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RESEARCH ARTICLE
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Abstract

Bacterial surveys of the vaginal and bladder human microbiota have revealed an abundance

of many similar bacterial taxa. As the bladder was once thought to be sterile, the complex

interactions between microbes within the bladder have yet to be characterized. To initiate

this process, we have begun sequencing isolates, including the clinically relevant genus

Gardnerella. Herein, we present the genomic sequences of four Gardnerella strains isolated

from the bladders of women with symptoms of urgency urinary incontinence; these are the

first Gardnerella genomes produced from this niche. Congruent to genomic characterization

of Gardnerella isolates from the reproductive tract, isolates from the bladder reveal a large

pangenome, as well as evidence of high frequency horizontal gene transfer. Prophage gene

sequences were found to be abundant amongst the strains isolated from the bladder, as

well as amongst publicly available Gardnerella genomes from the vagina and endometrium,

motivating an in depth examination of these sequences. Amongst the 39 Gardnerella strains

examined here, there were more than 400 annotated prophage gene sequences that we

could cluster into 95 homologous groups; 49 of these groups were unique to a single strain.

While many of these prophages exhibited no sequence similarity to any lytic phage genome,

estimation of the rate of phage acquisition suggests both vertical and horizontal acquisition.

Furthermore, bioinformatic evidence indicates that prophage acquisition is ongoing within

both vaginal and bladder Gardnerella populations. The abundance of prophage sequences

within the strains examined here suggests that phages could play an important role in the

species’ evolutionary history and in its interactions within the complex communities found in

the female urinary and reproductive tracts.
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Background

Gardnerella, a member of the Bifidobacteriaceae family, is a genus of facultative anaerobes

within the vaginal microbiota of both healthy women and those diagnosed with bacterial vagi-

nosis (BV) [1–4]. Similarly, our group found Gardnerella in urine collected from adult female

bladders by transurethral catheter [5–8]. This corresponds with microbiome studies of voided

urine: Gardnerella was present regardless of sex or symptom status [9–13]. Furthermore, the

bladders of healthy individuals include other bacterial taxa also detected within the vaginal

microbiota [5–10,12–14]. To date, thirty-nine G. vaginalis isolates from the vagina or endome-

trium have been sequenced [15–19], including four complete genomes; the remaining

genomes are represented as scaffolds or contigs. Analyses of G. vaginalis genomes found evi-

dence of a large pangenome that consists of a modestly sized core genome in addition to

strain-specific genes [15,20].

Prior investigations of G. vaginalis genomes from the reproductive tract have uncovered indi-

cations of substantial horizontal gene transfer (HGT), including the acquisition of genes from

other human-associated taxa [15,20–21]. In addition to natural competence, G. vaginalis may

also include phage-mediated gene transfer, as coding regions of bacteriophage (phage) origin are

ubiquitous within these genomes [20]. Similarly, genomic sequences from other bacterial taxa

within the vaginal microbiota also contain parts of or entire temperate phage genomes [22–23].

Prior studies have posited that lysogenic lactobacilli phages could contribute to a shift in the vagi-

nal microbiota leading to BV (for a review, see [4]). Phages have been found to play a crucial role

in the structuring of microbial communities, including those residing within the human body

[24], driving bacterial genetic diversity [25] and adaptation to changes in the environment [26].

Although several phages induced from vaginal lactobacilli have been identified [27–28], cur-

rently no phages have been characterized for Gardnerella. While evidence suggests that phages

are likely contributors to HGT in commensal communities (e.g. [22,26] and review [29]), the

extent of their effect on the human microbiome is just now being explored (e.g., [30–32]).

Within many other microbiota, including the bladder, the virome remains largely unexplored.

Herein, we present the genomic sequences of four Gardnerella strains isolated from the

bladders of adult women with symptoms of urgency urinary incontinence (UUI). Comparative

genomics between these strains and publicly available isolates revealed a highly conserved core

genome across the bladder and vaginal isolates. Analogous to prior observations for this spe-

cies, the Gardnerella strains isolated from the bladder also contain a large number of prophage

gene sequences. The pervasiveness of prophage sequences in Gardnerella genomes from both

the female urinary and reproductive tracts motivated our thorough bioinformatic investiga-

tion. A comprehensive interrogation of the over 400 annotated prophage gene sequences iden-

tified here provides insight into the adaptive ability of Gardnerella, as well as the larger

community of phages within the female urinary community.

