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Using supersymmetric quantum mechanics, one can obtain analytic expressions for the
eigenvalues and eigenfunctions for all nonrelativistic shape invariant Hamiltonians. These
Hamiltonians also possess spectrum generating algebras and are hence solvable by an inde-
pendent, group theoretical method. In this paper, we demonstrate the equivalence of the two
methods of solution, and review related progress in this field.

PACS. 03.65.-w – Quantum mechanics.
PACS. 03.65.Fd – Algebraic methods.

I. Introduction

Supersymmetric quantum mechanics (SUSYQM) [1] provides an elegant and useful pre-
scription for obtaining closed analytic expressions for the energy eigenvalues and eigenfunctions
of many one dimensional problems. It makes use of first order differential operators A and Ay,

A(x;a0) =
d

dx
+ W (x;a0); Ay(x;a0) = ¡ d

dx
+ W (x;a); (1)

which are generalizations of the raising and lowering operators first used by Dirac for treating the
harmonic oscillator. The superpotential W (x; a0) is a real function of x and a0 is a parameter (or
a set of parameters), which plays a crucial role in the SUSYQM approach. From SUSYQM, one
finds that the supersymmetric partner Hamiltonians H¡ ´ AyA and H+ ´ AAy have the same
energy eigenvalues (except for the ground state). The potentials V¡ and V+, corresponding to the
Hamiltonians H¡ and H+, are related to the superpotential by

V§ = W 2(x; a0) § dW (x; a0)

dx
: (2)

Superpotentials W (x;a) which satisfy the condition

V+(x;a0)= W 2(x; a0)+
dW (x;a0)

dx
= W 2(x;a1) ¡ dW (x;a1)

dx
+ R(a0) = V¡ (x; a1)+ R(a0);

a1 = f(a0):

(3)
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FIG. 1. A typical set of supersymmetric partner potentials with common eigenenergies.

are called “shape invariant” [2]. Here, a1 and a0 are parameters. Shape invariant partner potentials
V+(x;a0) and V¡ (x;a1) have the same x-dependence. As illustrated in Figure 1, R(a0) is the
energy difference of the ground states of V¡ (x; a1) and V+(x;a0). The functions f(a0) might
include a large class of change of parameters: translations, scalings, projective transformations,
as well as more complicated ones. We shall restrict our discussion to the first three.

Note that “shape invariance” is a very specialized notion. An example of two such shape
invariant partners are the infinite well and the cosec2 potential, something one would hardly guess
from the name “shape invariance”.

A remarkable feature of shape invariant potentials is that their entire spectrum can be
determined exactly by algebraic means, without ever referring to underlying differential equations
[1], analogous to the way that the one-dimensional harmonic oscillator is solved by Dirac’s method
of raising and lowering operators.

It has also been discovered that some of these exactly solvable systems possess a so-called
“spectrum generating algebra” (SGA) [3, 5]. The Hamiltonian of these systems can be written as
a linear or quadratic function of an underlying algebra, and all the quantum states of these systems
can be determined by group theoretical methods.

One may therefore ask the question: Is there any connection between a general shape
invariance condition within the formalism of SUSYQM, and a spectrum generating algebra? If
so, then all shape invariant potentials should have such an algebra. Furthermore, we should be able
to establish the connection between the SUSYQM method of solution and the group theoretical
potential algebra method. Last but not least, we may be able to identify whether there are hitherto
unknown potentials belonging to this family, or, on the other hand, whether the set of known
potentials appears to be complete.

In this paper we discuss the work of others and ourselves, all of which lead to the conclusion
that, indeed, the two methods are equivalent, and in fact, the known set of exactly solvable
potentials appears to be complete.

II. Supersymmetric quantum mechanics and shape invariance

In this section, we very briefly describe supersymmetric quantum mechanics (SUSYQM),
and also show how SUSYQM applied to shape invariant potentials allows one to completely
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determine the spectrum of a quantum system. For a more detailed description, see Ref. [1].
A quantum mechanical system described by a potential V¡ (x) can alternately be described

by its ground state wavefunction Ã
(¡ )
0 : from the Schrödinger equation for the ground state wave-

function, ¡ Ã
00
0 + V (x)Ã 0 = 0, it follows that the potential can be written as, V¡ (x) =

³
Ã

00
0

Ã 0

´
,

where prime denotes differentiation with respect to x. Note that the potential has been adjusted
to make the ground state energy E0 = 0. In SUSYQM, it is customary to express the system in

terms of the superpotential W(x) = ¡
³

Ã
0
0

Ã 0

´
. V¡ and W are then related by Eq. (2). The ground

state wavefunction is then given by Ã 0 » exp(¡ R x
x0

W (x)dx), where x0 is an arbitrarily chosen
reference point. At this point it is important to point out that whenever a potential is defined in
the above form in terms of the a normalizable ground state wavefunction, the zero-value for the
ground state energy is assured.

Using units with ~ and 2m = 1, the Hamiltonian H¡ can now be written as

H¡ =

µ
¡ d2

dx2
+ V¡ (x)

¶
=

µ
¡ d2

dx2
+ W 2(x) ¡ dW (x)

dx

¶

=

µ
¡ d

dx
+ W (x)

¶ µ
d

dx
+ W (x)

¶
:

(4)

As discussed in the Introduction, in analogy with the harmonic oscillator raising and low-
ering operators, we introduce operators A =

¡
d

dx + W (x)
¢
, and and its Hermitian conjugate

A+ =
¡¡ d

dx + W (x)
¢
. Thus H¡ = AyA. With these operators A and Ay, one can construct

another Hermitian operator H+ = AAy. The eigenstates of H+ are iso-spectral with excited
states of H¡ . The Hamiltonian H+, with potential V+(x) =

³
W 2(x) + dW(x)

dx

´
, is called the

superpartner of the Hamiltonian H¡ . To show the iso-spectrality mentioned above, let us denote
the eigenfunctions of H§ that correspond to eigenvalues E§

n , by Ã
(§ )
n . For n = 1;2;¢¢¢,

H+

³
AÃ (¡ )

n

´
= AA+

³
AÃ (¡ )

n

´
= A

³
A+AÃ (¡ )

n

´

= AH¡
³

Ã
(¡ )
n

´
= E¡

n

³
AÃ

(¡ )
n

´
:

(5)

Hence, except for the ground state which obeys AÃ
(¡ )
0 = 0, all excited states Ã

(¡ )
n of H¡ have one

to one correspondence with Ã
(+)
n¡ 1 / AÃ

(¡ )
n of H+ with exactly the same energy, i.e. E+

n¡ 1 = E¡
n ,

where n = 1; 2;¢¢¢. Conversely, one also has A+Ã
(+)
n¡ 1 / Ã

(¡ )
n . Thus, if the eigenvalues and

the eigenfunctions of H¡ were known, one would automatically obtain the eigenvalues and the
eigenfunctions of H+, which is in general a completely different Hamiltonian. See Figure 2.

