
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Computer Science: Faculty Publications and 
Other Works 

Faculty Publications and Other Works by 
Department 

3-2007 

Project Hosting: Expanding the Scientific Programmer's Toolbox Project Hosting: Expanding the Scientific Programmer's Toolbox 

George K. Thiruvathukal 
Loyola University Chicago, gkt@cs.luc.edu 

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
George K. Thiruvathukal, "Project Hosting: Expanding the Scientific Programmer's Toolbox," Computing in 
Science and Engineering, vol. 9, no. 2, pp. 70-75, Mar./Apr. 2007, doi:10.1109/MCSE.2007.36 

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department 
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other 
Works by an authorized administrator of Loyola eCommons. For more information, please contact 
ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
Copyright © 2007 George K. Thiruvathukal 

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


A t the risk of sounding somewhat controversial, I’m
going to make a generalization that scientific pro-
gramming projects today could do a lot better

when it comes to their public presence and the availability
of their results. A recent article in The Economist cites a re-
port that claims the “concepts, tools, and theorems [of com-
puter science] have become integrated into the fabric of
science itself” (www.economist.com/science/displaystory.
cfm?story_id=5655067). Although I believe this is true for
the most part, the skeptic in me wonders whether the com-
puter science community might be getting a bit too much
credit here. 

True, the concepts of computer science—the academic
discipline, that is—play a major role in the “new” science,
but theorems and tools being the creation of computer sci-
entists alone might be a bit of a stretch. For starters, it’s de-
batable whether computer science theorems are entirely an
invention of the field itself. Euclid’s famous method for
computing the greatest common divisor, for example, pre-
dates the notion of automatic calculation and computing.
By all accounts, it’s one of the first algorithms and theorems
that are still relevant to computer science, but it wasn’t the
invention of a computer scientist. Likewise, tools for com-
putational science include compilers, libraries, and devel-
opment or modeling environments, but many modern
software engineering tools continue to elude computational
science and its practitioners. Yes, we need compilers, an ac-
tual operating system, parallel middleware (optional), and
good hardware to do serious computational science, and
when viewed from this perspective, our everyday tools seem
to be the byproduct of computer scientists’ work. But I think
this traditional view is about to fade into the background in
the face of larger building blocks (components) and inte-
gration into the mainstream. 

Accordingly, I’m convinced that the computational sci-
entist’s toolkit must expand. Because computational science
is becoming increasingly collaborative, the projects’ ability

to organize, collaborate, and disseminate results effectively
will be the benchmark against which we’ll measure future
success. Simply producing models, writing code, and pub-
lishing the results in a journal (and nowhere else) won’t be
the model in a network-centric future, in which practition-
ers will place greater emphasis on being able to reproduce
and integrate actual results. For this reason, the time is now
for projects to embrace the concept of project-hosting tools,
which the free and open source software (FOSS) commu-
nity already uses extensively. This community of amateur
and professional computer programmers isn’t necessarily
made up of computer scientists, but the people in it are be-
hind many of the most-talked about computing applications
(such as Mozilla Firefox, and Open Office), languages
(Python, Perl, and Ruby), and operating systems (Linux and
FreeBSD), just to name a few. 

Toward the goal of expanding the computational scien-
tist’s toolbox, I’m increasingly convinced that all computa-
tional science projects should focus on using project-hosting
tools to enhance their impact. Therefore, I’m working
feverishly to transition virtually all my programming proj-
ects (computer and computational science) to FOSS project-
hosting sites such as Google Code, which is what I cover in
the rest of this article. On the whole, Google Code is de-
signed strictly for open source software and to promote best
practices for open source software development.

A New Home for Code Examples
To prepare for this article, I decided to create a new project
at Google Code, which my coeditor Konstantin Läufer and
I will use to distribute most code examples in upcoming in-
stallments of this department. The URL http://code.google.
com/p/cise/ will be our permanent home at Google Code,
and it’s where you can find most—if not all—the code ex-
amples in this column. 

I want to stress that several personal considerations mo-
tivated our choice of Google Code. As noted in the

70 Copublished by the IEEE CS and the AIP        1521-9615/07/$25.00 © 2007 IEEE COMPUTING IN SCIENCE & ENGINEERING

PROJECT HOSTING
Expanding the Scientific Programmer’s Toolbox

By George K. Thiruvathukal 

Editors: George K. Thiruvathukal, gkt@cs.luc.edu

Konstantin Läufer, laufer@cs.luc.edu

S C I E N T I F I C  P R O G R A M M I N G

Emerging technologies such as free and open source project hosting will hopefully broaden interest in scientific
programming in a business context. 