Results and Discussion

Genome Features

Four Gardnerella strains were previously isolated from the bladders of four different female

patients with symptoms of urgency urinary incontinence [8,33]. While MALDI-TOF identi-

fied two of these strains as G. vaginalis (henceforth denoted as Gv18-4 and Gv23-12), it did not

resolve the other two strains to the species level (G26-12 and G30-4). 16S rRNA gene sequenc-

ing for each isolate confirmed the strains belong to the genus Gardnerella (S1 Fig). All four iso-

lates were sequenced, assembled, and annotated (see Methods) and are publicly available via

NCBI. The genomic sequences varied slightly in size from 1.48 to 1.62 Mbp (Table 1).

Abundance of Prophages within Gardnerella Strains Isolated from the Bladder
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Homologs, as well as strain-specific coding regions, were identified within the genomes of

these bladder Gardnerella strains (Fig 1A). Although Gv18-4 and Gv23-12 were indistinguish-

able on the basis of their 16S rRNA sequences (S1 Fig), instances of both strain-specific gene

acquisition and loss within their genomes were detected (S1 Table). Annotation also revealed

the type I CRISPR/Cas system in all four genomes, with multiple CRISPR loci per genome

(Table 1). Comparison between the two strains identified by MALDI-TOF analysis to the spe-

cies level (Gv18-4 and Gv23-12) and those identified to the genus level (G26-12 and G30-4)

revealed disparity in the number of genes with the annotated functionalities of carbohydrate

metabolism, membrane transport, and cell wall and capsule synthesis (Fig 1B); however, the

genetic variation observed between the Gv and G strains is statistically significant only for loci

that regulate carbohydrate metabolism. Consistent with previous studies that illustrated the

ability of different Gardnerella strains to ferment and use different carbohydrates [Harwich

et al. 2010], annotation of the genome for G26-12 and G30-4 suggest that they lack coding

regions with the following functionalities: chitin and N-acetylglucosamine utilization,

Table 1. Genomic characteristics of four Gardnerella strains isolated from female bladders.

Genome G26-12 G30-4 Gv18-4 Gv23-12

Length 1,484,647 1,590,395 1,624,172 1,595,255

GC% 42.5 41.9 40.9 41.2

# Protein coding regions 1172 1242 1240 1243

# RNAs 48 48 45 46

# CRISPR arrays 5 8 2 4

# Scaffolds 175 183 324 301

Max Scaffold Length 57,529 42,968 33,481 45,660

N50 Length 16,568 20,497 11,232 11,376

Average Coverage 526 714 197 631

INSDC ID LWSR00000000 LXJL00000000 LWSP00000000 LWSQ00000000

doi:10.1371/journal.pone.0166757.t001

Fig 1. Characterization of predicted coding regions. (A) Homology and (B) annotated functionality within the four bladder Gardnerella

strains. (**p value <0.05 between the two predicted Gardnerella strains and the two predicted G. vaginalis strains; *p value < 0.1). Strains

are represented using the same colors in both panels.

doi:10.1371/journal.pone.0166757.g001
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trehalose biosynthesis, trehalose uptake and utilization, lactose and galactose uptake and utili-

zation, lactose utilization, formaldehyde assimilation, xylose utilization, deoxyribose and deox-

ynucleoside catabolism, D-gluconate and ketogluconates metabolism. The absence of these

coding regions within the G26-12 and G30-4 genome sequences was confirmed experimentally

via PCR (see Methods).