At this point, we could obtain the E+’s and Ã (+)’s from the E¡ ’s and Ã (¡ )’s, or vice
versa, but we can go no further. That is, unless we know either set a priori, this analysis is simply
a mathematical curiosity.
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FIG. 2. Isospectrality of H+ and H¡ . Note that V+ and V¡ have different shapes, as do various Ã + and
Ã ¡ .

FIG. 3. Infinite Square Well and cosec2x: two shape invariant partners.

Now, let us consider the special case where V¡ (x;a0) is a shape invariant potential. For
such systems, potentials V+(x; a0) = V¡ (x; a1) + R(a0). Hence, V¡ and and V+ have the same
x-dependence (although, as we shall see, this is not always obvious). Their superpotential W
obeys the shape invariance condition of Eq. (3). Since potentials V+(x;a0) and V¡ (x; a1) dif-
fer by the additive constant R(a0), their respective Hamiltonians differ by that same constant.
Thus, the eigenfunctions of the Schroedinger equation are the same for both potentials. In par-
ticular, they have a common ground state wavefunction, given by Ã

(+)
0 (x;a0) = Ã

(¡ )
0 (x;a1) »

exp
³

¡ R x
x0

W(x; a1)dx
´

, and the ground state energy of H+(x;a0) is R(a0), because the ground

state energy of H¡ (x; a1) is zero. NB: the parameter shift a0 ! a1 has an effect similar to that
of a ladder operator: Ã

(¡ )
1 (x; a0) » A+(x; a0) Ã

(¡ )
0 (x;a1). Note that ladder operators A, Ay,

like H , are also dependent on parameters an.
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Now using SUSYQM algebra, the first excited state of H¡ (x; a0) is given by A+(x;a0)Ã
(¡ )
0

(x; a1) and the corresponding eigenvalue is R(a0). By iterating this procedure, the (n + 1)-th
excited state is given by

Ã
(¡ )
n+1(x; a0) » A+(a0) A+(a1)¢¢¢A+(an) Ã

(¡ )
0 (x;an); (6)

and corresponding eigenvalues are given by

E0 = 0; and E(¡ )
n =

n¡ 1X

k=0

R(ak) for n > 0: (7)

(To avoid notational complexity, we have suppressed the x-dependence of operators A(x; a0) and
A+(x;a0).) Thus, for a shape invariant potential, one can obtain the entire spectrum of H¡ itself
by the algebraic methods of SUSYQM (and of course the same is true for H+). Now we are
moving up (or down) along the ladder of a single Hamiltonian H¡ , albeit the price we pay is that
the Ã (¡ )

n ’s have different parameters an.
As an example let us demonstrate this method for the unlikely pair of shape invariant

potentials: the infinite well and cosec2x. We begin by showing that they are indeed superpotential
partners. Consider a superpotential W (x) = ¡ b cotx with b > 0. We restrict the domain of this
potential to (0; ¼). The supersymmetric partner potentials generated by this superpotential are:

V¡ (x; b)= W 2(x) ¡ dW

dx
= b(b ¡ 1)cosec2x ¡ b2

and

V+(x; b)= W 2(x) +
dW

dx
= b(b +1)cosec2x ¡ b2:

(8)

Now for a special case of b = 1, the potential V¡ (x;1) is a trivial constant function ¡ b2 = ¡ 1,
while the partner potential V+(x;1) is given by 2cosec2x¡ 1. Thus, in general, two supersymmetric
partner potentials could be of very different shapes. V¡ (x; 1) is just an infinite one-dimensional
square well potential whose bottom is set to ¡ 1. Since we know the eigenvalues and eigenfunctions
of a infinitely deep square well potential, SUSYQM allows us to determine spectrum of the
very nontrivial cosec2x potential. The eigenspectrum (in simplified units) of the square-well
potential V¡ (x; 1) are given by Ã

(¡ )
n » sin(nx) and E

(¡ )
n = n2(n = 0; 1; 2; : : : ). Hence, using

Ã
(+)
n¡ 1 » AÃ

(¡ )
n and Eq. (1) the eigenspectrum of the cosec2x potential is given by Ã

(+)
n¡ 1 »¡

d
dx ¡ cotx

¢
sin(nx) and E

(+)
n = n2(n = 1;2; 3; : : : ).

As we have stated before, if one knows the spectrum of one of the partner Hamiltonians,
one knows the other.

In the above example, we knew the spectrum of the infinite square well and used that
to determine the spectrum of the cosec2x potential. Now we demonstrate that they are indeed
shape invariant partners. One can write the potential V+(x;b) as

V+(x; b) = W2(x) +
dW

dx
= b(b + 1)cosec2x ¡ b2

= (b +1)[(b + 1) ¡ 1]cosec2x ¡ (b + 1)2 + (b + 1)2 ¡ b2

= V¡ (x;b +1) + (b +1)2 ¡ b2:

(9)
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So the potential V¡ (x; b) is a shape invariant potential as defined in Eq. (3), with R(a0) =
(b +1)2 ¡ b2, a0 = b and a1 = a0 + 1 = b + 1.

Once this shape invariance is established we do not need a priori knowledge of the
eigenvalues and eigenfunctions of a potential to determine the spectrum of a partner potential.
We first used the formalism of the preceding page; Eqs. (6) and (7). Here we solve the in-
finitely deep potential well as an example. Setting b = 1 in Eq. (8), we find V+(x;1) =
2cosec2x ¡ 1 and V¡ (x;1) = ¡ 1. The latter represents an infinitely deep potential well in
the region 0 < x < ¼ . The ground state eigenfunction and the energy of H¡ (x;1) are given by
Ã

(+)
0 (x;1) » e¡

R
W(x;1)dx » e

R
cotxdx » sin x and 0, respectively. Now, we use shape invariance

to determine the excited states of this Hamiltonian. Since V+(x;1) = V¡ (x; 2) + 3, the ground
state energy E

(+)
0 (1) of H+(x;1) is equal to 3 (using the fact that the ground state energy E

(¡ )
0 (2)

of H¡ (x; 2) is zero.) The common ground state eigenfunction of H+(x;1) and H¡ (x;2) is given
by Ã

(+)
0 (x;1) = Ã

(¡ )
0 (x;2) » e¡

R
W(x;2)dx » e

R
2 cot xdx » sin2 x. Thus the first excited state of

H¡ (x; 1) is given by Ã
(¡ )
1 (x;1) » Ay(x; 1) sin2 x = (¡ d

dx ¡ cotx) sin2 x » sin2x. Thus, we
have derived the energy and the eigenfunction of the first excited state of H¡ (x; 1). By iterating
this procedure, we can generate its entire spectrum. Note that our choice of V¡ (x;1) = ¡ 1 shifts
the well known infinite well spectrum: E

(¡ )
n = n2 ¡ 1.

