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We discuss some general properties of heterotic conformal field theory in which conformal
anomalies ¢ are different for the left-moving and right-moving sectors. It is precisely this type of
theory that can be applied immediately to the construction of heterotic string theory. We discuss a
general way of constructing such a theory using free fermions. The construction is then applied to
generalize Gepner’s construction of superstring solutions using the tensor products of N=2 super-

conformal field theories.

I. INTRODUCTION

Since consistent superstring solutions were discovered
in ten dimensions' in 1984 which triggered the theoretical
fervor in string theory in recent years, there has been a
lot of progress in constructing consistent superstring
solutions in D < 10 dimensions. Most notably, there have
been the Calabi-Yau compactification approach,? the or-
bifold compactification approach,® the covariant lattice
approach,* fermionic approach,® and others.® All these
constructions may be related to each other through
boson-fermion equivalence or a more complicated
equivalence which is not yet well understood. Many of
these relations are, of course, already pointed out in the
literature.

Underlying every string solution is, of course, a confor-
mal or superconformal theory to guarantee the consisten-
cy of the huge gauge symmetry in string theory. There-
fore, one way of classifying the string solutions is to un-
cover the structure of all possible conformal field theories
(CFT’s). As a stepping stone, one would like to classify
the simpler rational conformal field theory (RCFT) in
which the partition function can be written as a finite
sum of products of holomorphic (left-moving) parts and
antiholomorphic (right-moving) parts. It is conjectured’
that these holomorphic parts actually correspond to some
characters of an extended conformal algebra A; and
similarly for the right-handed sector with an extended
algebra Ap. There has been great progress in this direc-
tion.® Most of this progress applies readily to theories in
which the conformal anomaly in the left-handed sector
¢, is the same as that in the right-handed sector cy. We
shall call these type-I CFT’s. It is interesting to ask to
what extent these results can be applied to cases in which

42

¢y Fcg. In particular, in phenomenologically more in-
teresting heterotic string theory,® a superconformal field
theory is used in the left-handed sector while only a con-
formal field is employed in the right-handed sector. In
order to guarantee to consistency of the world-sheet
gauge symmetry, one needs the underlying conformal
field theories (excluding the ghost contributions and tak-
ing the light-cone gauge) to have ¢; =12 and cy =24.
Therefore any understanding of conformal field theory
with ¢; #cg will be useful in the construction of more
heterotic string theories. We shall call them heterotic
conformal field theories (HCFT’s).

Most of the results about the classification of CFT can
be applied to HCFT with some modification. However,
there are some distinct features that mark their
difference. In Sec. II of this paper we emphasize some of
these differences and point out some interesting unsolved
problems. Clearly, it is much harder to construct HCFT
because it is much more difficult to satisfy the condition
of modular invariance. This is unlike the type-II case
where one can always have a diagonal invariant. Howev-
er, recent developments taught us that the condition of
modular invariance can be easily solved if one restricts
oneself to the free fermionic construction.® In Sec. ITI we
apply the free fermionic construction to generate a whole
class of HCFT’s. Some comments on the deformation of
these theories using Thirring interactions are also in or-
der. It is clear that one can do the same thing using the
bosonic approach as well. To demonstrate the use of
these constructions, we apply them to Gepner’s construc-
tion of superstring solutions. Gepner’s construction in-
volves two steps. One first constructs a type-II super-
string model in d <10 dimensions with internal sectors
added on to saturate the conformal anomaly. The inter-
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nal sectors that Gepner uses are tensor products of
minimal N=2 superconformal field theories. It has been
pointed out'® that in order to obtain space-time super-
symmetry it is necessary that the spectrum form repre-
sentations of N=2 superconformal algebra. Gepner has
devised an elaborate scheme to satisfy modular invari-
ance and spin-statistics relations (called the S method).
Then the second step is to convert the resulting type-II
theory by a “heterotic replacement” in which the parti-
tion function of the right-handed fermions with space-
time index are replaced by the characters of an extended
algebra which has the same modular transformation
property. Gepner found two ways of doing this. It is
clear that our modular-invariant HCFT can be readily
applied to the second step and generates more general
solutions. In Sec. III we review Gepner’s construction
and define some notations for future need. In Sec. IV, we
apply the HCFT that we generated in Sec. III to the con-
struction. Some examples are given in detail for illustra-
tive purposes. Some technical details about Gepner’s
construction that do not exist in the literature are includ-
ed in Appendix C for reference.

II. HETEROTIC CONFORMAL FIELD THEORY

A rational conformal field theory is defined by a parti-
tion function which is a finite sum such as

Zy=3 XX, » M
ij

where Y is a holomorphic function and ¥ is an antiholo-
morphic function. Y’s (¥ 's) are characters of an extended
conformal algebra 4; (Ay) for the left- (right-)handed
sector. If one assumes (as we are going to do from now
on) that one of the characters is the character Y, generat-
ed from the vacuum state for the A; algebra, then the
conformal anomaly of the holomorphic sector can be
determined as follows. If one expands each of the charac-
ters in Z, as a Laurent series in ¢ =exp(2miT), then the
one with the smallest leading exponent corresponds to
the vacuum character and its leading exponent is c; /24.
Similarly, one can determine the vacuum character Y,
and conformal anomaly ci of the antiholomorphic sec-
tor. If ¢; =cp, A; = Ay, and Zy contains the term Y ¥,,
then it corresponds to the usual rational conformal field
theory defined in the literature.® We shall call this type-I
RCFT. There are diagonal and nondiagonal partition
functions in this type. The nondiagonal ones are neces-
sarily more difficult to find because the modular-invariant
conditions are more difficult to satisfy. Here we are more
interested in the case when ¢, is not equal to cp. We
shall call these the heterotic type.

