
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

11-2009

Essential Tools: Version Control Systems Essential Tools: Version Control Systems

Konrad Hinsen

Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Konrad Hinsen, Konstantin Läufer, George K. Thiruvathukal, "Essential Tools: Version Control Systems,"
Computing in Science and Engineering, vol. 11, no. 6, pp. 84-91, Nov./Dec. 2009, doi:10.1109/
MCSE.2009.194

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2009 Konrad Hinsen, Konstantin Läufer, George K. Thiruvathukal

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

84	 Copublished by the IEEE CS and the AIP	 1521-9615/09/$26.00 © 2009 IEEE� Computing in Science & Engineering

S cie n t i f ic P r o g r a m m i n g

Editors: Konstantin Läufer, laufer@cs.luc.edu

Konrad Hinsen, hinsen@cnrs-orleans.fr

Essential Tools: Version
Control Systems
By Konrad Hinsen, Konstantin Läufer, and George K. Thiruvathukal

It’s a safe bet that everyone read-
ing this article works with files
that are regularly modified over a

long period of time. Program code is
the most obvious example, but scien-
tific publications typically fall into the
same category. Those who do system
administration can add their comput-
ers’ various configuration files to the
list. And for many of these long-lived
and regularly modified files, there’s
more than one person working on
them.

In these and similar situations, some-
thing usually goes wrong sooner or
later. For example, your program might
suddenly stop working correctly or an
important paragraph might mysteri-
ously disappear from the paper you’re
writing. At this point, three key ques-
tions arise:

Which files were changed? •	
Who made the change? •	
What did the files contain before •	
the change?

A version control system can help you
answer these questions rapidly and
reliably.

A VCS tracks changes to a set of
files—typically a directory’s contents—
called a project. For each change,
the VCS records the date and time,
the person who made the change,
and the differences between the
file contents before and after the
change. From this information, it

can reconstruct the files’ past con-
tents if necessary. VCSs also offer a
set of tools to help users employ this
information efficiently to solve fre-
quently occurring project manage-
ment tasks.

VCS Workflow
To illustrate a typical VCS work-
flow, we’ll use example command
lines for Unix computers running
the popular distributed VCS Mercu-
rial (http://mercurial.selenic.com),
but the command lines are similar
for other systems. The “Integrated
Development Environment Support
for VCSs” sidebar shows the same
example done inside Eclipse, a pop-
ular IDE.

Here, the command hg (the chemi-
cal symbol for mercury) is the Mercu-
rial program. First, you tell the VCS
to create a new directory (called my_
project) and turn it into a version-
controlled project:

hg init my_project .

Mercurial stores its bookkeep-
ing information in the subdirectory
my_project/.hg, which is created
during initialization. Next, you copy
any initial project contents into this
directory. If you don’t yet have con-
tent, you work on the project until
you have the first version that you’d
like to keep a snapshot of; you then
type

hg add

hg commit --message “First

version of my project”

Mercurial adds these files to the
project’s list of version-controlled files
and records the project’s current state
as a numbered revision. You need the
first command because not all files in
the project’s directory are automati-
cally version controlled. For example,
you wouldn’t want computer-generated
files, such as compiler output, under
version control. To fully control ev-
erything that goes into the repository,
you can specify the files you want add-
ed after hg add. By default, Mercurial
adds everything.

When committing a revision, Mer-
curial also records the date and time,
and the name and/or email address of
the user who committed it. The lat-
ter information is typically taken from
a configuration file, but you can also
specify it on the command line. Finally,
Mercurial records the text provided af-
ter the --message as the commit mes-
sage. This message is meant for human
readers (including your older self in the
future), so try to make it informative.
If you want to provide more than just
a line, you can omit the --message
option and have Mercurial open a text
editor of your choice for typing the
message. After committing the proj-
ect’s current state as a revision, you can
continue working on your project until
you want to commit another revision.

Did you ever wish you’d made a backup copy of a file before changing it? Or before applying a collaborator’s
modifications? Version control systems make this easier, and do a lot more.