The genomes of these bladder strains were further examined with respect to the presence/

absence of coding regions associated with virulence, as previously defined by Yeoman et al.
[20] (S2 Table). Genes associated with biofilm formation (glycosylases and glycosyltrans-

ferases) and epithelial adhesion (fimbria/pili) were identified in all four genomes; however,

type-1 fimbrial precursors were found only within the genomes of G26-12 and G30-4. Genes

associated with antibiotic/antimicrobial resistance, including those that encode the ABC-type

multidrug transport system and the DedA protein (which has been shown to be required for

drug resistance in E. coli [34]) were present within all four genomes. However, tetracycline

resistance proteins were encoded within the Gv18-4, Gv23-12, and G26-12 strains, but not in

the G30-4 strain. Genes associated with protection or evasion from the immune response

(alkyl hydroperoxide reductase and Rib-family surface protein) were found within all four of

the bladder strains. Furthermore, the coding region for the vaginolysin (VLY) gene, which is

selective for human cells [20,35], was highly conserved within all four strains, in spite of the

two amino acid substitutions that separate the Gv18-4 strain from the type strain for the genus

ATCC 14019 (S2 Fig). Finally, the Gardnerella strains G26-12 and G30-4 contained an anno-

tated rRNA methyltransferase associated with Gardnerella cytotoxicity [20] and with haemoly-

tic activity in other bacterial species [36]. Interestingly, only the Gv18-4 and Gv23-12 strains

contained genes that encode sialidase, which has been experimentally proven to contribute to

mucin degradation in BV [16], although presence of the gene is not predictive of actual siali-

dase activity [37] and thus warrants further investigation.

Phylogenetic Analysis and the Gardnerella Pangenome

In an effort to assess the similarity/difference between Gardnerella strains isolated from the

female bladder and those isolated from the female reproductive system, all publicly available

sequenced strains isolated from the vagina or endometrium were retrieved from NCBI (S3

Table). This set includes 35 complete, scaffold, or contig genome sequences. Extending beyond

the 16S rRNA gene marker, the evolutionary history of this genus was considered by investi-

gating sequence homologies within the “core” Gardnerella genome (Methods; S4 Table). In

total, 183 genes were identified as belonging to this core gene set, less than identified in prior

studies of far fewer genomes [15,20]. As shown in Fig 2, the strains isolated from the bladder

are not monophyletic, establishing that the Gardnerella core genome does not correlate with a

single isolation location. Examination of all coding sequences for all 39 investigated genomes

revealed no gene(s) exclusive to the bladder strains. While the vast majority of the genes within

the core set demonstrated an evolutionary history identical to that of the species tree (Fig 2),

genes indicative of intragenic recombination, such as VLY (S2 Fig), were also identified.

Nevertheless, the species tree (Fig 2) we derived largely concurs with the tree produced by

Ahmed et al. [15]. In comparison to the phylogeny of Ahmed et al. [15], which included 17

genomes and a core genome of 473 genes, their Group 3 and 4 are both contained within

Clade A in Fig 2. Our Clade B corresponds to their Group 2 and our Clade C is within their

Group 1; only two of the genomes within Clade C were included in the prior analysis of

Ahmed et al. [15]. As expected, each clade had significantly more homologous genes (404, 799,

762 and 635 for Clades A through D, respectively) (Fig 2A), a likely residual of undersampling,

biased sampling, and/or clade-specific functional conservation.

Abundance of Prophages within Gardnerella Strains Isolated from the Bladder
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The bladder strains G26-12 and G30-4 were determined to belong to Clade A, which also

includes three strains isolated from BV+ patients (Fig 2B). While the phylogeny based upon

the core gene set does not correspond with isolation location, some clades appear to have a

higher incidence of strains isolated from patients diagnosed as BV+. Because genes associated

with virulence are not exclusively present within genomes isolated from symptomatic patients

[15,20], it is not surprising that several are included within the core gene set identified here.

The lack of correspondence between phylogenetic history and symptoms is supported by prior

studies, which hypothesized that gene expression variation within G. vaginalis strains may trig-

ger BV development [38] and single point mutations may result in greater potential for cyto-

toxicity [39]. Thus, there appears to be no single gene that correlates with BV symptoms. This

is, however, not surprising given that G. vaginalis strains are present within both the BV- and

BV+ vagina [40], and it is but one of the taxa that coincides with BV symptoms [3].

