include the incorporation of additional assembly 
methods as well as downstream analysis tools. 
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