One of the immediate consequences of the heteroticity
is that the partition function cannot contain the term
XoXo- That means that the usual assumption about the
uniqueness of the vacuum state (0,0) does not apply. The
modular invariance is even more difficult to satisfy than
the nondiagonal type-I RCFT. First, the partition func-
tion contains the terms YoX; + X, Xo, Where A is defined
by the leading exponent (h —c; /24) of the corresponding
character, as is 4. In order to satisfy modular invariance
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under 7— 7+ 1, one needs
c; /24—h =cg /24 +integer , (2)
cg /24—h=c; /24+integer . 3)
These conditions are very difficult to arrange. For a

given A;, the corresponding ¢; and a finite list of A’s are
fixed. Then Eq. (2) gives a very strong restriction on al-
lowed cg. One can look for the Ayp’s which have the
proper cg. Then in order to have a modular-invariant
partition function, one needs to make sure that A, con-
tains a primary field with conformal weight 4 that
satisfies Eq. (3).

However, from experience in the fermionic or bosonic
constructions of heterotic (super)string solution in less
than 10 dimensions, one knows that the modular-
invariance conditions for these cases can be solved explic-
itly. Many schemes for generating (super)string solutions
have been worked out.?”> Therefore, all these tech-
niques can be easily converted into schemes for generat-
ing HCFT. In the next section, we describe the free fer-
mionic techniques for this purpose.

III. FREE FERMIONIC CONSTRUCTION OF HCFT

In this section we use free fermionic construction to
build heterotic conformal field theories. We shall adopt
the notation of Antoniadis, Bachas, and Kounnas® (ABK)
for simplicity. A short review of this construction is in-
cluded in Appendix A. Suppose we build a conformal
field theory with conformal anomalies c¢; and cgz. In the
free fermionic construction we use a free fermion to satu-
rate these anomalies. Therefore, we need n; =2c; left-
handed fermions ¥ and ng =2cy right-handed fermions
Xz For a real fermion, which is what we shall confine
our discussions to, the boundary conditions can be either
periodic (P) or antiperiodic (4). Given n; and ny fer-
mions, a boundary condition for the set is defined by
specifying the boundary conditions for each of these fer-
mions. It can be represented by a subset which contains
all the fermions that have periodic boundary conditions.
A modular-invariant solution can be defined by a con-
sistent collection = of such subsets. This collection can
in turn be generated by a set of basis elements. For
heterotic string theory, these consistency conditions have
been worked out by many authors.’ Since heterotic
string theory is just an example of HCFT, these condi-
tions are not necessarily applicable to our case. Howev-
er, it turns out the conditions for modular invariance are
almost identical to those derived by ABK. These condi-
tions are displayed in Appendix A. Here we shall be con-
tent with simply describing the set of solutions we have
for later application. A typical example has been worked
out in detail in Appendix A for illustration.

To provide examples of this construction and ultimate-
ly apply it to Gepner’s construction, we list, in Table I,
the models we find for Ac=12 and n; =2,4,6. This list
will be useful for Gepner’s construction in D=4, 6, or 8
space-time dimensions, respectively. We cannot prove
that we have exhausted all possible models using a free
fermion in each case. However, we believe that our list is
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TABLE I. HCFT’s generated by free fermionic construction.

Gauge

Dimension Model Tachyon Ag Boson
D=4 M 26 SO(26) 325
M3 10 E3 XSO(10) 293
M3 2 SO(2) XSO(24) 277
D=6 M¢ 28 SO(28) 378
MS$ 12 E; XSO(12) 314
M§ 4 SO(4) XSO(24) 282
M 0 E,XE, 266
D=8 M3 30 SO(30) 435
M$ 14 E3 XSO(14) 339
M} 6 SO(6) X SO(24) 291
ME 2 E,XE;XU(1) 267
Mt 0 SU(16) 255

complete in this context, as we made an extensive search
for other models without success.

The partition functions of these models can be written
in a very compact form. The antiholomorphic (left-
handed) part can be expressed in terms of SO(d) charac-
ter at level k=1. For even d, there are four integrable
highest-weight representations which are the singlet (0),
vector ( V), spinor (s), and antispinor (5). Their charac-

ters can be written in terms of O functions. Define
a=(6,/7m), b=(085/m), and ¢ =(0,/7). Two interesting
identities are abc=2 and a*=b*—c* The SO(d) charac-
ters with d =2n can be written as
Xgr=1b"+c" , (4)
)(2,/"=%(b"—c") , (5)
xi=x¥=1a". (6)

They can also be written as the sums of products of
level-2 classical 0 functions which will be useful for N=2
superconformal model construction later. They are, of
course, also related to the usual level-1 classical 6 func-
tion of SO(2n) Lie algebra 6, through the usual relation
X$=0,(7)/[n()]".

Denote the set of fermions F as
(P - ¢dlxk - x%4**), where the dimension of
space-time is D =d +2. In D=4 dimensions, we could
find only three solutions. First, if one used only one basis
F, then one would have the model with a right-handed
chiral algebra A, =SO(26). We will call this model M.
If one adds a second basis b; =(y% - - - Y¥) then one gets
the M% model with Ap =E;XSO(10). If another basis
by=(xk - x%,x%X -~ x%) is added to the set, one finds
the M4 model with A4, =SO(2) XSO(24).

In D=6 dimension, there are four solutions. Take F,
b,, and b, to be the same as in the D=4 case, and add
by=(Xk " Xt:Xk ~ XBXE * XRoXE " XR) to the
list of bases. The model with just one basis F gives
Ar =S0(28); with F and b,, we get Ap =EzXSO(12);
with F, b, and b,, Az =SO(4)XS0O(24); and with F, b,
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b,, and b, one ends up with 4z =E;XE,;. We denote
them collectively by M,-6, i=1,2,3,4.