At this point, we would like to point out that shape invariance does not always help one in
determining the spectrum. There is another important ingredient necessary, and that is unbroken
supersymmetry. To understand this, let us first note that the condition E

(¡ )
0 = 0 was crucial in

determining the spectrum. However, unless Ã0 is normalizable, it is meaningless to talk about
E

(¡ )
0 . For the function Ã0 to be normalizable, we need Ã 0(§ 1) » exp

³
¡ R § 1

x0
W (x)dx

´
= 0.

Thus a necessary condition for this normalizability is that
R ¡ 1

x0
W (x)dx = 1. This can be

accomplished if W (x ! 1) > 0 and W (x ! ¡ 1) < 0 and their integrals diverge. If
Ã0 is not normalizable but 1=Ã (¡ )

0 is, we write limx!1
³

1

Ã
(¡ )
0

´
» exp

³R § 1
x0

W (x)dx
´

=

exp
³

¡ R § 1
x0

¡ W (x)dx
´

= 0. Thus, W ! ¡ W , and the roles of V¡ and V+ are reversed

in Eq. (3); i.e. E
(¡ )
0 > 0 and E

(+)
0 = 0. However, if W (x ! 1) and W (x ! ¡ 1) both

have same sign, then neither of the two functions Ã 0 and 1=Ã
(¡ )
0 is normalizable. Systems

described by superpotentials W (x)’s with this type of asymptotic behavior are called cases of
broken supersymmetry. For this type of systems, eigenvalue spectra of H+ and H¡ are strictly
identical, i.e.

E(¡ )
n = E(+)

n ; (10)

with ground state energies greater than zero. Extending this work to include a few select cases of
broken SUSY can be done along the direction of Ref. [6]. We will, in this paper, restrict ourselves
to cases of unbroken SUSY.

Most of the known exactly solvable problems possess a spectrum generating algebra (SGA)
[3, 4, 5] as has been demonstrated by numerous authors, starting with Pauli [7]. We would like
to find out if there is any connection between the SGA and shape invariance of these systems.
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In many of these SGA approaches, the Schroedinger Equation is written as: [§ iciTi ¡
¸]R(r) = 0, where rR(r) is the customary radial part of the wave function [Adams et al. [8]]
and Ti’s are the generators of the underlying algebra. Eigenvalues of H = § iciTi are then given
by diagonalization of these generators. For example [8], the Coulomb problem can be constructed
from the generators T1 = 1

2[rp2
r + L2r¡ 1 ¡ r], T2 = [rpr], T3 = 1

2[rp2
r + L2r¡ 1 + r], where

pr = ¡ i(@=@r + 1=r); [r;pr] = i. The algebra is so(2;1): [T1;T2] = ¡ iT3, [T2; T3] = iT1,
[T3; T1] = iT2. Then H = 1

2p2
r + 1

2L2r¡ 2 ¡ Zr¡ 1 leads to the radial Schroedinger Equation
reformulated as [T1(1 + E) + T3(1 ¡ E) ¡ 2Z]R(r) = 0 where E is the energy eigenvalue.

In SUSYQM, by contrast, the Hamiltonian is given in terms of the ladder operators: H =
AyA, analogous, as we have noted earlier, to ay and a in the traditional Dirac solution to the one-
dimensional harmonic oscillator, or L+ and L¡ in the well-known angular momentum problems
for spherically symmetric potentials. As we shall see later, the type of SGA that is most relevant
to SUSYQM is known as potential algebra, studied extensively by Alhassid et al. [3, 4]. In
potential algebra, the Hamiltonian of the system is written in terms of the Casimir operator (C2)
of the algebra, and the energy of states specified by an eigenvalue ! of C2. This Casimir is
analogous to (and often identical to) H , and will commute with a set of operators J§ and J3.
Different states with a given ! represent eigenstates of a set of Hamiltonians that differ only in
values of parameters, and share a common set of energies. This is very similar to the case of shape
invariant potentials. In the next section, we will attempt to establish this connection in a more
concrete fashion. In fact, for a set of solvable quantum mechanical systems we shall explicitly
show that shape invariance leads to a potential algebra.

III. Potential algebra model for shape invariant potentials (SIP’s)

To begin the construction of the operator algebra, let us express the shape invariance
condition [Eq. (3)] in terms of A and Ay :

V+(x; a0) ¡ V¡ (x; a1)= H+(x; a0) ¡ H¡ (x;a1)

= A(x;a0)A
y(x; a0) ¡ Ay(x;a1)A(x;a1) = R(a0):

(11)

This relation, which resembles the familiar commutator structure, but with distinct parameters a0

and a1, is not as exotic as it may appear. For example, we have seen such an equation in the
context of angular momentum in quantum mechanics:

[L+; L¡ ] = 2L3: (12)

This operator equation, when applied to spherical harmonics, gives the following result involving
its eigenvalues

f(m ¡ 1; l)Ym
l ¡ f(m; l)Ym

l = 2m Ym
l :

We identify a0 = m, a1 = m ¡ 1, and f(m;l) ´ l(l + 1) ¡ m(m + 1). In a similar fashion, we
would like to characterize Eq. (11) as an eigenvalue equation of operators J+;J¡ in an enlarged
space, with parameters a0; a1 the eigenvalues of the corresponding J3. We introduce, in analogy
with 3-space, a coordinate Á such that J’s are its “rotational” generators. After quite a bit of trial
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and error, we find that one such set of operators is given by

J+ = eipÁ Ay(x; Â(i@Á )); J¡ = A(x; Â(i@Á)) e¡ ipÁ ; and J3 = ¡ i

p
@Á : (13)

The constant p is an arbitrary real constant that scales the spacing between eigenstates of J3 . The
real function Â , as will be explained below and exemplified later, is chosen judiciously in accord
with the relation among the parameters an. The operators A(x;Â(i@Á )) and Ay(x; Â(i@Á )) are
obtained from Eq. (1) with the substitution a0 ! Â(i@Á ). From Eq. (13), one obtains