Mobile Elements

The four bladder Gardnerella genomes varied in their number of ORFs predicted to be viral

(bacteriophage) in origin (see Methods). The number of prophage gene sequences per genome

had no correspondence to evolutionary history (Fig 2). This is true for the four Gardnerella
strains isolated from the bladder, as well as for the 35 strains isolated from the reproductive

Fig 2. Phylogenetic Analysis of Gardnerella Strains. Maximum Likelihood species tree of Gardnerella strains based

upon sequence homology within the core gene set. (A) Phylogenetic tree listing branch supports and distinction of the four

clades within the tree. Numbers within black circles indicate the number of homologous genes within each clade and the

core Gardnerella genome. (B) Maximum Likelihood tree including branch lengths and isolation information with respect to

location and diagnosed symptom. Strains isolated from the bladder and sequenced in this study are labeled in red; strains

listed in green were isolated from the vagina/endometrium of BV+ patients; strains in light blue were isolated the vagina/

endometrium of STD+ patients. All remaining strains (indicated in black font) were isolated from the vagina or

endometrium.

doi:10.1371/journal.pone.0166757.g002
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system. For example, the G. vaginalis strain JCP8522, a vaginal BV+ strain [16], has only one

ORF annotated as a phage gene. In contrast, the Gv18-4 strain sequenced as part of this study

contains the most, 33, phage-like gene sequences within a Gardnerella genome to date. S5

Table lists the 442 annotated prophage genes within the 39 genomes examined. Due to the

incomplete (scaffold/contig) status of the majority of the genomes included in the analysis

here, we evaluated predicted prophage genes (median length 939 bp) individually.

To identify homologs, the nucleotide sequences for all annotated prophage genes across all

Gardnerella genomes were examined. Based upon the combination of sequence identity and

query coverage (see Methods), 104 clusters of orthologous prophage genes were identified (S1

File). Within larger clusters, prophage homolog sequences were highly conserved between

genomes. Forty-nine clusters, however, included only a single prophage gene sequence, indica-

tive of frequent independent acquisition of viral sequences. This is further supported by the

variation in prophage genes identified within strains isolated from the same patient. While the

genomes of JCP8481A and JCP8481B (both isolated from a single patient as denoted by A and

B [16]) contain the same set of prophage gene sequences, the genomes of JCP8151A/B and

JCP8017A/B do not (Fig 3; S5 Table); this captures the likely prevalence of lysogenic phage

excision, as well as gene loss, events. Likewise, the genomes of 00703Bmash, 00703C2mash,

and 00703Dmash, which are from sequential isolates from the same patient [15], vary in their

prophage gene content (Fig 3; S5 Table). This diversity, even within a single patient, suggests

intra-host prophage gene gain/loss.

Examination of the 37 largest prophage gene clusters suggested that prophage introduction

within the Gardnerella genus has occurred by both vertical and lateral inheritance. These larger

clusters include orthologous prophage gene sequences present within five or more Gardnerella
genomes; the most pervasive prophage gene sequences were present within 21 of the 39 Gard-
nerella genomes examined here. As shown in Fig 3, several of the larger prophage gene clusters

have representatives across the entire phylogenetic tree and some sets of clusters appeared to

have been lost within particular lineages. Half of the 104 prophage gene clusters identified

exhibit little to no resemblance to any sequence within the current GenBank nr/nt nucleotide

database of characterized phage sequences; this includes several of the prophage genes within

the larger clusters (represented as open circles in Fig 3). For those prophage gene sequences

that exhibit homology to characterized phage genes, hits were frequently identified to the

genomes of Bacillus-, Mycobacterium- and Staphylococcus-infecting phages. Previous targeted

gene surveys of the bladder have routinely found Staphylococcus within the community

[6,7,33].