For D=3, there are five solutions. Take F,b,b,,b; to
be the same as the D=6 case and b,=(y%|i =4n +1 or
4n +2;i<6). M has only one basis F, 4z =SO(30).
uses F and b, as bases and 4 =E¢XSO(14). M3 uses F,
b, b,, and Agr =SO(6)XSO(24). M$§ uses F, b, b, bs,
and Ar =E,XE,XU(). M$ uses F, b,, by, by, b, and
one gets Ap =SU(16). These models are all listed in
Table I together with the numbers of tachyons and the
gauge bosons in Ax. There are, of course, many other
ways of choosing different bases; however, we find that
they always reproduce one of these models. We conjec-
ture that this list is complete as far as real fermionic con-
struction is concerned. The case of M3 is worked out in
detail in Appendix A as an example.

The partition function for M§ 2" models can be writ-

ten as
Z(d,N)=YW5+T Iy +x i+ ixe, 7

where the ‘“‘effective” holomorphic characters are

XEZLN{bIZ#'n_CIZ#"n
2
+QVTI=D[(P+a®pt = (b +at)et T
(8)
e 1 +n n
szﬁ{bu 4el2t
_+_(2N*l__1)[(c8+08)b4+n+(b8+aS)C‘H—n]} ,
9)
X; S & 12'%"_(2N‘1__1)[(b8+C8)a4+n]}
(10)

and 1=<N <n +2. In fact these partition functions also
apply to d=38, that is, (D=10)-dimensional models. It
reproduces all the nonsupersymmetric models listed in
Ref. 5, except the tachyon free SO(16)XSO(16) model
which corresponds to formally taking the N — oo limit of
Z(d,N). Clearly for different d and N the effective holo-
morphic characters can be identified as the characters of
the corresponding A, Kac-Moody algebra. For exam-
ple, for the M$ model

Xe_XSO(Z)XSO(24)+XSO (2) SO(24) , (11)
X _XSO(Z)XSO(24)+XSO(2 XSO(24) , (12)
X;?:X% X?O(Z)X§O(24) Xs (Z)X%O(Z‘I) . (13)

Modular invariance can also be checked in this form with
the aid of the Jacobi identity. Now that we have con-
structed a list of HCFT’s with ¢y —c; =12, an immediate
application of this result is to use these partition func-
tions to facilitate a more general “‘heterotic replacement”
procedure in Gepner’s construction of string or super-
string solution. Note that Egs. (8)-(10) in our free fer-
mionic construction will guarantee that x§ and x§ always
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contribute to Z (d,N) with a positive multiplicity and x?,
X: always contribute with a negative multiplicity. It is
actually a consequence of the modular invariance. This
property will automatically preserve the spin-statistics re-
lation when we apply this to the heterotic replacement
procedure of Gepner’s construction.

IV. GEPNER’S CONSTRUCTION

Gepner® has initiated the construction of string theory
in D =10 dimensions by using a tensor product of r
copies of level k;, N=2 minimal superconformal theories
as the internal part of the theory that helps saturate the
conformal anomaly. The resulting theory can mimic a
string theory compactified on a complicated Calabi-Yau
manifold. Gepner’s construction starts with a type-II
theory in D dimensions. To saturate conformal anomaly,
one must satisfy

2 : ~5 =3(10-D). (14)

This composite N=2 model will be represented by
II7=,(k;). An N=2 minimum mode] labeled by k can
have four different sectors: one Neveu-Schwarz (NS) sec-
tor, two Ramond sectors P¥, and one twisted sector.
The twisted sector does not mix with other sectors under
modular transformation and so far does not seem to be
useful in model building. There are (k +1)(k +2)/2 pri-
mary fields for each of the NS, P*, P~ sectors. Each of
them is labeled by two quantum numbers (4, Q), where A
is the conformal weight and Q is the charge. The spec-
trum is

[(14+2)—(g —2A)

1)\2 _q__
4(k +2)

k+2 |’

(h,,01)=

(15)
where 0=/ =<k, —1<g </, and I +¢q=0 (mod 2), A=0 for
the NS sector and A= i% for the Ramond sector (P ).

The character corresponding to these N=2 primary
fields can be defined as!!

Ch(r,2)=Tr(g"* %9,
where ¢ =e?™7 and y =e?™?. They are given explicitly by
k
ChifMrz)= 3 Cifl(r)
g=—k+1
Tz
Xeq’(k+2)—qk +2Ak, k(k +2) E’ k +2 (16)
where the theta functions ©,, , are defined by
0, (m2)= 3 gyt (17)

n€Z+m/2k

and CIq (7) are the string functions of the affine SU(2)
algebra.!? They have the symmetry

CiRr=CX, iz (n=C* (r)=

L—q\T
and C/¥(7)=0 if (I —¢)#0 (mod 2).