[J+;J¡ ] = eipÁ Ay(x; Â(i@Á ))A(x;Â(i@Á))e
¡ ipÁ ¡ A(x;Â(i@Á))A

y(x;Â(i@Á)): (14)

If we carry out the operation of i@Á on eipÁ , Eq. (14) reduces to

[J+;J¡ ] = Ay(x;Â(i@Á + p))A(x; Â(i@Á + p)) ¡ A(x;Â(i@Á))A
y(x;Â(i@Á)): (15)

At this point if we can judiciously choose a function Â(i@Á) such that Â (i@Á + p) =
f[Â(i@Á)], the r.h.s. of Eq. (15) becomes

Ay(x;f [Â(i@Á )])A(x;f [Â(i@Á)]) ¡ A(x; Â(i@Á))A
y(x; Â(i@Á )):

Now using

a0 ! Â(i@Á ); a1 = f(a0) ! f [Â(i@Á)] = Â(i@Á + p); (16)

and the shape invariance Eq. (11), Eq. (15) reduces to

[J+;J¡ ] = ¡ R(Â(i@Á)): (17)

As a consequence, we obtain a “deformed” Lie algebra whose generators J+;J¡ and J3

satisfy the commutation relations

[J3;J§ ] = § J§ ; [J+; J¡ ] = »(J3); (18)

»(J3) ´ ¡ R(Â(i@Á)) defines the deformation of the algebra from the so(2, 1) value of ¡ 2J3 .
Thus we see that the shape invariance condition plays an indispensible role in the closing of this
algebra.

Depending on the relationship between a0 and a1, we have different forms of the Â function
in Eq. (16). This results in different deformed algebras. For example,

1. translational models: a1 = a0 + p () Â(z) = z. In these models if R is a linear function
of J3 the algebra turns out to be so(2, 1) [11]. It is important to point out that Balantekin
[12], independently, established a similar connection about the same time as us.

2. scaling models: a1 = epa0 ´ qa0 () Â(z) = ez,

3. cyclic models: a1 = ®a0+¯
°a0+± ; () Â (z) =

(¸1¡ ±)¸
z=p
1 +(¸ 2¡ ±)¸

z=p
2 B(z)

°[¸
z=p
1 +¸

z =p
2 B(z)]

,
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where ¸1;2 are solutions of the equation (x¡ ®)(x¡ ±)¡ ¯° = 0 and B(z) is an arbitrary periodic
function of z with period p. We shall elaborate on these cases in Sec. 4. Other relations between
a0 and a1 lead to more complicated forms for Â(z). For example, a function Â(z) = eez

, is
required for a1 = f [a0] = a2

0 .
The operator J+J¡ corresponds to a supersymmetric Hamiltonian. From Eq. (13)

J+J¡ = Ay(x;Â(i@Á + p))A(x; Â(i@Á + p)) = H(x;Â(i@Á + p)): (19)

This is our old Hamiltonian H¡ (x;a1) whose spectrum we seek; we will now suppress the
subscript “-” to avoid confusion with a similar index on the generator J¡ . To find the energy
spectrum of H of Eq. (19), we thus need to construct the unitary representations of the operators
J+; J¡ , and J3 . By definition, the action of the operators J+; J¡ and J3 on an arbitrary eigenstate
jhi of J3 is given by

J3jhi = hjhi;
J¡ jhi = a(h) jh ¡ 1i;
J+jhi = a?(h +1) jh +1i:

(20)

For determination of the representation, we now need to find the coefficients a(h). Given the
fact that these operators satisfy a deformed algebra [Eqs. (18)], the representation is expected
to be different from our familiar so(3) ([J+;J¡ ] = 2 J3) or its less familiar cousin so(2;1)
([J+;J¡ ] = ¡ 2 J3): The technique that will be followed is based on Ref. [13]. Using Eqs. (18)
and (20), operating with [J+;J¡ ] on a state jhi and writing »(J3) = »(h), we obtain

ja(h)j2 ¡ ja(h + 1)j2 = »(h): (21)

To obtain a(h) from this, which involves ja(h +1)j2 , let us define a function g(J3) such that

»(J3) = g(J3) ¡ g(J3 ¡ 1): (22)

Thus, we have ja(h)j2 ¡ ja(h + 1)j2 = »(h) = g(h) ¡ g(h ¡ 1). (Note the generality of
that g(h); it can be changed by an additive constant or a function of unit period without affecting
»(h)). The Casimir of this algebra is then given by C2 = J¡ J+ + g(J3) 1. The profile of g(h)
determines the dimension of the unitary representation. To illustrate how this mechanism works,
let us consider the two cases presented in Fig. 4.

If we label the lowest eigenstate of the operator J3 as hmin, then J¡ jhi = 0 ) a(hmin) = 0.
Without loss of generality we can choose the coefficients a(h) to be real. Then from (21) and
(22), for an arbitrary h = hmin + n; n = 0;1;2; : : : one obtains by iteration

a2(h) = g(h ¡ n ¡ 1) ¡ g(h ¡ 1): (23)

1This can be verified explicitly by showing that it commutes with J+; J¡ ; J3
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(a) (b)

FIG. 4. Generic behaviors of g(h).

FIG. 5. Potential Algebra: Schematic of generation of SIP’s by “hopping” of h.

Finite dimensional representations are represented by graphs of g(h) vs. h with starting
at h = hmin, then by moving in integer steps parallel to the h-axis to the point corresponding
to h = hmax, as in Fig. 4a. Thus we obtain the family of partner potentials. At the end points,
a(hmin) = a(hmax + 1) = 0, and we get a finite representation. This is the case of su(2) for
example, where g(h) is given by the parabola h(h+1). However, if g(h) decreases monotonically,
Fig. 4b, there exists only one end point at h = hmin. Starting from hmin the value of h can be
increased in integer steps to infinity. In this case we have an infinite dimensional representation.
As in the finite case, hmin labels the representation. The difference is that here hmin takes
continuous values. Similar arguments apply for a monotonically increasing function g(h) as well.
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Recall, we are looking for the eigenvalue spectrum of a given V by comparing it with the
partner V ’s with same spectrum, but sequential ground states. We can use the J§ ’s properties of
Eq. (20) to develop a “hopping scheme” as in Fig. 5 to move horizontally from each partner’s E0

to the En of our V of interest. Eq. (20) leads to either a finite representation similar to angular
momentum (i.e. h’s have a maximum and a minimum) or to an infinite representation (bounded
from above, below, or completely unbounded).

