
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

3-2008

A Virtual Computing Laboratory A Virtual Computing Laboratory

Joseph P. Kaylor

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Joe Kaylor, George K. Thiruvathukal, "A Virtual Computing Laboratory," Computing in Science and
Engineering, vol. 10, no. 2, pp. 65-69, Mar./Apr. 2008, doi:10.1109/MCSE.2008.46

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2008 Joseph P. Kaylor, George K. Thiruvathukal

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

March/April 2008	 Copublished by the IEEE CS and the AIP	 1521-9615/08/$25.00 ©2008 IEEE� 65

Editors: George K. Thiruvathukal, gkt@cs.luc.edu
Konstantin Läufer, laufer@cs.luc.edu

S cie n t i f ic P r o g r a m m i n g

A Virtual Computing Laboratory

By Joe Kaylor and George K. Thiruvathukal

Many institutions choose to do periodic imaging of computers, which is both painstaking and limiting in
terms of keeping software up to date. The authors describe an approach that builds on existing virtualization
technologies.

T wo of the most difficult ad-
ministrative tasks in a com-
puter laboratory, classroom,

corporate network, or any other area
with several computers in use are in-
stalling a standard set of software and
maintaining updates to it. Computer
networks often have more than one
hardware platform—in fact, a cor-
porate network might even have one
type of machine for its engineers,
another type for its accountants, and
yet another for customer demonstra-
tions. A university computer labora-
tory could have Unix machines in
the electrical engineering depart-
ment to support Fortran develop-
ment and Windows machines in the
CS department to support Web de-
velopment. In any of these cases, it
takes time to test software configu-
rations, deploy software and updates,
and remedy user misconfigurations
(such as malware downloaded from
the Internet or other unsupported
applications).

Over the years, people have pro-
posed several solutions to these
problems, each of which has its own
costs and benefits. One approach is
machine imaging, which lets admin-
istrators build well-tested images
of operating systems and important
software for each type of machine
in the network. This approach can
tackle, for example, user misconfigu-
ration by establishing a schedule that

allows for the rapid introduction of
new machines with the same hard-
ware configuration. The great cost
of machine imaging is that rolling
out updated images requires (some-
times significant) downtime for the
machine being imaged—moreover,
different hardware platforms require
different images. Another problem is
that it’s somewhat difficult to multi-
purpose machines—if, for example,
the first class in an electrical engi-
neering course uses an early version
of Java for classwork (say, version 1.2)
and another class in the same room
later that day needs a newer version
(say, version 1.5), the network admin-
istrator must support both versions.
To compound the situation, another
class in the following semester might
need to use Matlab, which means the
administrator faces the task of pro-
viding a new image one or more times
per semester for several classrooms.

Our proposed solution to this prob-
lem is the new application of an exist-
ing technology: virtualization. With
this approach, we can create a machine
image for use on heterogeneous hard-
ware platforms that allows for reduced
downtime and helps multipurpose the
other computers in the network.

Some Basic Benefits
As we mentioned, one of the costs
associated with machine imaging is
the downtime involved in imaging a

machine. With virtualization tech-
nology, we can deploy a new machine
image to other machines on the net-
work, even while the old machine
image is in use: once the new image
is deployed to the target machine
(or after the current user logs out),
we simply boot the new image. The
only downtime cost is the shutdown
and startup time for the old and new
machine images, which is still much
shorter than the time it takes to write
a new image to a hard disk with con-
ventional machine imaging because
the machine can still be used during
the imaging process.

Another improvement over con-
ventional machine imaging is the
ability to multipurpose machines and
better support user bases with differ-
ing requirements. With virtualization
technology, we can deploy several dif-
ferent images to a single machine. In
a university setting, this would mean
deploying Unix images for Fortran
development, Windows images for
Web development, and Linux images
for Java development in a single class-
room and on a small budget. With
conventional machine imaging, we
would need at least three classroom
setups and a much bigger budget.