Ck_,k_q(r)

Theta functions
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have a symmetry ©,, ,(7,2)=6,, ;5,7 «(7,2), which leads
to the following relationship among characters:

Chis"(r,z)=Chi* (1, —2)
=ChifY 1244(72)
=Ch(1,kq’}3r)2<k +2z(1,2) . (18)

Note that the descendent states in an N=2 representa-
tion are created by the generators G* of the two super-
symmetries and a U(1) current J of the N=2 algebra.
For the NS sector, the mode expansion of G * carries
half-integer indices. Under the modular transformation
T.r—71+1, Ch“‘ 9 will not transform into itself. There-
fore it is convement also to introduce another character
Ch{%% which is defined by

Chi%(r,2)=Ch/’,"(r+1,2) (19)
It is useful to work with the eigenstates of T:r—7+1
transformation, which are

k,(s =0) 1k0)
X qs (1,z)= Ch;’ T, 12
=2mi(h)9)=c/24) . (kD)
+e ! Chl,q’ T k+2 ’
(20)
1 z
k,(s =2) T (k,0)
X, “(7,z) > Ch;.” |7, 12
i (R0 ~
—e Zm(th c/24)Ch(1’1§1’0) - - -Z+-2
(21)

These are exactly the same characters as those Gepner
uses to obtain modular-invariant partition functions. In
general, Gepner’s characters are given by®

k(s)
X[q 2 clm
jmodk
z
XOnm +(4) —s)k +2),2k(k +2) | T x+2) |’ (22)

where the index s is defined as mod 4 and is even in the
NS sector and odd in the Ramond (R) sector. In R sec-
tors we found the identities

Ch *1/2)_Xk11)(7_z)_+_xk(3)( z) . (23)

Under T transformation, now we have the simple form
k(s) — 27""}'1(.}:;' k(s)

Xig (t+1,0)=e Xiq (7,0) . (24)
The x characters have the symmetry X"(S)—X,\ ifqzik 42
which  follows from the relatlon exp( 2mh ))
= —exp(27rih,((0_),‘q +k+2 ).

Gepner made the crucial observation that the

modular-transformation property of )(k ) is the same as

the product of an A\ character, a level-(k +2) 6-
function system and a level-2 6-function system. The
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AV character, the level-(k +2) and level-2 6 functions
are labeled by /, g, and s, respectively. Since each of the
three pieces transform independently under S, the
modular-invariant composite characters can be con-
structed out of the product of the three independent
modular invariants Z =Z ,Z, ,,Z,. Gepner’s observa-
tion means that each modular invariant we constructed
for the composite theory gives an immediate way of con-
structing an N=2 modular invariant by using the same
numerical linear combination as in Z ,Z; ,,Z,.

To form a type-II string theory we have to take a cross
product of », N=2, theories as the internal part and add
the space-time part. In D =d +2 dimensions, the contri-
bution of the space-time part to the partition function is
in the form of the SO(d); XSO(d)g character. It is use-
ful to know that a level-1 SO(d) character can be decom-
posed into the finite sum of products of level-2 8 func-
tions. For example, for d =2N, k=1, the spinor-
character can be written as

O(1,z;,0)= 3 He,,l,,z(r,zi,O) (25)
s
and [] n, = —1 for the antispinor character. For the sca-
lar (0) and vector (V) characters, they have the form
O(7,z;,0)= 3 Heni,z(f,z,-,O) , (26)
n, =0,2

where for r=0, the sum is further restricted to 3 n; =0
(mod 4) and for the r=V sum is restricted to 3 n,=2
(mod 4).

The partition function of the theory is a linear com-
bination of the products of the characters discussed
above. Each term in the holomorphic part can be labeled
by a set of integers I; =[A,(/;,q;,s;) ~ """ '"], where A is
a weight of SO(d) at level 1 and (/;,q;,s;) labels the rth
minimal model character. A similar vector Iz can be
used to label the antiholomorphic part. In order to ob-
tain a consistent solution, one still has to implement
N=1 superconformal symmetry and possibly space-time
supersymmetry. These conditions require extra projec-
tions in the partition functions. It is, in general, a hard
task to make these projections consistent with modular
invariance. However, Gepner has devised a technique
called the 8 method that can implement these projections
in a modular-invariant fashion.

Under this scheme the type-II partition function can be
written as

d/2
1 1 T
Z(rn7)= |————— — N:ZL(PZ5 () |,
Im(7)|n(7)|* 2 12, ey
27)
where
I P 1) L kils)
ZV()l;qzl ,,,,, [T SRR s,) =X/510(d) H Xli'qi (28)

i=1
and N;= H{le,i‘,—i represents a product of affine in-

variants and ¥V and ¥ are (2r + 1)-dimensional vectors of
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the form (A;q,,...,4,;8;,.-.,5,). The index A(X)
denotes one of the four conjugacy classes (0, V,s,5) of the
SO(2n) affine Lie algebra at level 1. The algebra of these
classes are V +s =5, V+5=s5, V+ V=0 for d =2n and
s+5=V, s+s=5+5=0 for d=4n or s+35=0,
s +5=5+5=V for d =4n +2. The B method requires
that ¥ — ¥ belong to a lattice spanned by a set of vectors
B;(i=1,...,r). The sum over the B; lattice implements
a generalized Gliozzi-Scherk-Olive'® (GSO) projection for
the desired symmetry. Modular invariance requires that

2 =integer and B:B;=integer. For N=1 superconformal
symmetry one has to make sure that the fields in the
theory should be either in the Ramond sector of every
N=2 subtheory (including the space-time part) or in the
NS sector of every subtheory simultaneously. This condi-
tion can be implemented by r 8 vectors; B; =(A=V;0;2
on i and O elsewhere) and at the same time demanding
that s, =1 mod 2 for A=s5,5and s; =0 mode 2 for A=0,V
for each i in the product in Eq. (28). For N=1 space-
time symmetry, one has to introduce another projection
Bo=(A=s;1,...,1;1,...,1) and require the U(1) charge
Q associated with the N=2 superconformal symmetry to
be an odd integer. Q can be calculated as

L q; Si
Q=2M*T X T2ty

i=1

€2Z+1),

where I A; is the sum of components of SO(d) weights.
Note that due to the type-II nature of the construction,
one automatically obtains an N=2 supersymmetry
theory.