Although Gardnerella-infecting phages have yet to be isolated, the abundance of prophage

gene sequences in the genomes (S5 Table) and the presence of the CRISPR/Cas-system

(Table 1) suggests that phages capable of infecting Gardnerella spp. exist. This assumption is

corroborated by prior analyses of spacer sequences within 21 G. vaginalis genomes, in which

70.7% of the spacers showed no homology to sequences within the GenBank database [21].

While many of the clusters exhibiting homology to sequences in GenBank identified lytic

phages annotated as infecting an array of different bacterial genera, analysis of eleven of the

104 clusters resulted in the description of phages thought to infect a single taxon. These

included several of the larger clusters shown in Fig 3: clusters 12, 15, and 30 were found to

have homology to Bacillus-infecting phages; clusters 22 and 35 were determined to be similar

to phages infecting Mycobacterium species; while cluster 29 exhibited a likeness to Staphylococ-
cus-infecting phages (S5 Table). Yet, all of these phages are of the family Siphoviridae. Homolo-

gies identified for these prophage sequences provide a foundation for future work in the

isolation of Gardnerella-specific phages. More broadly, these prophage gene sequences provide

insight into the phage community within the human microbiota.

Abundance of Prophages within Gardnerella Strains Isolated from the Bladder
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Fig 3. Presence/absence of prophage gene sequences from larger clusters. Clusters of orthologous prophage genes found within five or more

of the 39 Gardnerella genomes are shown using a distinct color. Open circles indicate that the prophage sequences belonging to the particular

cluster show no/poor sequence homology to characterized lytic phages. Closed circles indicate moderate (query coverage�80%, nucleotide

sequence identity�35%) to high homology to a phage genome sequence record in NCBI. Nucleotide sequence identity for the prophage genes in

each cluster is indicated by the bar chart at the top of the figure.

doi:10.1371/journal.pone.0166757.g003
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Lateral gene acquisition is ubiquitous; however, there is a strong discordance between the

evolutionary tree (S1 Fig; Fig 2) and trees derived from strain:prophage gene presence/absence

profiles (results not shown). To distinguish clusters acquired via HGT from those linearly inher-

ited from a common ancestor, the genomes of 39 Gardnerella strains were examined. Clusters

were compared given the number of occurrences and the rate of evolution of viral infection (Fig

4). From this analysis, two groups can be observed. The phage gene clusters in the top right

quadrant appear to have evolved quickly relative to their prevalence across strains and have

likely been integrated into the Gardnerella genomes via HGT. In contrast, the four clusters in

the bottom right quadrant appear to have been acquired by vertical transmission. Thus, we

hypothesize that prophage integration has been occurring over a long time scale. Given this evi-

dence of phage-host interactions and the results of recent studies illuminating the vital contri-

butions of viruses within other human microbiota (e.g. [31,32,41]), one can surmise that phages

are playing a significant role within both the bladder and reproductive system communities.

As the bladder microbiota have only recently been discovered and subsequently surveyed

[5–8,10,14,33,42], their microbiome remains largely uncharacterized. The presence of the

CRISPR/Cas system within the four Gardnerella strains sequenced here suggests phages are

present and prolific within the bladder. Given the existence of both Gardnerella and Lactobacil-
lus within both the female bladder [6–8,33] and vaginal [43–45] microbiota, some insight can

be gleaned from the latter. It is likely that phages play an important role in bacterial genome

evolution and potentially disease in both niches. Evidence of phages has previously been found

within the vaginal microbiota [27,46]. The incidence of Lactobacilliphages may have medical

significance, as vaginal lactobacilli may be culled or repressed by phages within the microbiota

leading to BV [27] (see review [4]). Increased prophage numbers within L. crispatus genomes

from the human vagina relative to avian isolates suggests high frequency of phage within the

human microbiota [23]. Phage-like sequences within both the bladder and vaginal bacterial

microbiomes–prophage sequences as well as CRISPR spacer sequences–often show little to no

homology to characterized sequenced phage species, insinuating that numerous genetically

diverse phages have yet to be discovered.