Usage Scenarios
Let’s look at a few usage scenarios. In
Loyola University Chicago’s Emerg-
ing Technology Laboratory (ETL),

S cie n t i f ic P r o g r a m m i n g

66� Computing in Science & Engineering

experimentation with technologies
such as operating systems, clusters,
sensor networks, and alternative ar-
chitectures is very important to the
university’s mission. With a machine
imaging utility that uses virtualiza-
tion technology, the configuration
and deployment aspects of these ac-
tivities becomes even simpler.

In the case of cluster or grid com-
puting, a challenging task is to de-
ploy a uniform set of system libraries,
general machine configurations, and
the software that users want to run
on the network. With virtualization,
the developer can maintain a single
machine image and deploy it to sev-
eral machines in the cluster when
it’s ready. This, in turn, can lead to
increased cluster use because it al-
lows multiple jobs and reduces the
need to have more than one cluster
accommodate different computing
platforms. The developer can also
test various software architectures

on a smaller set of machines before
full deployment.

Another interesting usage possibil-
ity is the support of operating system
development and experimentation.
One challenge in operating system
development is how to change un-
derlying code: kernels need compil-
ing, utilities must be deployed, and
machines must be rebooted. Dealing
with these tasks can slow the overall
project and lead to frustration, but if
the developer could rapidly and au-
tomatically update machine images,
the pace would improve. Another
challenge in operating system devel-
opment is supporting and develop-
ing multiple machine architectures.
With virtualization-based machine
imaging, the developer can modify
an operating system and then deploy
that change to several virtualization
architectures automatically. This ap-
proach requires less hardware to be
purchased and maintained.

New Tools and Techniques
To support the use of virtualization
technology in machine imaging,
ETL developed a new tool suite. This
project not only offered an opportu-
nity to explore a new use for virtual-
ization technology but also a chance
to examine modern programming
techniques such as test-driven devel-
opment, test by mock, and the use of
design patterns and other platform-
and vendor-independent strategies.

For this project, we chose VM-
ware as the virtualization plat-
form, Ubuntu Linux as the host
operating system, C#.Net as the
development platform, and Win-
dows Vista with Microsoft Visual
Studio 2005 as the development en-
vironment (http://msdn2.microsoft.
com/en-us/netframework/default.aspx).
We chose VMware (www.vmware.
com) because of its large list of sup-
ported guest and host operating sys-
tem environments, its rich support
for external scripting, and its power-
ful utility toolset. We chose Ubuntu
Linux because VMware supports it as
a host operating system and because
of ETL’s support of the open source
movement. Finally, we used C#.Net,
Windows Vista, and Visual Studio
because of developer proficiency with
those tools.

One motivation for choosing the
.Net platform, other than developer
proficiency, was its ability to read and
write XML files in a convenient and
powerful way. (One of us—Joe—was
in favor of this move; George was a
bit skeptical at first but agreed to use
C# and .Net because he thinks C# is
a nice refinement of Java and knows
that it can run with the open source
Mono project [www.mono-project.
com/Main_Page] in the Linux target
environment.) The configuration file
for the utility in Figure 1 is a crucial

<?xml version=”1.0”?>
<ServerRepository xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
 <RepositoryLocation>/media/nfs/vm</RepositoryLocation>
 <ImageEntries>
 <ImageEntry>
 <ImageName>My Image</ImageName>
 <ImageID>7882D784-9268-40a0-A59F-803FA67C6C13</ImageID>
 <Version>0.1</Version>
 <State>
 <Boot>true</Boot>
 <Expires>false</Expires>
 <ExpireTime>2007-11-03T14:26:55.828125-05:00</ExpireTime>
 </State>
 <ImageInformation>
 <MainFileName>ubuntu-server-7.10-i386.vmx</MainFileName>
 </ImageInformation>
 <ServerImageLocation>/media/nfs/vm/ubuntu-server-7.10-i386
 </ServerImageLocation>
 <LocalImageLocation>~/vm2/ubuntu-server-7.10-i386</LocalImageLocation>
 </ImageEntry>
 </ImageEntries>
</ServerRepository>

Figure 1. Example configuration. This file contains information about the machine
image, including its location on the server, destination on the client, and boot/
expiration policies.