November/December 2009� 85

To make this example more con-
crete, let’s say you type the following
lines into your computer:

hg init my_project

echo “This is my first file”

> first_file

hg add

hg commit --message “First

version of my project”

To see what Mercurial has recorded in
your project, you type

hg log

This should yield something like

changeset:	 0:d6dcac101f82

tag:	 tip

user:	 Konrad Hinsen

<hinsen@cnrs-

orleans.fr>

date:	 Mon Aug 10

13:47:22 2009

+0200

summary:	 First version of

my project

The first line tells you that this is the
information about changeset number 0
(the first—and for now the only—one in
your project). A changeset is a collection
of changes to various files. Revisions
and changesets are distinct: a change
set is the difference between two con-
secutive revisions, and a revision is the
result of applying all changesets up to
a specific number. Mercurial uses the
same number to refer to a revision and
to the changeset that immediately leads
to the revision. It also assigns a unique
identifier to each changeset, consisting
of a long number, of which the first 12
hexadecimal digits are also given in the
first line. Moreover, a changeset can
have any number of tags. Tags are just
convenient labels for specific changesets

or revisions. Mercurial automatically
attributes the tag tip to the most re-
cent changeset. You can add other tags
at your convenience—for example,
release_2.3—using the command
hg tag. The remaining lines show the
information that was recorded about the
changeset. If you want more details, such
as the names of the files that have been
changed, you can type hg log -v.

To continue with your exploration
of how Mercurial works, type

echo “This is my second file”

> second_file

hg status

This prints

? second_file

which is a concise status report about
your project. The status report lists
modified files (preceded by M), newly
created and not yet added files (pre-
ceded by ?, as shown above), removed
files (preceded by R), and a few other
possible modifications. Here, the ques-
tion mark tells you that you haven’t yet
added the file to the version-controlled
file set. To do that, you type

hg add

hg status

The project status now is

A second_file

indicating that second_file has been
added. You’re now ready to commit
your second revision:

hg commit --message

“An update”

Typing hg log will now show two
changesets. Let’s look at the difference

between the two revisions that corre-
spond to them:

hg diff -r 0 -r 1

This command produces the same
kind of output as the diff utility fa-
miliar from Unix systems:

diff -r d6dcac101f82 -r

09856f1f1133 second_file

---/dev/null Thu Jan 01

00:00:00 1970 +0000

+++ b/second_file Mon Aug 10

14:08:13 2009 +0200

@@ -0,0 +1,1 @@

+This is my second file

This instruction set lets you obtain
the second version of a file starting
from the first version, whose nonexis-
tence is somewhat cryptically indicat-
ed by /dev/null. Here, the plus sign
gives the instruction to “add a line,”
and the addition’s location is given by
the specification -0,0 +1,1.

With just these few example com-
mands, you can keep track of changes
to your files. Mercurial also provides
many more commands for more or
less common project management
tasks, recreating a given revision, ex-
porting and importing changesets for
communication with collaborators,
publishing revisions on public servers,
and updating your local copy from a
public server. The most complicated
task in working with VCSs, however,
is integrating several people’s changes
into a single, coherent version.

Resolving Collaboration
Conflicts
When more than one person works
on a project, conflicts become pos-
sible: two or more users might work
on the same file and apply incompat-
ible modifications. In practice, the

S cie n t i f ic P r o g r a m m i n g

86� Computing in Science & Engineering

Integrated Development
Environment Support
for VCSs

When choosing a version control system, one
key question is whether it will integrate well

with your existing development tools and your pre-
ferred workflow. In this sidebar, we’ll take a look at
integrated development environment support for VCSs,
using our favorite IDE, Eclipse, as an example. Other
major IDEs also support VCS interaction, but (in our
opinion) Eclipse does it best in terms of usability and
reliability.