Conclusions

Comparison of four new bladder-associated Gardnerella genomes to genomes from the repro-

ductive system identifies strain-specific and lineage-specific genes, suggesting a large Gardner-
ella pangenome may exist. There is, however, no distinct difference between strains isolated

from a particular niche. Of particular interest is the high incidence of prophages within the

Gardnerella genomes and the variability in the number per strain, as well as their putative ori-

gin. While prior studies into the prophages of vaginal lactobacilli propose that phage may play

a significant role in community dynamics within the vagina (see review [4]), this proposal has

yet to be empirically tested. The Gardnerella genome analyses conducted here find evidence of

ancient, as well as contemporary, phage infection; the fact that isolates from the same individ-

ual vary in their prophage gene sequences supports the latter. Bioinformatic inspections of

prophage and CRISPR spacer sequences find little to no correspondence with characterized

phage sequences, suggesting that Gardnerella-infecting phages exist, although they have yet to

be isolated in the laboratory. Nonetheless, evidence presented here suggests that phages play a

role within the complex microbial communities of both the reproductive tract and the bladder,

warranting future exploration of their viromes. The continued isolation and empirical charac-

terization of Gardnerella species from the human microbiota is necessary to learn whether

microbiome-virome interactions help to establish and maintain ones’ bladder health and, if so,

how perturbations of this equilibrium result in bladder pathologies.

Abundance of Prophages within Gardnerella Strains Isolated from the Bladder
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Materials and Methods

Strain Isolation and DNA Extraction

The Gardnerella and Gardnerella vaginalis isolates were isolated from transurethral catheter-

ized urine specimens of adult women with UUI [8] using the previously described Enhanced

Fig 4. Determining mechanisms of prophage gene acquisition. Colors correspond with the cluster colors in Fig 3. Dashed lines are the mean

value for each axis.

doi:10.1371/journal.pone.0166757.g004
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Quantitative Urine Culture (EQUC) protocol [6]. Microbial identification was determined

using a Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometer

(MALDI-TOF MS, Bruker Daltonics, Billerica, MA) as described [6]. Pure cultures were stored

at -80˚C in a 2 ml CryoSaver Brucella Broth with 10% Glycerol, no beads, Cryovial, for preser-

vation (Hardy Diagnostics).

The preserved pure culture isolates were grown on CDC Anaerobic 5% sheep blood

(Anaerobic BAP) agar (BD BBL™ Prepared Plated Media) under anaerobic conditions at 35˚C

for 48 hours. MALDI-TOF MS was performed for species/genus verification. An isolated col-

ony was transferred to 5mL tryptic soy broth (TSB) supplemented with 10% fetal bovine

serum (FBS) and grown under anaerobic conditions at 35˚C for 48 hours. 1 mL of culture was

collected, and cells were resuspended in 1 mL of buffered saline peptone (PBS).

Genomic DNA extraction was performed using a phenol-chloroform extraction protocol.

Briefly, cells were resuspended in 0.5 mL DNA Extraction Buffer (20 mM Tris-Cl, 2 mM

EDTA, 1.2% Triton X-100, pH 8) followed by addition of 50 μL Lysozyme (20mg/mL), 30 μL

Mutanolysin, and 5 μL RNase (10 mg/mL). After a 1-hour incubation at 37˚C, 80 μL 10% SDS,

and 20 μL Proteinase K were added followed by a 2-hour incubation at 55˚C. 210 μL of 6 M

NaCl and 700 μL phenol-chloroform were then added. After a 30-minute incubation with

rotation, the solutions were centrifuged at 13,500 RPM for 10 minutes, and the aqueous phase

was extracted. An equivalent volume of Isopropanol was then added, and solution was centri-

fuged at 13,500 RPM for 10 minutes after a 10-minute incubation. The supernatant was

decanted and the DNA pellet was precipitated using 600 μL 70% Ethanol.

Genome Sequencing, Assembly, and Annotation

DNA samples were diluted in water to a concentration of 0.2 ng/μl as measured by a fluo-

rometric-based method (Life Technologies) and 5 μl was used to obtain a total of 1 ng of

input DNA. Library preparation was performed using the Nextera XT DNA Library Prepa-

ration Kit (Illumina) according to manufacturer’s instructions. The isolates were bar-

coded, pooled and each isolate was sequenced twice, on two separate runs, using the

Illumina MiSeq platform and the MiSeq Reagent Kit v2 (300-cycles) to produce 150 bp

paired-end reads. Sequencing reads were parsed into individual folders according to the

respective barcodes.