Having a consistent type-II N=2 supersymmetry
theory, one can now implement a procedure, we call
“heterotic replacement,” to convert it into an N=1 su-
persymmetric heterotic theory. This is where our earlier
discussions on heterotic conformal theory becomes use-
ful. The modular-invariant partition function of our
type-1II theory can be written as

Z(r,7)= 3 XUNHFIZ, 5 (7, 7) (29)
A

where A, A labels the level-1 characters of the G=SO(d)
algebra (0), (V), (s), and (3).

Now, assuming that we have found a heterotic
modular-invariant partition function

Z=3 xirde (r) (30)
A
for some “‘effective character”

X%e(ﬂ:qhiﬂdﬂu/‘ts i L

n=0

such that a, ,20 for A=(0),(V) and a,,=0 for
A=(s),(5), where h§=1, h;=0 and hl =1+d/16.
Equation (29) indicates that the effective characters X5
transform in the same way as )()—? under modular transfor-
mations. Therefore, we can easily convert the partition
function of Eq. (29) into a partition function for the
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heterotic string theory:

Zpu= SAHNETPZ, 31)

A

There are many different ways one can construct the
heterotic modular invariants as in Eq. (30). In Sec. IIT we
have exhausted all such invariants which can be con-
structed using real, free fermionic construction. It is not
clear whether or not the complex fermionic construction
or bosonic orbifold construction can give rise to new in-
variants. Note that the condition on the multiplicity
coefficient a;, , in x;(7) is required by the spin-statistics
condition. Since the spin-statistics relation is an au-
tomatic consequence of the free fermionic construction,
this condition is satisfied by all the solutions of Table I.
This is but one of the consequences of string theory. For
all the cases considered in Table I, x5 turns out to be a
linear combination of the characters of an affine Lie alge-
bra Ag. The model MP (i=1,2), for D=4,6,8 is the one
found and used by Gepner.

To work out the consequences of the new construction
in the superstring theory, one has to work out the spec-
trum level by level. It is in principle very difficult to
determine whether or not one has a new model if the
spectrum of the first few levels happens to be the same as
the old one. However, one can in principle identify the
gauge symmetry of the theory by the construction of the
massless vector fields. It is customarily assumed that if
two theories have the same gauge symmetry, and the
same tachyonic and massless spectrum, the two theories
are probably identical. As an illustrative example, we
shall take the (1)° theory with N, =8, as the internal
N=2 part of the construction. A complete set of N=2,
¢=9 theories that use the tensor products of the minimal
theories is available in Ref. 14.

We have worked out the gauge symmetry and the
massless vector fields of all the N=2, (1)° models using
the heterotic partition function of Table I. It is amazing
to find that in each dimension, only two different groups
emerge. And even more, all the models in each dimen-
sion have the same number of massless fields.

In fact, it is possible to prove'’ that for each dimen-
sion, the N=1 space-time supersymmetric models with
the same (2,2) internal part have unique partition func-
tions. This statement is independent of the type of (2,2)
models we use as internal parts. This result complements
a similar situation in D=10 dimensions in which for
N=1 space-time supersymmetric models only two gauge
groups, SO(32) and E¢ X Eg, are possible and the two hap-
pen to have the same partition function. Somehow, the
gauge symmetries, for each D, for all the diverse cases in
Table I, always enlarge to the two groups of Table II. To
understand these enlargements better we shall look at
some examples.

Before we start on a specific model, it is useful to list
the basic properties of the left-handed N=1 superconfor-
mal sector. The states are characterized by a Kac-Moody
representation, A=singlet (0), vector (¥), spinor (s) and
antispinor (5) of SO(D —2) at level 1. The other useful
properties of the ground state associated with A are
weights and charges. They are listed in Table III togeth-
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TABLE II. Models of Gepner’s construction based on prod-
ucts of k=1, N=2 theory and HCFT’s in Table I.

Gauge
Dimension Models Apg bosons
D=4 M}, M3 SO(26) X U(1) 334
M} EgXE¢XU(1)®
D=6 M, MS$ SO(28)XSU(2) X U(1)° 386
MS, M EyXE,XU(1)°
D=8 MY M3 M} SO(32) XSU(3) 504
M3, M} Eg X Eg XSU(3)

er with A; and Q;, which are the required weights and
charges to form massless states.

For the right-handed sector, we shall characterize
states by the four “effective” characters 3 in Eq. (30) and
label them by (0°), (V°), (s¢), and (5¢). Note that for M?
models (0°), (¥V°), (s€), (3¢) correspond to (¥), (0), —(5),
—(s) of SOQ2+D), respectively. Using this
notation we shall assign (A°) the same charge as the
corresponding (A) in the left-handed sector. J3,
will be represented by [s%(011)°] and B; by
[V4,(000) - - - (002) - - - (000)], where (002) appears only
in the ith component. With this “effective” notation, the
right-handed total charge must be odd, just like the left-
handed sector in order to have space-time supersymmetry
and modular invariance. This notation is slightly
different from Gepner’s, but we believe that this is
simpler and less confusion. The [ vectors actually satisfy
the identity

6B,= é B; (32)

i=1

TABLE III. Conformal weights and charges associated with
representations of SO(d) and weights and charges of the inter-
nal sector needed for a massless condition.

Dimension Representation A, QL A; Q;
D=4 0 0 0 1 +1
14 1 +1 0 0

1 1 3 1
$ ¥ 2 T 7

_ 3

s T
D=6 0 0 o i+l
vV 1 +1 0 0
s T +1 4 0
5 1 0 1 +1
D=§ 0 0 o 1 41
v 1 +1 0 0

_ 1 _1
s 7 7 ¥ 7
s i T % b
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for the (1)° product of minimal models, where
¢=15—3d /2. The charge and weights of the right-
handed sector are given by Qg(A)=Q,(A),
Ag(09)=A,(V)=1L and for MP models with k>1,
ARr(F)=A,(s5)+3=Ax(s), while ARG)=A,(s)+3
=Ag(s) for MP models. The algebra for A° are the same
as that for A, i.e., A°+A'“=(A+1')°. The vacuum energy
of the right-handed sector is, of course, —1 instead of
— 1 (for the left-handed sector).