Having established a connection between the representation of the above algebra associated
with a shape invariant model, it is straightforward to obtain (using Eq. (19, 21)) the complete
spectrum of the system. To illustrate how this mechanism works, we investigate a few examples
in the next section.

Using a similar approach to ours, with so(2; 1), Balantekin and coworkers [12] have
studied the cases of potentials with a positive quadratic power law in the energy eigenvalues:
En = ¯n2 + ±n + °. They have also studied the “coherent states” for shape invariant cases.

IV. Examples

IV-1. Self-similar potentials
The first example is for a scaling change of parameters a1 = q a0 = epa0 . As stated before,

the function Â(z) that emulates this relationship is given by ez. Consider the simple choice
R(a0) = r1, a0, where r1 is a constant. This choice generates the self-similar potentials studied
in Refs. [14, 15]. In this case, Eqs. (18) become:

[J3; J§ ] = § J§ ; [J+; J¡ ] = »(J3) ´ ¡ r1 exp(¡ pJ3); (24)

which is a deformation of the standard so(2;1) Lie algebra. For this case, from Eqs. (24) and
(22) one gets 2

g(h) =
r1

ep ¡ 1
e¡ ph = ¡ r1

1 ¡ q
q¡ h; q = ep: (25)

Note that for scaling problems [15], one requires 0 < q < 1, which leads to p < 0. From the
monotonically decreasing profile of the function g(h), it follows that the unitary representations
of this algebra are infinite dimensional. Then from Eq. (23),

a2(h) = g(h ¡ n ¡ 1) ¡ g(h ¡ 1) = r1
qn ¡ 1

q ¡ 1
q1¡ h: (26)

To determine the energy eigenvalues, we find the expectation value of H in Eq. (19) in an arbitrary
eigenstate jhi of J3. This leads to the spectrum of the Hamiltonian H¡ (x; a1) from

H¡ jhi = a2(h)jhi = r1
qn ¡ 1

q ¡ 1
q1¡ hjhi: (27)

Therefore, the eigenenergies are

En(h) = r1®(h)
qn ¡ 1

q ¡ 1
; ®(h) ´ q1¡ h: (28)

2To obtain a solution of Eq. (22), we have been guided by solutions of the differential equation »(u) = dg(u)
du .
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To compare the above spectrum obtained using the group theoretic method with the results obtained
from SUSYQM [16], we go to the coordinate representation. Here jhi / eiphÁ Ãhmin;n(x) 3 and
hence, the Schrödinger equation for the Hamiltonian H¡ reads

½
¡ d2

dx2
+ W 2(x; Â(i@Á + p)) ¡ W0(x; Â(i@Á + p)) ¡ E

¾
eipÁhÃhmin;n(x)= 0;

½
¡ d2

dx2
+ W 2(x;ei@Á +p) ¡ W 0(x;ei@Á +p) ¡ E

¾
eiphÁ Ãhmin;n(x)= 0;

½
¡ d2

dx2 + W2(x;®(h)) ¡ W 0(x;® (h)) ¡ E

¾
Ãhmin;n(x)= 0;

(29)

which is exactly the Schrödinger equation appearing in Ref. [15], with eigenenergies given by
Eq. (28). The elegant correspondence that exists between potential algebra and supersymmetric
quantum mechanics for shape invariant potentials is further described in Ref. [16].

For a more general case [15], we assume R(a0) =
P1

j=1 Rjaj
0 . In this case

g(h) =
1X

j=1

Rj

1 ¡ ejp
e¡ jph; (30)

and one gets

a2(h)= g(h ¡ n ¡ 1) ¡ g(h ¡ 1)

=

1X

j=1

® j(h)
1 ¡ qjn

1 ¡ qj ;
(31)

where ® j(h) = Rje¡ j(h¡ 1). These results agree with those obtained in Ref. [15].

IV-2. Cyclic potentials
Let us consider a particular change of parameters given by the following cycle (or chain):

a0; a1 = f(a0); a2 = f(a1) ; : : :; ak¡ 1 = f(ak¡ 2); ak = f(ak¡ 1) = a0; (32)

and choose R(ai) = ai ´ !i. This choice generates the cyclic potentials studied in Ref. [9].
Cyclic potentials form a series of shape invariant potentials; the series repeats after a cycle

of k iterations. In Fig. 6 we show the first potential V (x;a0) from a 3-chain (k = 3) of cyclic
potentials, corresponding to !0 = 0:15, !1 = 0:25, !2 = 0:60.

Such potentials have an infinite number of periodically spaced eigenvalues. More precisely,
the level spacings are given by !0;!1; : : : ;!k¡ 1;!0;!1; : : : ;!k¡ 1; !0; !1; : : : .

3 J3 jhi ! ¡ i
p @Á eiphÁ = heiphÁ
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FIG. 6. First potential V (x; a0) from a 3-chain (k = 3).

In order to generate the change of parameters (32) the function f should satisfy f(f(: : : f(x)
: : : )) ´ fk(x) = x. The equation (a projective map)

f(y) =
®y + ¯

°y + ±
; (33)

with specific constraints on the parameters ® ;¯; °; ±, satisfies such a condition [9].
The next step is to identify the Lie algebra behind this model. For this, we need to find

the function Â satisfying the equation

Â(z + p) = f(Â(z)) ´ ®Â(z)+ ¯

°Â(z) + ±
: (34)

It is a difference equation and its general solution is given by

Â(z) =
(¸1 ¡ ±)¸

z=p
1 + (¸2 ¡ ±)¸

z=p
2 B(z)

°
h
¸

z=p
1 + ¸

z=p
2 B(z)

i ; (35)

where ¸1;2 are solutions of the equation (x ¡ ® )(x ¡ ±) ¡ ¯° = 0. For simplicity B(z) can be
chosen to be an arbitrary constant. Plugging this expression in Eqs. (18) we obtain:

[J3; J§ ]= § J§ ;

[J+; J¡ ]= »(J3) ´ ¡ 1

c

A(¸1 ¡ ±)¸¡ J3
1 + B(¸2 ¡ ±)¸¡ J3

2

A¸¡ J3
1 + B¸¡ J3

2

:
(36)
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Applying our standard procedure to find the spectrum of the Hamiltonian H¡ = J+J¡ we
find that the ground state is at zero energy; the next (k ¡ 1) eigenvalues are El =

Pl
j=0 !j ; l =

0; 1; : : : ; (k ¡ 2); and all other eigenvalues are obtained by adding arbitrary multiples of the
quantity  k ´ !0 + !1 + ¢¢¢+ !k¡ 1. This result is in complete agreement with [9].