March/April 2008� 67

part of the application; other than
the interaction with the virtualiza-
tion software, the manipulation and
usage of the configuration file was
the most important part of this util-
ity. In .Net, the complex types in the
XML are defined with their own class
or the XmlElementAttribute class;
an XML attribute is defined with the
XmlAttributeAttribute class. In
this framework, we could create the
code for loading and manipulating the
configuration file with three classes
in which only the properties contain-
ing the configuration values had to be
tagged with XmlElementAttribute
and XmlAttributeAttribute at-
tributes. In addition to tagging the
properties with these attributes, we
tagged each class with the Serial-
izableAttribute tag and a total of
10 lines of serialization code. Because
of this framework, we didn’t have to
spend time worrying about writing
the code to handle reading and writ-
ing XML elements and attributes (see
Figure 2).

We used test-driven development,
which included writing all code to be
testable and capable of participating
with dynamic object mocks in unit
tests. To support this approach, we
used the strategy design pattern heav-
ily throughout the code. This pat-
tern let us decouple the utility design,
which, in turn, let us substitute indi-
vidual pieces of the program with dy-
namic object mocks and then unit test
their interactions with each other.

Figure 3 shows the Shutdown-
Strategy class in the main execut-
able. This class takes as parameters in
its constructor an instance of IVMSta-
tusStrategy and IVMBootStrat-
egy, which poll a virtual machine’s
current integrity and boot state and
provide the ability to boot up and
shutdown virtual machines. The pur-

pose of using this strategy pattern
was to isolate the decision code for
shutting down virtual machines to a
small, concise, and testable unit. Fig-
ure 4 shows the unit test for this code,

with IVMStatusStrategy and IVM-
BootStrategy mocked out in a use-
ful library called Rhino Mocks. This
test creates a set of virtual machine
configurations for shutting down,

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml.Serialization;
using System.IO;
namespace ImageRepository
{
 public class ServerRepository
 {
 private List<ImageEntry> _imageEntries;
 private string _baseRepositoryLocation;
 public ServerRepository()
 {
 _imageEntries = new List<ImageEntry>();
 }
 [XmlElement]
 public string RepositoryLocation {
 get { return _baseRepositoryLocation; }
 set { _baseRepositoryLocation = value; }
 }
 [XmlArray]
 public List<ImageEntry> ImageEntries
 {
 get { return _imageEntries; }
 set { _imageEntries = value; }
 }
 public static ServerRepository Load(string fileName) {
 XmlSerializer serializer = new XmlSerializer(typeof(ServerRepository));
 ServerRepository repository;
 �using (FileStream fStream = new FileStream(fileName, FileMode.Open,

 FileAccess.Read)) {
 repository = (ServerRepository)serializer.Deserialize(fStream);
 }
 return repository;
 }
 public static void Save(string fileName, ServerRepository repository) {
 XmlSerializer serializer = new XmlSerializer(typeof(ServerRepository));
 �using (FileStream fStream = new FileStream(fileName, FileMode.Open

 OrCreate, FileAccess.Write)) {
 serializer.Serialize(fStream, repository);
 }
 }
 }
}

Figure 2. The class responsible for serializing and deserializing a configuration file.
It exploits the .Net framework’s serialization and XML libraries.