The existence of the gravitino in the supersymmetric
models can explain part of the symmetry enhancement in
Table II. The I, X1, vector of the gravitino can be
represented as [s;(/;,q;,s; y=ho "V*(0,0,0)7], where
internal weight A, =(10—D)/16 and Q; is odd. Note
that A;=(D —2)/16. The existence of this state implies
that we will have additional gauge bosons from the states
characterized by [¥;(0,0,0)1[s%(/;,q;,s;) """ ~"] and
[V;(0,0,0) [ —s%(—1,—q;,—s;) """ for models
M2 with k> 1. For k=1, Agx(s) turns out to be too large
for the states to be massless. For D=4, this gravitino ar-
gument can already explain all the symmetry enhance-
ment of M3 and M$ models.

For D=6, —s°=s°, therefore, the two sets of states
from the gravitino argument form a doublet. They carry
the charge (of opposite sign) of the U(1),, which corre-
sponds to the sum of all the U(1) charge Q,. Luckily, to
fit this collection of gauge bosons into a Lie group, we
also have two additional gauge bosons represented by
I =[0;(1,1,0)°] with Q;=(L---1), I =[0;(1,—1,0)*],
and Q;=(—1:--—1). Together they enhance the
U(l)y to semisimple SU(2),. This enhancement is re-
sponsible for the enhancement of SO(12) in the M$ model
to E; and E, in M$ to E;. The symmetry enhancement in
M§$ is a bit more subtle. The original SO(4) can be
represented by SU(2), XSU(2),. Two linear combinations
of these SU(2); and SU(2), combine with SO(24) to form
SO(28). Since the gravitino argument is independent of
the particular N=2 product of minimal models we use,
we suspect that this SU(2) enhancement is also indepen-
dent of the details from the N=2 subsectors. We have
checked that the same enhancement occurs for (k =2)*
construction. However, we do not know how to prove
this statement for the general case yet.

For D=8, the N=2 internal sector is smaller, there-
fore, we have additional gauge bosons which transform as
(0°) representation of Agz. For the M$% model,
Ar=8S0(30), (0°)=(¥V). Therefore, these additional
gauge bosons absorb a U(1) from the N=2 internal part
and combine with the adjoint of SO(30) to form SO(32).
We also get six additional states whose Q; charges span
the roots of an SU(3). The symmetry enhancement of the
models Mg, o ,M§ is a bit more involved to analyze but
has very similar characteristics. The analysis of model
M is included in Appendix B as an example.

To wunderstand to what extent these symmetry
enhancements are independent of details in the N=2 sub-
sectors, we worked out the (2)'°”? models as well. The
result is summarized in Table IV.

A particularly interesting feature appears in D=3
theories. In Table I the ranks of Ay are 11+D /2.
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TABLE IV. Models of Gepner’s construction using products
of k=2, N=2 theory.

Gauge
Dimension Models Ag bosons
D=4 M M} SO(26) X U(1)® 331
M} EgXEXU(1)°
D=6 M$ MS§ SO(28) X SU(Q2) X U(1)? 384
MS§ M EgXEg X U(1)}
D=8 MY MY MY SO(32) XSU(Q2) X SU(Q2) 502
M5 M3 Ey X Eg XSU(2) XSU(2)

Therefore naively one expects the rank of the superstring
theory to be 114+D/2+(10—D)=21—D /2 for models
with (2)'°72 construction. This is the case for D=4 and
6. However, for D=38, the rank is enhanced by one unit
compared with a naive value. This is because there is
one additional gauge boson characterized by
I =[V%(2,0,0)?] which does not carry any charge of Q;
or Ag. The possibility of rank enhancement was hinted
by Lutken and Ross but it was never worked out explicit-
ly.

Observation of Tables II and IV indicates that our
more general heterotic replacements do not produce any
new gauge groups that are different from those that can
be produced by Gepner’s two heterotic replacements.
This is a surprising result. However, this does not mean
that our efforts are totally useless. It is easy to show that
for nonsupersymmetric models, our procedure indeed
produces new gauge symmetries. An example is present-
ed in Appendix C and a list, presumably exhaustive, of
such models is given in Table V. In Table V, we have
limited ourselves only to the models with k=1 minimal
N=2 theories. Had we not, the list would have been
much larger.

Recently, it was proposed!® that additional twists may
be added to (2,2) models to produce new (0,2) models.
These new constructions may be combined with our
heterotic replacements to generate new models that can-
not be produced otherwise.