IV-3. Scarf potential with an = an¡ 1 + ±

As a concrete example of translational algebra, we will examine the Scarf potential, which
is related to the Pöschl-Teller II potential by a redefinition of the independent variable. We will
show that the shape invariance of the Scarf potential automatically leads to its potential algebra:
so(2;1). (Exactly similar analyses can be carried out for the Morse, the Rosen-Morse, and the
Pöschl-Teller potentials.) The Scarf potential is described by its superpotential W (x;a0;B) = a0

tanh x + B sech x. The potential V¡ (x;a0; B) = W2(x;a0; B) ¡ W0(x;a0; B) is then given by

V¡ (x; a0;B) =
£
B2 ¡ a0(a0 +1)

¤
sech2 x + B(2a0 + 1) sech x tanh x + a2

0: (37)

The eigenvalues of this system are given by ([1])

En = a2
0 ¡ (a0 ¡ n)2: (38)

The partner potential V+(x; a0;B) = W 2(x; a0;B) + W 0(x;a0; B) is given by

V+(x;a0; B)= [B2 ¡ a0(a0 ¡ 1)] sech2 x + B(2a0 ¡ 1) sechx tanh x + a2
0:

= V¡ (x; a1;B) + a2
0 ¡ a2

1;
(39)

where a1 = a0 ¡ 1. Thus, R(a0) for this case is a2
0 ¡ a2

1 = 2a0 ¡ 1, linear in a0.
Now, consider a set of operators J § which are given by

J § = e§ i Á

·
§ @

@x
¡

½ µ
¡ i

@

@Á
§ 1

2

¶
tanh x + B sech x

¾ ¸
: (40)

It can be explicitly checked that the commutator of the J§ operators, as defined above, is indeed
given by ¡ 2J3, thus forming a closed so(2;1) algebra. Moreover, the operator J+J ¡ , acting on
the basis jj; mi gives:

J+J¡ ´
·
B2 ¡

µ
m2 ¡ 1

4

¶ ¸
sech2 x

+B

µ
2

µ
m ¡ 1

2

¶
+ 1

¶
sech x tanh x +

µ
m ¡ 1

2

¶ 2

;

(41)

which is just the Hscarf(x;m ¡ 1
2;B), i.e. the Scarf Hamiltonian with a0 replaced by m ¡ 1

2 .
Thus the energy eigenvalues of the Hamiltonian will be the same as that of the operator J+J¡ =
J2

3 ¡ J3 ¡ J2. Hence, the energy is given by E = m2 ¡ m ¡ j(j + 1). In this example, the
quantum number j plays the role of hmin defined in the previous section. Substituting j = n¡ m,
one gets

En= m2 ¡ m ¡ (n ¡ m)(n ¡ m +1)

=

µ
m ¡ 1

2

¶ 2

¡
·
n ¡

µ
m ¡ 1

2

¶ ¸2

:

(42)
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which is the same as Eq. (38), with a0 replaced by (m ¡ 1
2). Note that the parameter B of

the Hamiltonian does not show up in the expression for the energy, and thus plays the role of a
“spectator”. As we shall show later, this property is shared by all known exactly solvable models
with two independent parameters.

Thus for this potential, (as well as for the Morse, Rosen-Morse and Pöschl-Teller potentials
mentioned above), there are actually an infinite number of partner potentials, each characterized
by an allowed value of the parameter m, that correspond to the same value of j = n ¡ m and
thus to the same energy E. Hence the name “potential algebra” ([3, 4]).

V. Natanzon potentials

In the Section 4.3, we noted that for SIP’s with translationally related parameters (i.e.
an = an¡ 1 + ±), the shape invariance condition led to the closing of the algebra to the familiar
so(3) or so(2; 1), provided that R(a0) was linear in a0 [11]. Several SIP’s belong to this category;
among them are the Morse, Scarf I, Scarf II, and generalized Pöschl-Teller potentials. However,
there are many important SIP’s (e.g., Coulomb), whose associated R(a0)’s are not linear in a0.
Our method of the previous section would lead to deformed potential algebras for these systems.
While we now know how to get deformed representations of such algebras, in this section we shall
take a different approach. We choose to generalize the structure of the operators J§ such that
their algebra still remains linear. In fact, in this section, we reverse the scheme of the last section:
rather than showing the algebraic structure hidden in a shape invariant system, we generate shape
invariant potentials from an underlying potential algebra. To do this we take advantage of the
properties of a generalized quadratic potential discussed by Natanzon [10].

Alhassid et al. [3] have shown that the algebra associated with the general potential of the
Natanzon class is so(2;2). The Schrödinger equation for these potentials reduces in general to
the hypergeometric equation.

We will briefly examine the properties of the so(2; 2) algebra in this section, and show its
connection to the Natanzon potentials [10]. We shall propose an additional constraint to select a
shape invariant subset of the Natanzon potentials. We shall then show that this constraint indeed
produces all known SIP’s of the translational type. We shall find in fact that this subset of
Natanzon potentials associated with the translational SIP’s has the simpler so(2;1) algebra.

We begin by describing Alhassid et al.’s representation of the so(2; 2) algebra in terms of
differential operators. For consistency, we use the formalism and the notations of Ref. [3]. Our
program here is to take the Alhassid et al. so(2; 2) operators, which they call A and B, and see
how these can be related to the previous section’s J’s; i.e., the operators we associated with shape
invariance.