As an extensible development platform, Eclipse can,
in principle, support any VCSs. It supports Concurrent
Versioning System (CVS) out of the box, and Subversion
(SVN) users have two choices of plugins—one, Subversive,
is officially under the Eclipse umbrella, but requires that
you separately install several components. In all cases, in-
teraction with the VCS is integrated via context menus and
node decorations into the standard Eclipse tools (Project
Explorer, Navigator, and so on).

For client-server VCSs such as CVS and SVN, Eclipse
has separate VCS-specific perspectives (that is, task-
oriented organizations of views, menus, and toolbars) for
managing repositories and a mostly VCS-independent
perspective for synchronizing local projects with server-
based repositories. The former, called the Repository
Exploring perspective (see Figure A), lets us view—and
in some cases modify—repository resources without
checking out local copies. The latter, called the Team

Synchronizing perspective (see Figure B), lets us control
interactively the exact changes we’re about to commit
to or download from a repository; in particular, it lets us
make structural comparisons between local and remote
resources.

As a decentralized, peer-to-peer VCS, Mercurial
doesn’t require us to manage a list of repositories or
synchronize with a server. Accordingly, the Mercurial
Eclipse plugin (www.vectrace.com/mercurialeclipse/),

Figure A. The SVN Repository Exploring perspective. These
perspectives, which are specific to version control systems (VCSs),
let users manage and browse their repositories, as well as view
and modify the resources they contain.

Figure B. The Team Synchronizing perspective. This general
perspective lets users interactively control the changes they’re
about to commit to or download from a repository.

Figure C. Team context menu. This menu exposes most operations
available in the specific underlying version control system—in this
case, Mercurial.

November/December 2009� 87

doesn’t include these additional perspectives.
After installing the plugin, we simply tell it where
to find the Mercurial executable (hg), and we’re
good to go.

We’ll now use Eclipse to go through the same ex-
ample as in the main article. We can easily accomplish
the first steps—creating a project and adding a file—
through the Project Explorer (see Figure C). Next, to
convert the project into a local Mercurial repository, we
right click on my_project and choose Team, then Share
Project. The icons for the project directory and file now
display with a question mark (as with the hg status
output in the main example) to indicate that they
were added recently, but haven’t yet been committed.
Furthermore, the Team context menu now exposes most
Mercurial operations, including those we’ve already
seen.

In particular, we can either add and commit specific
resources to version control or perform a single commit
that includes the desired additions. As Figure D shows, our
icons now change to display a barrel-shaped repository
symbol, indicating that the resources are under version
control, but haven’t changed since the most recent com-
mit. This symbol corresponds to a resource not having an
entry in hg status.

After creating another file and adding it to version
control, the project’s symbol turns to an asterisk, indicating
that there has been at least one change, and the file’s sym-
bol turns to a plus sign, indicating that it has been added
but not yet committed. Once we commit again, all symbols
change back to the repository symbol.

The Team context menu doesn’t include cloning.
Instead, Eclipse supports repository cloning through its
Import context menu (a File submenu). We simply im-
port from Mercurial by choosing the only option, Clone
repository using MercurialEclipse. We can then specify a
remote URL or a local directory from which to import the
repository.

The Team menu does let us pull changes from an-
other repository by specifying a remote URL or a local
directory. We can also inspect the available changesets
visually before going ahead with the pull (see Figure E).
Once we instigate the pull, a popup displays with the
same output as running hg pull on the command
line.

Finally, we can choose the changeset to merge into
the current tip, but there doesn’t seem to be a way to
choose from among various merge options. We hope
that future versions of MercurialEclipse will support
these options.

Figure D. Resource status icons. These icons indicate the status
of a resource in the repository. (1) The barrel indicates no
change, while (2) the asterisk means at least one change, and
the plus sign indicates a resource about to be added to the
repository.

(1)

(2)

Figure E. Incoming changesets dialog. When we pull changes
from another repository, this popup shows us a list of incoming
changesets to choose from.