The following protocol produced an assembly with the least number of scaffolds and the

highest overall coverage (Table 1). Reads were paired using Geneious (Biomatters Ltd., Auck-

land, New Zealand) for each isolate for each sequencing run. De novo assembly was performed,

combining the two runs per isolate, using the Geneious plug-in for Velvet [47] (k = 99).

Sequence contigs were then extended and scaffolds were constructed using the tool SSPACE

[48]. Resulting contigs were again assembled using the Geneious de novo assembler at the

Medium-Low sensitivity setting. Annotations were performed for each of the contigs using the

RAST annotation pipeline [49], as well as the BASys bacterial annotation system [50]. CRISPR

arrays were predicted using CRISPRdb [51]. A local nucleotide database was created for each

strain using the protein coding regions predicted by RAST. Each predicted coding region was

then reciprocally BLASTed (blastn). Genes were determined to be homologs if the query cov-

erage and the sequence identity were both greater than 70%.

Raw sequencing reads as well as assembled contigs are available through NCBI: Gv18-4

(SRA: SRX1688291, WGS: LWSP00000000), Gv23-12 (SRA: SRX1688198, WGS:

LWSQ00000000), G26-12 (SRA: SRX1688301, WGS: LWSR00000000), and G30-4 (SRA:

SRX1688300, WGS: LXJL00000000). S1 Table lists the annotated protein functionalities within

the four strains; annotations are available and can be queried through NCBI.
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Phylogenetic Analysis

Single gene trees. 16S rRNA gene sequence analysis was performed by excising the full

length 16S sequence from the assembled genomes and querying each against the NCBI nr/nt

database via blastn. Sequences producing full-length hits were collected and aligned using

MUSCLE [52]. The phylogenetic tree was constructed using RAxML [53] and visualized using

PhyloWidget [54]. Phylogenetic analysis of the VLY gene sequences was aligned using Clus-

talW [55]. As before, RAxML [53] and PhyloWidget [54] were used to derive and visualize the

tree, respectively.

Core genome tree. While 43 strains are presently publicly available through NCBI for G.

vaginalis, this study considered only those that were (1) isolated from the vagina or endome-

trium and (2) are documented within the literature [15–19,39]. S3 Table lists the 35 publicly

available strains meeting these criteria. The species tree was derived by first identifying the

core set of genes within the 39 Gardnerella strain sequences (genome, scaffold, or contig collec-

tions). Incomplete genomes (scaffold or contig status) were retrieved from NCBI. Their

sequences were individually submitted to the RAST server and annotated [49]. For the three

complete genomes, G. vaginalis 409–05 (NC_013721), 14019 (NC_014644), and HMP9231

(NC_017456), the ffn format files were retrieved from NCBI’s FTP site. The core gene set was

determined by first creating a local nucleotide BLAST database with the coding regions anno-

tated for the G. vaginalis 14019 strain. Annotated coding regions in other sequences were

BLASTed locally (using BLASTn, e-value<10−5), returning the top hit only. Genes producing

hits in all other 38 genomes were identified as members of the core genome. The core gene set

contains 183 genes (S4 Table), a significantly smaller group than previously used when consid-

ering smaller numbers of strains [15,20]. Each core gene and its orthologs were aligned using

ClustalW [55]. Alignments were concatenated producing a concatenated gene alignment

(super-gene alignment) using an in-house script in R (available upon request). The Maxi-

mum-likelihood tree was derived using RAxML [53]. Trees were visualized using PhyloWidget

[54].