The differential operators of Alhassid can be written explicitly as

A§ ´ A1 § A2=
1

2
e§ i(Á+µ)

·
¨ @

@Â +tanh Â (¡ i@Á )+ coth Â (¡ i@µ)

¸
;

A3= ¡ i

2
(@Á + @µ);

B§ ´ B1 § B2=
1

2
e§ i(Á¡ µ)

·
¨ @

@Â +tanh Â(¡ i@Á) + cothÂ (+i@µ)

¸
;

B3= ¡ i

2
(@Á ¡ @µ):

(43)



116 EXACT SOLUTIONS OF THE SCHRÖEDINGER EQUATION: ¢¢¢ VOL. 39

The A’s and B’s separately form an so(2; 1) algebra:

[A3; A§ ] = § A§ ; [A+; A¡ ] = ¡ 2A3;

and similarly for the B’s. The Casimir operator C2; i.e., the operator which commutes with all
of the above (cf. the ordinary angular momentum operators L2 vis-a-vis L§ , Lz ) is given by

C2= 2(A2
3 ¡ A+A¡ ¡ A3) + 2(B2

3 ¡ B+B¡ ¡ B3)

=

·
@2

@Â2 +(tanh Â +cothÂ)
@

@Â + sech2Â(¡ i@Á )2 ¡ cosech2Â(¡ i@µ)
2

¸
:

(44)

Operators A3, B3 and C2 commute, and can therefore be simultaneously diagonalized, and their
actions on their common eigenstate are given by

C2j!; m1;m2i = !(! + 2) j!; m1;m2i;
A3j!;m1; m2i = m1 j!;m1; m2i;
B3j!;m1; m2i = m2 j!;m1; m2i:

(45)

(It is important to note that the Casimir operator given above is indeed self-adjoint, once we
recognize that the appropriate “measure”; viz., the volume element over which it is integrated,
is sinh Â coshÂdÂdÁdµ. This is compurable to the more familiar “3-space” algebra so(4), for
which [A3; A§ ] = § A§ , [A+; A¡ ] = +2A3, and the measure is sin Â cosÂdÂdÁdµ.)

We thus have the eigenvalues and eigenfunctions of C2 , A3, and B3 . The problem resembles
the familiar 2-particle angular momentum case for H, L1z, L2z. A3 and B3 certainly have
differential forms (¡ i@Á § i@µ) analogous to Lz. However, our C2 cannot, in its present form, be
a Schrödinger Hamiltonian, since it has a first order derivative term. When we seek to eliminate
this term, we discover that this constrains the allowed potentials to the special family, discovered
by Natanzon [10].

To connect the Casimir operator C2 of the so(2; 2) algebra [Eq. (44)] to the general Natanzon
potential, we try the standard set of operations to transform both coordinate system and variables:
first we perform a similarity transformation on C2 by a function F and then follow that up by an
appropriate change of variable Â ! g(r) 4. Under the similarity transformation,

d

dÂ ¡! F
d

dÂ F¡ 1 =

Ã
d

dÂ ¡
_F

F

!
;

d2

dÂ 2
¡!

Ã
d2

dÂ2
¡ 2 _F

F

d

dÂ +
2 _F2

F 2
¡

ÄF

F

!
;

where dots represent derivatives with respect to Â . The Casimir operator C2 of Eq. (44) transforms
as:

C2 ¡! ~C2 =

"
d2

dÂ2 +

Ã
tanhÂ +cothÂ ¡ 2 _F

F

!
d

dÂ +
2 _F 2

F2
¡

ÄF

F

¡ (tanhÂ + coth Â)
_F

F
+ sech2Â(¡ i@Á)

2 ¡ cosech2Â(¡ i@µ)
2

#
:

(46)

4No connection to the g(h) discussed in the previous section.
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Now, let us carry out a change of variable from Â to r via Â = g(r). We are going to denote
differentiation with respect to r by a prime. The operators d

dÂ and d2

dÂ 2 transform as

d

dÂ =
1

g0
d

dr
;

d2

dÂ2 =
1

g02

·
d2

dr2
¡ g00

g0
d

dr

¸
:

The operator ~C2 now transforms into

~C2 =
1

g02

·
d2

dr2 +

½
¡ g00

g0 ¡ 2F 00

F
+ g0(tanhg + cothg)

¾
d

dr

+
2F 02

F2
¡ F 00

F
+

F 0 g00

F g0

¡ F 0 g0

F
(tanh g +cothg)+ g02 ¡

sech2g(¡ i@Á)
2 ¡ cosech2g(¡ i@µ)

2
¢̧

:

(47)

In order for g02 ~C2 to be a Schrödinger Hamiltonian, we require the “coefficient” of the
first order derivative d

dr ; viz the expression inside the curly brackets in Eq. (47), to vanish. This
constrains the relationship between the two functions F and g to be

¡ g00

g0 ¡ 2F 0

F
+ g0(tanhg +cothg) = 0; (48)

which yields

F »
µ

sinh(2g)

g0

¶ 1
2

: (49)

Thus, the operator ~C2, transforms into

~C2 =
1

g02

·
d2

dr2
+ g02

µ
(1 ¡ tanh2 g)2 ¡ 4 tanh2 g

4 tanh2 g

¶

+
1

2
fg;rg + g02 ¡

sech2g(¡ i@Á)
2 ¡ cosech2g(¡ i@µ)

2
¢̧

:

(50)

This Casimir operator now has the form

~C2 = ¡ 1

g02 H;

where H is a one-dimensional Hamiltonian with the potential U(r) given by

E ¡ U(r) =g02
µ

(1 ¡ tanh2 g)2 ¡ 4 tanh2 g

4 tanh2 g

¶
+

1

2
fg; rg

+g02 £
sech2g(¡ i@Á )2 ¡ cosech2g(¡ i@µ)

2
¤

:

(51)
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Following Alhassid, we now must relate these so(2; 2) operators– in particular the trans-
formed Casimir– to the Natanzon potentials. A general Natanzon potential U (r) is implicitly
defined by [10]

U [z(r)] =
¡ fz(1 ¡ z) + h0(1 ¡ z) + h1z

Q(z)
¡ 1

2
fz; rg; (52)

with Q(z) quadratic in z : Q(z) = az2 + b0z + c0 = a(1 ¡ z)2 ¡ b1(1 ¡ z) + c1 and
f;h0;h1; a; b0; b1; c0; c1 are constants. The Schwarzian derivative fz;rg is defined by

fz;rg ´ d3z=dr3

dz=dr
¡ 3

2

·
d2z=dr2

dz=dr

¸2

: (53)

The relationship between the variables z (0 < z < 1) and r is implicitly given by
µ

dz

dr

¶
=

2z(1 ¡ z)p
Q(z)

: (54)

Now, for our potential [Eq. (51)] to take the form of a general Natanzon potential, we have
to relate the variables g and z in such a way that the potential in terms of z is given by Eq. (52).
Since the potential has to be a ratio of two quadratic functions of z, we find, after some work,
that this can be accomplished with the identification z = tanh2 g, which leads to

U(z(r))=
E Q+ [¡ 7

4 + 5
2 z ¡ 7

4 z2] ¡ z(1 ¡ z)(¡ i@Á)2 +(1 ¡ z)(¡ i@µ)2

Q
¡ 1

2
fz; rg

=

·
¡

µ
aE ¡ 7

4
+ (¡ i@Á )2

¶
z(1 ¡ z) +

µ
c0E ¡ 7

4
+ (¡ i@µ)