S cie n t i f ic P r o g r a m m i n g

88� Computing in Science & Engineering

question of whether modifications are
compatible is a subtle one, particu-
larly when we expect the computer to
decide. However, most VCSs handle
typical uncritical situations—such
as two users adding a complete func-
tion to a source code file at clearly dif-
ferent positions—rather well. But when
it comes to real conflicts, don’t expect
any miracles: the best a VCS can do is
warn you about the conflict and ask you
to provide the final version of the files
that have conflicting modifications.

When a VCS integrates changes
made by several people and deals with
possible conflicts, it’s called merg-
ing. All VCSs support functions for
merging, but they’re a little less stan-
dardized than the basic operations.
Moreover, for all but the most trivial
cases, it’s wise to use a special tool with
a graphical user interface to manually
reconcile conflicting changes. You
have to separately install and config-
ure such tools. The following example
shows how a simple merge operation
is performed using Mercurial and the
file merge utility provided by Apple’s
XCode toolkit for the Macintosh.
Because Mercurial knows from its
configuration file that it should call
Apple’s merge utility, you don’t see ex-
plicit references to it in the following.

First, we make a clone, or copy, of
the repository my_project generated
earlier:

hg clone my_project

my_colleagues_project

When making a clone, we could use
cp -rp instead of hg clone; the ad-
vantage of the latter is that it verifies
the repository’s integrity and lets us
clone repositories from a Web serv-
er. In a realistic situation, the clone
would be moved to another machine
and worked on by someone else.

Next, we add a new file and modify
another file in our repository:

cd my_project/

echo “This is my third file”

> third_file

echo “I changed my first

file” >> first_file

hg add

hg commit -m “some more

changes”

Our colleague also makes some
changes to the cloned version:

cd ../my_colleagues_project/

echo “A new file” >

a_new_file

echo “second line of first

file” >> first_file

hg add

hg commit -m “my colleague’s

changes”

Here, we assume that the separately
modified repository resides on the
same computer or has been copied
back there for the merge procedure.
(Although Mercurial also has com-
mands for merging over the net-
work or exchanging modifications by
email, we won’t use them here.) We
start the merge operation by obtain-
ing our colleague’s changes from his
repository:

cd my_project/

hg pull ../

my_colleagues_project/

Mercurial provides some information:

pulling from ../

my_colleagues_project/

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 2

changes to 2 files (+1 heads)

(run ‘hg heads’ to see heads,

‘hg merge’ to merge)

It’s important to realize that up to
now, Mercurial hasn’t modified any of
the project files; it has simply integrat-
ed the changes from the other reposi-
tory into its bookkeeping database. It
then indicates that there are two heads.
A head is the terminal point of a line
of sequential changes; it typically rep-
resents a project’s most recent version.
The tag tip that we’ve seen before
refers to the head with the highest
changeset number. So, because the VCS
has integrated a second line of sequen-
tial changes, there are now two heads:

hg heads

changeset:	 3:10874dd8014c

tag:	 tip

parent:	 1:d15ee4c775ae

user:	 Konrad Hinsen

<hinsen@cnrs-

orleans.fr>

date:	 Tue Aug 18 12:32:57

2009 +0200

summary:	 my colleague’s

changes

changeset:	 2:93406e2bac55

user:	 Konrad Hinsen

<hinsen@cnrs-

orleans.fr>

date:	 Tue Aug 18 12:31:49

2009 +0200

summary:	 some more changes

The next step merges the two heads
into one. This is where conflict reso-
lution occurs:

hg merge

merging first_file

November/December 2009� 89

At this point, Mercurial stops and runs
an external merge tool. The tool shows
the two versions of first_file side
by side and points to the second lines,
which are different. It offers an action
menu with five possible choices:

Choose left

Choose right

Choose both (left first)

Choose both (right first)

Choose neither

We choose both (right first)
and then save the file. Mercurial
continues:

1 files updated, 1 files

merged, 0 files removed,

0 files unresolved

(branch merge, don’t forget

to commit)