V. CONCLUSION

We have shown that the construction of heterotic con-
formal field theory is indeed interesting, useful, and non-
trivial. As a first attempt, a free fermionic construction
technique is employed to generate many new theories of
this type. The technique is then applied to Gepner’s con-
struction. Unfortunately, for the (2,2) models with
space-time supersymmetry, our new construction simply
reproduces the gauge groups that can be produced by us-
ing the well-known heterotic invariants of SO(d +24)
and EgXSO(d +8). However, for the nonsupersym-
metric case, our procedure generates many new solutions,
and thus signals that this new construction may prove to
be useful in other applications as well.
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TABLE V. Models in nonsupersymmetric case.
Gauge
Dimension Model Tachyon Ag boson
D=4 Mt 26 SO(26) X U(1)° 334
M3 10 Eg X SO(10) X U(1)° 302
M* 2 SO(2) XSO(24) X U(1)° 286
D=6 M¢ 28 SO(28) X U(1)* 384
MS 12 E,XSO(12) X U(1)® 320
MS 4 SO(4) X SO(24) X U(1)° 288
MS$ 0 E,XE,xXU(1)° 272
D=8 MS 30 SO(30) X U(1)* 438
M} 14 E, X SO(14) X U(1)? 342
M3 6 SO(6) X SO24) X U(1)? 294
M 2 E,XE,XU(1)XU(1)* 270
_ M 0 SU(16) X U(1)? 258
APPENDIX A: FREE FERMIONIC CONSTRUCTION functions and Dedekind 7 functions:
In this Appendix we provide a short review and an ex- 0.(7) 12
plicit example of the free fermionic construction. In par- Z,[00]= ;(—) , (A4)
ticular, the example with the gauge group SO(6) X SO(24) T
in model M (Table I) will be worked out in detail. 0,(7) 12
To describe the solutions of the modular-invariance Z,[01]= = , (A5)
condition, we have to introduce some notation. As de- T
scribed in Sec. III, the set of boundary conditions can be 0,(7) 172
described by a collection of subsets of fermions. The con- Z[10]= | == , (A6)
. . . . n(r)
sistency requires that this collection form a group under
the “symmetric difference” operation: 8,(r) 172
Z[11]= =0. (A7)
af=aUB—aNnpP. (A1) n(7)

Under this operation, the collection can be described by
some of its elements which serve as the basis elements.
Let us say there are N of them, which we denote by b,,
i=0,1,...,N. All the other elements in the collection
can be generated from b; by symmetric difference opera-
tion. Define a number operator n(a)=n;(a)—ngz(a),
where n;(a) and ng(a) are the numbers of left- and
right-moving fermions in @. Modular invariance requires
that (1) Ac =c; —cg =0 (mod 12); (2) the set that con-
tains all the fermions F has to be = and we can use it as
one of the bases, denoted as bg; (3) n(b;)=0 (mod 8); (4)
n(b;Nb;)=0 (mod 4); and (5) n(b;Nb; N b, )=0 (mod 2).
For heterotic string models, Ac=12. We shall restrict
ourselves to this case from now on because this is the one
applied in Sec. IV. With this collection of sets we can
write the modular-invariant partition function as

zZ= 3 CuqpZclalB], (A2)
a,BE=
where C 5 are coefficients with values 1, —1 to be
determined later. The Z. functions are defined by
n, tnp
(A3)

Zc[alB]= I Zf[af“)f],
f=1

where a; is 1 if f belongs to a and zero otherwise. For
each fermion Z, can be expressed in terms of Jacobi 6

To write down the modular invariant solution, we intro-
duce the following notation from ABK. For X €=

€x =exp 1—871 n(X) (A8)

and
-1 ifSCX,

%= 14 ifSNX=g, (A9
where S = {)(Q_,i =1,...,r} and a parity operator that
counts the fermions in X (mod 2),

, —f(=)¥ iffex,

(=) f=1 . .

f [/(—)X it fEX . (A10)

Given conditions (1)-(5) above, one can choose each of
the coefficients C g and C,, |, ) for i >j to be £1. All
vty

other C, 5 € E are determined by using the properties

Cia0) =84 > (A1)
Cialp =€ansCipiar » (A12)
Ciwlr = ~€C%lp » (A13)
Cialp)Craly) =0Clalpy) - (A14)
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Each of the 2V *V/2%1 choices of C pf) and Cis,lb,)

define a modular invariant partition function

1
Z= SN+ S CipZclalBl . (A15)

a,BE=

Now we shall use this machinery to identify all the
massless gauge-boson states and the representations in
the model M. As mentioned earlier, the gauge group in
this case is SO(24) X SO(6).

This gauge group results when F=(yk - x¥),
by=(xg ~""XK), and by =(Xk ***XR.XR ** X&) are
chosen as bases.

We can construct eight different sectors out of these
three bases by means of symmetric difference operation
discussed earlier in this Appendix. They are of the form
b;, b;b;, and b;b;b; (i,j,k=0,1,2). However, because of
the mass-shell condition

1 nL(a)

M*=——+
2 16

ngla)
15

massless bosonic states can appear only in ¢, b, b,, and
b,b, sectors. Other sectors contribute only to massive
states. There is another set of constraints that come from
the requirement of modular invariance. Each state in
sector a should survive the following GSO projection by
every basis vector b;:

+ 3 (frequencies)

=—1+

+ ¥ (frequencies)

Crap Bl — 1" =1.

The effect of making a 8 projection (—1)# in the sector
a depends on whether or not aNf is empty. If it is emp-
ty, then the projection is +1 for those states that are
built by an even number of oscillators on the ground state
la) and (—1) on the states that are built by odd number
of oscillators. Hence the 3 projection works simply as an
operator (—1)¥, where ¥ is the fermion number opera-
tor. However if aNB is not empty, then one defines a
generalized chirality operator

Conpg= H fo
feanp

where f is the zero mode of the fermions in aNf, and
the action of (—1)? is given by the product of the (—1)”
and chirality operator on the state.

Now we will analyze all sectors to identify the gauge
bosons and the representations they come in.