S cie n t i f ic P r o g r a m m i n g

68� Computing in Science & Engineering

using System;
using System.Collections.Generic;
using System.Text;
using ImageRepository;
using ClientActions;

namespace vmclient {
 public interface IShutdownStrategy {
 �List<ImageEntry> GetImagesToShutdown

 (ServerRepository myConfig);
 void ShutdownImages(List<ImageEntry> entries);
 }
 public class ShutdownStrategy : IShutdownStrategy {
 private IVMStatusStrategy _statusStrategy;
 private IVMBootStrategy _bootStrategy;

 �public ShutdownStrategy(IVMStatusStrategy
 statusStrategy, IVMBootStrategy bootStrategy) {

 _statusStrategy = statusStrategy;
 _bootStrategy = bootStrategy;
 }

 �public List<ImageEntry> GetImagesToShutdown

 (ServerRepository myConfig) {
 List<ImageEntry> images = new List<ImageEntry>();
 foreach (ImageEntry entry in myConfig.ImageEntries) {
 �if ((_statusStrategy.GetVMState(entry) & VMState.

 VM_BOOTED) > 0) {
 �if (entry.State.Expires && entry.State.ExpireTime <

 DateTime.Now) {
 images.Add(entry);
 }
 }
 }
 return images;
 }

 public void ShutdownImages(List<ImageEntry> entries) {
 foreach (ImageEntry image in entries) {
 _bootStrategy.ShutdownVM(image);
 }
 }

 }
}

Figure 3. ShutdownStrategy. This class uses the virtual machine boot and status strategies to determine which images to
shut down and provides a method for doing so.

remaining booted, and not booting
from an already shutdown state. The
mock expectation setup phase sets up
the predetermined input and result
actions for the IVMStatusStrat-
egy. By using dynamic object mocks
in this code, we tested not only that
this class’s output matched the expec-
tations we had based on input but also
the interaction of those methods with
other classes in the class library. We
thus achieved a more restrictive unit
test, which helped ensure that this in-
dividual class would work as expected,

and found we could make requests of
other classes.

We also found that some additional
advantages came with developing
frameworks in a decoupled way other
than making the code straightfor-
ward to test. When we decoupled
classes and sets of classes from each
other, we could substitute implemen-
tations of those classes quite easily.
Our utility currently uses VMware
for virtualization, but we can add an
additional assembly to the project
and use another technology such as
Xen Source. If we were to bring in a
new virtualization technology, all we
would need to do is implement the in-
terfaces for the application’s core and
write a few unit tests to ensure that
the new implementation meets the
contracts defined by those interfaces.
This architecture also lets us plug
applications such as graphical con-
figuration utilities, virtual machine
image selectors, and other useful ad-
ditions into the core utility.

The use of virtual machine im-
ages and their deployment via a

metadata-driven utility is an exciting
new approach to machine imaging
and configuration. All the code for
the utility described here is available
at Google Code (http://vclaboratory.
googlecode.com) and can be accessed
via Subversion.�

Joe Kaylor is a software engineer at a
Chicago-area financial consulting company.
His technical interests include operating sys-
tems, databases, and compilers. Kaylor has a
BS in computer science from Purdue Univer-
sity. Contact him at jkaylor@etl.luc.edu.

George K. Thiruvathukal is an associate
professor at Loyola University Chicago in the
computer science department. His technical
interests include parallel/distributed systems,
programming language design/implementa-
tion, and computer science across the disci-
plines. Thiruvathukal has a PhD in computer
science from the Illinois Institute of Technol-
ogy. Contact him at gkt@etl.luc.edu.

www.computer.org/
security/podcasts

Stream
this free

podcast today!

March/April 2008� 69

using System;
using System.Collections.Generic;
using System.Text;
using ClientActions;
using ImageRepository;
using NUnit.Framework;
using Rhino.Mocks;

namespace vmclient.Tests {
 [TestFixture]
 public class ShutdownStrategyTests {

 [Test]
 public void TestGetImagesToShutdown() {
 MockRepository mocks = new MockRepository();
 �IVMStatusStrategy statusStrategy = mocks.

 CreateMock<IVMStatusStrategy>();
 ImageEntry entry1 = new ImageEntry(
 new Version(1,0),
 �new ImageState(true, true, DateTime.Now.