This indicates that the merge went
fine and reminds us to commit the
most recent changes. Before doing so,
let’s look at the differences:

hg diff

diff -r 93406e2bac55

a_new_file

--- /dev/null Thu Jan 01

00:00:00 1970 +0000

+++ b/a_new_file Tue Aug 18

12:38:50 2009 +0200

@@ -0,0 +1,1 @@

+A new file

diff -r 93406e2bac55

first_file

--- a/first_file Tue Aug 18

12:31:49 2009 +0200

+++ b/first_file Tue Aug 18

12:38:50 2009 +0200

@@ -1,2 +1,3 @@

This is my first file

+second line of first file

I changed my first file

The final step is the commit:

hg commit -m “Merged with my

colleague’s changes”

No action is required for the new files
third_file and a_new_file that
were created independently as there’s
no source of conflict and the final re-
pository contains them both.

Although the merge process might
seem complex, imagine what you’d do
without a VCS. You’d probably apply a
tool like the Unix command diff re-
cursively to the whole project, and ex-
amine all the changes on your screen to
spot possible conflicts. There’s a good
chance you’d miss one, which is indeed
a frequent source of subtle mistakes in
collaborative projects. A VCS helps you
reconcile conflicting changes. More-
over, it keeps a detailed trace of every-
thing that happened, so that any project
member can verify at any time whether
the merge was done correctly.

Centralized and
Distributed Systems
The first free, open source project-
oriented VCS was the content version-
ing system (CVS) published in 1990.
CVS uses a client-server architecture
in which all project data is stored on a
server. Every project collaborator has a
client software on his or her computer
that connects to the server through a
network. Thus, a server administrator
must set up the project. The adminis-
trator defines each user’s access rights
and manages backups and other main-
tenance operations. CVS became very
popular in the open source world and
was the basis of the first collaborative
servers such as SourceForge.

Today, CVS has been replaced al-
most completely by Subversion, or SVN
(the name of the command-line tool
that implements the client protocol).

SVN is basically an improved imple-
mentation of CVS ideas; it maintains
CVS’s server-client architecture and
provides an almost identical command
set. SVN’s main innovation is the no-
tion of transactional commit seman-
tics, which is similar to the concept
found in relational database systems.
Transactional semantics ensure that a
commit is either performed complete-
ly or not at all. This approach thus
prevents the repository from being in
an inconsistent state if a network prob-
lem interrupts a commit. SVN also
adds directory versioning (including
file renaming), constant-time branch-
ing and tagging, and space-efficient
differences between binary files. Cur-
rently, SVN is by far the most widely
used VCS in the open source world
and enjoys significant popularity in
commercial environments as well.

The main problem with centralized
VCSs such as CVS and SVN is that
they depend on a server and a network
connection. The server stores the only
master copy of the whole project. If the
server becomes unavailable, nobody
can work on the project. If the server’s
data is lost, the project is lost as well.
Moreover, work on the project is pos-
sible only with a network connection.
Because many software developers like
to work offline (to avoid Internet dis-
tractions) or while traveling, they often
make commits when a network con-
nection is available rather than when
the project’s state justifies them.

Distributed VCSs address this prob-
lem. With a distributed system, there’s
no server. Each user has a full copy
of the whole project—in the form of
a directory—on his or her computer.
The distributed VCS attaches book-
keeping information to each directory
for its own use. The earlier Mercu-
rial example illustrates how a distrib-
uted VCS works. If only one person is

S cie n t i f ic P r o g r a m m i n g

90� Computing in Science & Engineering

working on a project, the set up is ob-
viously simple. However, most projects
have several collaborators, and that’s
where distributed VCSs can get a bit
complicated to use. In fact, project col-
laborators must agree on a strategy for
sharing modifications and synchroniz-
ing their local project copies. One such
strategy is to adopt a central master
server (as for a centralized system).