Assessing Presence/Absence of Coding Regions of Interest

The absence of coding regions identified with key carbohydrate metabolism functionalities

within the G26-12 and G30-4 genome analyses was experimentally verified via PCR. Coding

regions within the Gv18-4 genomic sequence with the following functional annotations were

retrieved: (1) chitin and N-acetylglucosamine utilization, (2) deoxyribose and deoxynucleoside

catabolism, (3) D-gluconate and ketogluconates metabolism, (4) formaldehyde assimilation,

(5) lactose and galactose uptake and utilization, (6) trehalose biosynthesis, uptake and utiliza-

tion, and (7) xylose utilization. In total, 22 genes were identified. Each was BLASTed against

the nr/nt database, specifying the genus Gardnerella, to retrieve orthologs from other strains.

All annotations within the GenBank files retrieved were manually inspected verifying similar

confirmed/predicted protein functions. Primers were designed for each gene, targeting con-

served regions amongst all orthologs, and obtained from Eurofins MWG Operon (Huntsville,

AL). In total, 66 PCR reactions were conducted, testing each of the primer pairs against: Gv18-

4 (serving as a positive control), G30-4, and nuclease-free water (serving as a negative control).

All Gv18-4 reactions produced amplicons of the expected sizes. G30-4 and the negative con-

trols did not produce amplicons. Primer sequences are listed in S6 Table.

Prophage Identification

Genes annotated as phage or viral in origin were extracted from each of the genome sequence

annotations. Local BLAST databases were used for both identifying the orthologous clusters of
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prophage sequences, as well as the putative origin of prophage clusters. First, a local nucleotide

database was created, including all of the sequences predicted as phage from all 39 Gardnerella
strains. Each individual putative phage coding region sequence was then BLASTed (blastn)

against this local database (maximum 100 results), detecting identity to itself, as well as similar-

ity to other sequences. Each hit was further qualified; hits with a sequence identity and query

coverage greater than or equal to 80% were considered homologous. Once clusters were identi-

fied, the sequences within the cluster were aligned using ClustalW [55] and manually inspected

to guarantee correct clustering (S1 File). Identification for the origin of each cluster was per-

formed similar to above; the local database used for conducting blastn searches was the com-

plete collection of viral RefSeq coding regions. The all.fna.tar.gz file was retrieved from ftp://

ftp.ncbi.nlm.nih.gov/genomes/Viruses/. Homologs were called when query coverage was

�80%. The sequence identity threshold was considerably lower�35%. A cluster was consid-

ered to show no homology to any RefSeq coding region if it did not meet both of these

conditions.

Estimating Rates of Phage Acquisition

Rates of phage acquisition were estimated using the R package corHMM [56], which imple-

ments a Hidden Markov Model to estimate the rate of evolution of traits occurring across a

phylogeny. Each phage was encoded as a binary trait according to its presence/absence as visu-

alized in Fig 3. Using this method to estimate the “rate of evolution,” therefore, provides a

meaningful proxy for the rate of phage acquisition across the tree. For any given phage, the

rate of acquisition is expected to scale with its total number of occurrences in the tree, and hor-

izontally transmitted phages are expected to have faster relative rates than vertically transmit-

ted phages (as seen in Fig 4).

Supporting Information

S1 Fig. Phylogenetic tree based on 16S rRNA gene. Maximum-Likelihood phylogenetic tree

for the 16S rRNA gene. Strains isolated from the bladder are indicated in red.

(TIF)

S2 Fig. Phylogenetic analysis of VLY gene. (A) Amino acid sequence alignment of four blad-

der Gardnerella isolates and representatives from other clades; clades are indicated to the left

of each strain/isolate name. Mismatches within the alignment are highlighted (red/blue text).

(B) Maximum-Likelihood phylogenetic tree for the VLY gene. Branch supports are indicated.

(TIF)

S1 Table. Presence/absence of gene functionality within the four bladder isolates.

(XLSX)

S2 Table. Presence/absence of virulence genes within the four bladder isolates.

(XLSX)

S3 Table. List of 35 genomes retrieved from NCBI for genome comparisons.

(XLSX)

S4 Table. Core genes identified for the 39 Gardnerella genomes examined.

(XLSX)

S5 Table. Prophage sequences, clusters, and putative origins within the 39 Gardnerella
genomes.

(XLSX)
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