@ sector. In this sector all the fermions are antiperiod-
ic. Let us denote the ground state in this sector by |®).
Vector bosons are then given by ¢k % |®). The pro-
jection by sector b, demands that Y and Y be outside
the set b, or inside for this state to survive the GSO pro-
jection. Similar constraints are forced by sector b, pro-
jection. Thus b, and b, projections together make sure
only those states survive that are created by choosing x’&
to be in one of the following sets: (yk - -x%),
(Xz " xXR) (XK X&), (xR - xx)- Thus gauge bo-
sons in this sector naturally arise in the representation
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(28,1,1,1), (1,28,1,1,), and (1,1,28,1) of (SO(8))* X SO(6).

by, b,, b,b, sectors. First the b, sector; this sector has
16 periodic right-handed fermions and consequently vac-
uum |b,) itself saturates the massless conditions. The
gauge bosons are given by y#|b, ). This ground state is
an SO(16) spinor and each state can be represented by a
vector of the type

s, )=(£L,£4,

The chirality of the state is defined by (—1)", where N is
the number of negative components in this vector. The
b, projection implies that only one overall chirality sur-
vives. Without loss of generality we can take it to be pos-
itive. Hence only an even number of negative com-
ponents are allowed. Now the b, projection constrains
the product of the last four components to have a fixed
sign. Thus there are a total of 3 X1 X 28 =25 states in this
sector and they transform as (8,8,1,1) under
(SO(8))*XS0(6). For b, and b,b, sectors, in an exactly
analogous way, we find that there are 64 states in each of
them and they transform as (8,1,8,1) and (1,8,8,1), respec-
tively. Thus these states from all four sectors combine to
form the adjoint representation of SO(24) X SO(6).

APPENDIX B: AN EXAMPLE OF
GEPNER’S CONSTRUCTION

In this Appendix we are going to describe an example,
the M$ model of Table II, to demonstrate the N=2 mod-
el construction and how enlargement of the gauge group
results. The example we use here is typical of all other
models in text.

We will work in eight space-time dimensions and
choose four bases F, b, b,, b;. The right-handed charac-
ters are characters of the Lie algebra G=E;%E;%U(1).
In this case the contribution to ¢ coming from the N=2
part is 3. There are three different ways this can be
achieved. In this model we achieve this result by taking
three copies of c=1 theories.

We will be only concerned with states which represent
massless vector bosons. The left-moving part of these
states should be [V;(O,O,0)3]. Here the first component
V indicates that it is a vector boson. Since the weight, 1,
of the vector state of SO(2n) already saturates the mass-
less condition, the N=2 part is constrained to have
weight zero. This fixes their quantum numbers to be
(0,0,0)’. The right-moving part then will start with ex-
actly same N=2 part except the first component will be
replaced by V¢ due to heterotic replacement. The mass-
less condition requires the right-moving sector to have
weight A equal to 1. The quantum numbers of the al-
lowed right-moving states will live on a lattice that is gen-
erated by the basis vectors 3, and f3; starting from the
vector [¥%(0,0,0)*]. The B vectors B,, B; are given by
[5%(0,1,1)*] and B,=[0%(0,0,2);], respectively. The
space-time supersymmetry also requires that the total
U(1) charge of each bonafide state to be odd. When all
thees conditions are imposed, the entire lattice breaks
down into following classes.

(1) [Adjoint of E,XE,XU(1)%(0,0,0)*]. This state is
obtained by applying E,*E,*U(1) currents on the state
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[7¢,(0,0,0)*]. The multiplicity is 133+133+1=267.
Three similar states can be obtained by applying the U(1)
currents of N=2 theory on [ ¥¢,(0,0,0)°].

(2) [s%(0,1,1)*] and [5%(0,5,—1)%]. The number of
massless states in these sectors can be derived from the
general character formula in Egs. (8)-(10) by expanding
these characters in powers of g and finding the multiplici-
ties of the term that correspond to the massless states. In
this case it is 112.

(3) [0%(0,2,2)°] and [0%(0,4,2)°]. By the same pro-
cedure as in class (2), we found the multiplicity of these
states to be 2.

4) [V5(0,2,0)0,2,2)*)] and [V%(0,4,0)(0,4,2)%].
These states contribute six gauge bosons because there
are three different ways of permuting the N=2 part.
Note that V*is actually a singlet of G.

When all contributions are added up, we get a total of
504 massless vector bosonic states. A more careful
analysis of their weight vectors shows that they fit nicely
into the Lie algebra Egx Egx SU(3).

APPENDIX C: A NONSUPERSYMMETRIC EXAMPLE

In this Appendix we work out a nonsupersymmetric
example. We will limit the discussion to models using
only k=1 minimal N=2 theory. In Gepner’s construc-
tion of supersymmetric theories the difference ¥ —V be-
tween the right-moving quantum numbers ¥V and left-
moving quantum numbers V is generated by a lattice

2703

spanned by B, and ;. The space-time supersymmetry is
guaranteed by the inclusion of b, and requiring the total
U(1) charge to be odd. The two conditions are related by
a modular transformation. If we relax the condition of
supersymmetry, we should drop both of these conditions.

We are only interested in massless vector bosons just as
in Appendix B. In the four-dimensional case, the left-
handed sector will have the quantum numbers
[V;(0,0,0)°]. For the right-handed part we start with
the vector [ ¥%(0,0,0)°] and generate all the other states
by adding B;. The state [V%(0,0,0)] has A=0; hence,
the massless states can be obtained in this sector by
operation with the U(1) current of each of the nine N=2
subsectors or the currents of the gauge group G.

Take the model M4 of Table I with G=S0(26), for ex-
ample. No massless state is obtained by applying f3; on
[V%(0,0,0)°]. Thus we see that there is no symmetry en-
largement in this case and the gauge group after includ-
ing internal (N=2) degrees of freedom is SO(26)* U(1)°.
The non-Abelian part of the gauge group remains the
same as the one obtained from the free fermionic con-
struction. This pattern is quite general and is repeated
for all other models of Table I. This is distinctively
different from the supersymmetric case where symmetry
enlargement was a common feature. Therefore for non-
supersymmetric cases our new heterotic maps produce
models that have different gauge groups compared with
Gepner’s heterotic replacements. They are listed in
Table V.
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