2

¶
(1 ¡ z):

+((a + b0 + c0)E ¡ 1)

¸
=Q(z) ¡ 1

2
fz; rg:

(55)

Here we have used

g0 =
dg

dz
z0 =

1

2
p

z(1 ¡ z)

2z(1 ¡ z)

Q
=

r
z

Q
:

Now, with the following identification

f = aE ¡ 7

4
+ (¡ i@Á)

2;

h0= c0E ¡ 7

4
+ (¡ i@µ)

2;

h1= (a + b0 + c0)E ¡ 1;

(56)

the potential of Eq. (55) indeed has the form of a general Natanzon potential [Eq. (52)].
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We are finally ready to explicitly demonstrate the connection between the potential algebra
based on Natanzon potentials, viz., so(2; 2), and the shape invariant potentials of supersymmetric
quantum mechanics. We now note that the similarity transformation can be rewritten: since
g = tanh¡ 1 p

z, and g0 =
q

z
Q, Eq. (54) yields

³
sinh(2g)

g0

´
= z

z0 .

At this point we go back to the operators A§ [Eq. (43)] and ask how these operators trans-

form under the similarity transformation given by F »
³

sinh(2g)
g0

´ 1
2 » p z

z0 . This transformation
carries the operators A§ to

A§ ! ~A§ =
e§ i(Á+µ)

2

·
¨

µ
d

dÂ +
1

2z 0
dz 0

dÂ ¡ 1

2z

dz

dÂ

¶
:

+tanhÂ (¡ i@Á) + coth Â (¡ i@µ)

¸
:

(57)

Except for the expression
³

1
2z0

dz0

dÂ ¡ 1
2z

dz
dÂ

´
, this looks very much like Eq. (43), which gives in

fact the A§ of the shape invariant Pöschl-Teller potential [1]. Thus, if
³

1
2z0

dz0

dÂ ¡ 1
2z

dz
dÂ

´
were to

be a linear combination of tanhÂ and coth Â , the operators ~A§ could be cast in a form similar to
the operators A§ of Eq. (43), and we would get A§ ’s that generate shape invariant Hamiltonians.

Hence to get shape invariant potentials, we require
µ

1

2z 0
dz 0

dÂ ¡ 1

2z

dz

dÂ

¶
= ® tanh Â + ¯ cothÂ: (58)

This leads to

z0 = z1+¯ _(1 ¡ z)¡ ® ¡ ¯ ; (59)

which is a constraint on the relationship between the variables z and r. Since these variables
are already constrained by Eq. (54), only a handful of solutions would be compatible with both
restrictions. The z(r)’s that are compatible with both Eqs. (54) and (59) are given by

z1+¯ _(1 ¡ z)¡ ®¡ ¯ =
2z(1 ¡ z)p

Q(z)
; (60)

where Q(z) is a quadratic function of z. After some computation, we find that there is only a
finite number of values of ® , ¯ which satisfy Eq. (60). These values are listed in Table I, and
they exhaust all known shape invariant potentials that lead to the hypergeometric equation. Thus,
if the requirement of Eq. (58) is, as we conjecture, the most general possibility, then the family
of known shape-invariant potentials is the complete set of such potentials.



120 EXACT SOLUTIONS OF THE SCHRÖEDINGER EQUATION: ¢¢¢ VOL. 39

TABLE I. All allowed values of ® , ¯ and the superpotentials that they generate. Note that all
known solvable potentials can be reached from these by special limits of ~m1 and ~m2

[19].

® ¯ z(r) Superpotential Potential

0 0 z = e¡ r ~m1 coth r
2 + ~m2 Eckart

0 ¡ 1
2 z = sin2 r

2 ~m1cosec r + ~m2 cot r Gen. Pöschl-Teller trigonometric
0 ¡ 1 z = 1 ¡ e¡ r ~m1 coth r

2 + ~m2 Eckart
¡ 1

2 0 z = sech2 r
2 ~m1cosech r + ~m2 coth r Pöschl-Teller II

¡ 1
2 ¡ 1

2 z = tanh2 r
2 ~m1 tanh r

2 + ~m2 coth r
2 Gen. Pöschl-Teller

¡ 1 0 z = 1 + tanh r
2 ~m1 tanh r

2 + ~m2 Rosen -Morse

Interestingly, while the potential algebra of a general Natanzon system is so(2; 2), and
requires two sets of raising and lowering operators A§ and B§ , all translational shape invariant
potentials turn out to need only one such set. For all SIPs of Table 4.1 of Ref. [1], one finds that all
partner potentials are connected by change of just one independent parameter. Other parameters,
if present, do not change from case to case. Thus there is a series of potentials that only differ in
one parameter.

For example, the two shape invariant partner potentials of Rosen-Morse I form are given
by

V¡ = a(a ¡ 1)cosec2x +2b cotx ¡ a2 +
b2

a2 ;

V+ = a(a + 1)cosec2x +2b cotx ¡ a2 + b2

a2 :

(61)

These two potentials are related by the transformation a ¡! a+1, while b is merely a “spectator”.
This suggests a lower symmetry than so(2; 2). From the potential algebra perspective, all these
potentials differ only by the eigenvalue of a single operator (a linear combination of A3 and B3),
and all are characterized by a common eigenvalue of C2 . Thus, these shape invariant potentials
can be associated with a so(2;1) potential algebra generated by operators A+, A¡ and the linear
combination of A3 and B3 mentioned above.

VI. Conclusions

In this paper, we have reviewed the topic of solvable shape invariant Hamiltonians from
supersymmetric quantum mechanics. We have summarized the apparently unrelated topic of group
symmetries known as potential algebras. We have then shown the relationship between the two.
We have derived the potential algebras for shape invariant systems, where hierarchies of super-
symmetric potentials are characterized by changes of parameters that are related by translational
[an = an¡ 1 + ±], scaling [an = q an¡ 1], and mapping of the form an =

®an¡ 1+¯
°an¡ 1+± . (The last map
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leads to cyclic potentials.) In general, one finds deformations of the so(2;1) Lie algebra. We
have discussed these deformations, but then showed that for the translational case, they may be
avoided by generalizing the operator structure to keep the resulting algebra linear. This led to the
identification with Natanzon potentials.

Our approach therefore has linked the group theoretic (potential algebra) approach and the
supersymmetric quantum mechanics approach for treating shape invariant potentials. Its applica-
tion has led to the conclusion that the known family of exactly solvable SIP’s is complete.
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