Although distributed VCSs have
been around for a while, they’ve only
recently become popular with the
advent of several second-generation
systems that now compete for develop-
ers’ attention: Bazaar, Darcs, Git, and
Mercurial. Each has been adopted by
a few big and well-known projects, and
each has its advocates who claim it’s the
best. In practice, each will work fine for
most projects; differences emerge only
in extreme situations. Although dis-
tributed systems aren’t yet threatening
SVN’s market dominance, more and
more open source projects—including
well-known heavyweights such as Linux,
Mozilla, and Python—are switching to
distributed version control.

Very recently, “super clients” have
emerged to give users the best of the
centralized and distributed worlds
(http://blog.red-bean.com/sussman/
?p=116). The basic idea of a super
client—such as hgsubversion, which
permits access to Subversion reposi-
tories from Mercurial—is to clone an
existing server-based repository into a
local (distributed) repository. This can
be especially helpful when your project
takes an experimental direction and
you want to track your changes locally,
without formally committing them on
the official central repository. You can
later work with the official repository’s
maintainers to push your change
sets back upstream. Alternatively, you
can create a new project altogether.
Distributed VCS technology, therefore,

has the potential to be greatly demo-
cratic and liberating or wildly anarchi-
cal (much like the Wikipedia model
sans the recent editorial oversight provi-
sions). While it’s beyond our scope here
to discuss software project manage-
ment, it’s clear that some combination
of centralization and distribution is the
right mix for most real-world projects.
That said, most computational science
projects are experimental and explor-
atory in nature, and often take existing
code and evolve it for new needs. Given
that, we certainly like what we see in
distributed VCSs.

So, which VCS is right for you?
Obviously, there’s no single an-

swer that works for everyone. All of
the widely used systems work well,
so you can’t make a serious mistake
choosing one or another. If you join
an existing project and want your
changes to be recognized by the proj-
ect maintainers, you have no choice
but to use their system. If you want
to use a collaborative development
site, your choices are limited as well:
SourceForge proposes SVN, Git, and
Mercurial, while GoogleCode has
SVN and Mercurial, and so on. For a
new project, the only important deci-
sion is between a centralized system
(probably SVN) and a distributed one.
As a rule of thumb, pick a distributed
system unless you have a good reason
not to. When choosing among the
four big distributed systems, consider
practical criteria:

Do you know experienced users •	
who can help you?
Can you get easy-to-install distri-•	
butions for all of your computers?
Does the VCS integrate well with •	
your existing development tools and
your preferred workflow?

Does the documentation look un-•	
derstandable to you?

Finally, in the unlikely case that you
choose system A and run into serious
limitations a few years later, you can
always switch to system B and con-
vert your existing repositories; vari-
ous tools exist to help you with such a
migration.�

Konrad Hinsen is a researcher at the Cen-

tre de Biophysique Moléculaire in Orléans

(France) and at the Synchrotron Soleil in

Saint Aubin (France). His research interests

include protein structure and dynamics and

scientific computing. Hinsen has a PhD in

theoretical physics from RWTH Aachen Uni-

versity (Germany). Contact him at konrad.

hinsen@cnrs-orleans.fr.

Konstantin Läufer is a professor of com-

puter science at Loyola University Chicago.

His research interests include programming

languages, software architecture and frame-

works, distributed systems, mobile and

embedded computing, human-computer

interaction, and educational technology.

Läufer has a PhD in computer science from

the Courant Institute at New York University.

Contact him via www.cs.luc.edu/laufer.

George K. Thiruvathukal is an associate

professor of computer science at Loyola

University Chicago and associate editor in

chief of CiSE. His technical interests include

parallel/distributed systems, programming

language design/implementation, and com-

puter science across the disciplines. Thiru-

vathukal has a PhD in computer science from

the Illinois Institute of Technology. Contact

him via http://gkt.etl.luc.edu.

Selected articles and columns from
IEEE Computer Society publica-

tions are also available for free at http://
ComputingNow.computer.org.

november/DeCember 2009 91

Learn about computing history
and the people who shaped it.

COMPUTING
THEN

http://computingnow.
computer.org/ct

	Essential Tools: Version Control Systems
	Recommended Citation

	tmp.1322014275.pdf.iaQKL