 Subtract(new TimeSpan(1, 0, 0, 0))),
 �new ImageInformation(), “path1”, “path2”,

 “My Image”, Guid.NewGuid());
 ImageEntry entry2 = new ImageEntry(
 new Version(1,0),
 �new ImageState(true, false, DateTime.Now.

 Subtract(new TimeSpan(1, 0, 0, 0))),
 �new ImageInformation(), “path1”, path2,

 “My Image”, Guid.NewGuid());
 ImageEntry entry3 = new ImageEntry(
 new Version(1,0),
 �new ImageState(false, false, DateTime.Now.

 Subtract(new TimeSpan(1, 0, 0, 0))),
 �new ImageInformation(), “path1”, path2,

 “My Image”, Guid.NewGuid());
 ImageEntry entry4 = new ImageEntry(
 new Version(1, 0),
 �new ImageState(true, true, DateTime.Now.Add(new

 TimeSpan(1, 0, 0, 0))),
 �new ImageInformation(), “path1”, path2,

 “My Image”, Guid.NewGuid());
 ImageEntry entry5 = new ImageEntry(
 new Version(1,0),
 �new ImageState(true, true, DateTime.Now.

 Subtract(new TimeSpan(1, 0, 0, 0))),
 �new ImageInformation(), “path1”, path2,

 “My Image”, Guid.NewGuid());
 ServerRepository config = new ServerRepository();
 config.ImageEntries.Add(entry1);

 config.ImageEntries.Add(entry2);
 config.ImageEntries.Add(entry3);
 config.ImageEntries.Add(entry4);
 config.ImageEntries.Add(entry5);
 �Expect.Call(statusStrategy.GetVMState(entry1)).

 Return(VMState.VM_BOOTED).Repeat.Once();
 �Expect.Call(statusStrategy.GetVMState(entry2)).

 Return(VMState.VM_BOOTED).Repeat.Once();
 �Expect.Call(statusStrategy.GetVMState(entry3)).

 Return(VMState.VM_BOOTED).Repeat.Once();
 �Expect.Call(statusStrategy.GetVMState(entry4)).

 Return(VMState.VM_BOOTED).Repeat.Once();
 �Expect.Call(statusStrategy.GetVMState(entry5)).

 Return(VMState.VM_NONE).Repeat.Once();
 mocks.ReplayAll();
 �List<ImageEntry> results = new ShutdownStrategy

 (statusStrategy, null).GetImagesToShutdown(config);
 mocks.VerifyAll();
 Assert.AreEqual(1, results.Count);
 Assert.Contains(entry1, results);
 }

 [Test]
 public void TestShutdownImages() {
 MockRepository mocks = new MockRepository();
 �IVMBootStrategy bootStrategy = mocks.

 CreateMock<IVMBootStrategy>();
 Guid imageID1 = Guid.NewGuid();
 �ImageEntry entry1 = new ImageEntry(new Version(1,

 0), new ImageState(), new ImageInformation(),
 “path1”, path2, “My Image”, imageID1);
 �ImageEntry entry2 = new ImageEntry(new Version(1,

 1), new ImageState(), new ImageInformation(),
 “path1”, path2, “My Image”, imageID1);
 List<ImageEntry> images = new List<ImageEntry>();
 images.Add(entry1);
 images.Add(entry2);
 bootStrategy.ShutdownVM(entry1);
 LastCall.Repeat.Once();
 bootStrategy.ShutdownVM(entry2);
 LastCall.Repeat.Once();

 mocks.ReplayAll();
 �new ShutdownStrategy(null, bootStrategy).

 ShutdownImages(images);
 mocks.VerifyAll();
 }
 }
}

Figure 4. Test fixture for ShutdownStrategy. The unit test framework used is NUnit, and the dynamic mocks framework is
Rhino.Mocks.

	A Virtual Computing Laboratory
	Recommended Citation

	tmp.1322015738.pdf.Sl2Tt