MARCH/APRIL 2007 71

“Project-Hosting Alternatives” sidebar, plenty of options ex-
ist, but we picked Google Code for its “less is more” inter-
face, its current (and we hope, continued) lack of intrusive
advertising, and the ability for anyone to create a project
without going through a lengthy approval process. Even if
you don’t plan to use Google Code, the ideas presented in
this article apply to all major project-hosting sites. 

Google Code is so new that it’s still a work in progress in
terms of its feature set, but it’s a terrific start and is highly
stable. Figure 1 shows a screenshot of our new main page. A
quick perusal of the tabs gives us Project Home, Down-
loads, Wiki, Issues, Source, and Administer, each of which
sheds a great deal of light on the typical nature of any FOSS
project. In addition, the page has a summary of important
items for casual visitors, such as the FOSS license used and
the keywords or labels that apply to this particular project.
We can also add links to the developers’ home pages or any
other related work.

Let’s begin our tour. My aim is to give you an idea about
what’s going on here so that you can incorporate the virtues
of project hosting into your own projects. 

File Uploads and Downloads
With a few exceptions, virtually all the famous programming
projects for computational science embrace the FOSS con-
cept for distribution. You can download practically anything,
from Linpack to Numerical Python (Numeric), simply by
Googling it. 

A significant concern when making a file available,
though, is the “fear of success”: what if you’re suddenly faced
with a huge number of downloads? The ability to make files
available for download by using someone else’s pipes is a
great way to address and allay this concern. Google Code
makes it a breeze by providing a simple interface on its
Downloads tab to upload a file for distribution. You can also
include metadata to give prospective users a helpful de-
scription of the file. In fact, Google Code lets you specify
lots of useful information: 

• summary, a one-line description of the file that you’re
making available;

• file, the file content itself; and
• labels, which can come from a predefined collection, or

you can create your own. 

I’ve already made a download archive available for the ex-
ample code we presented in our “Unit Testing Considered
Useful” article from the November/December issue (vol. 8,
no. 6, 2006, pp. 76–87). To make life easy for you, the code
is distributed in a file called dimensions-java-2006-
12.zip. I also assigned the labels Type-Source and OpSys-
All to indicate that the download contains source code only
(meaning you have to compile and run it yourself) and that
it’s designed to run on all platforms—assuming you know
how to compile it on any given platform, of course. Figure
2 shows the file download screen.

PROJECT-HOSTING ALTERNATIVES

S ourceForge (www.sourceforge.net) is one of the most es-
tablished free and open source software (FOSS) project-

hosting sites. It has much in common with Google Code, but
it’s arguably a bit more mature and established. Its robust
distribution model ensures reliable download speeds and
provides the capability to track the number of file downloads
(which can be useful for understanding a project’s impact). 

Savannah (http://savannah.gnu.org) is aimed at the de-
velopment, distribution, and maintenance of GNU software.
Its companion site (http://savannah.nongnu.org) hosts free

software projects that aren’t part of the GNU project but
that run on free platforms. Savannah focuses primarily on
projects that follow the GPL and its variants, so you must be
a GPL advocate or be clearly motivated to use it. GPL has a
virtuous licensing scheme, but I don’t necessarily think “one
size fits all” when it comes to FOSS licensing. 

BerliOS Developer (www.berlios.de) is a free service to
open source developers that offers easy access to the best in
Concurrent Versioning System and Subversion, mailing lists,
bug tracking, message boards and forums, task manage-
ment, site hosting, permanent file archiving, full backups,
and total Web-based administration.

Figure 1. Screenshot of the Google Code interface. Here’s
the CiSE Scientific Programming department’s new home
for code samples.



72 COMPUTING IN SCIENCE & ENGINEERING

Source Code Management 
The major impetus for project hosting is that it allows one
or more developers to manage a project’s source code. Most
hosting sites provide several capabilities in this regard. 

Google Code uses the Subversion system; let’s start with
the Source tab and examine the features we can expect to
find. Figure 3 highlights three core ideas:

• Repository browsing offers the ability to examine a project’s
repository entirely through a Web interface. It’s a useful
way to get acquainted with a project without having to
download, unpack, and use an editor to view the code.
Google Code, naturally, is integrated with search. 

• Anonymous checkout gives people who aren’t on the project
the ability to check out all or a subset of the project’s
source code. This type of checkout is also called read-only
checkout, in which you can change the local copy you
checked out, but you can’t commit your changes unless
you’re added as a developer. 

• Developer checkout is reserved for members of the devel-
opment team; they also have a read–write access option. 

For clarity, let’s look at each of these ideas in slightly
greater detail. Figure 4 shows what happens when we click
on the Subversion Repository link (you can follow along by
going to our project; http://code.google.com/p/cise/, Source
tab, Subversion Repository hyperlink). What we see here is
a top-level repository structure, which is Subversion’s de-
fault layout. It’s beyond this article’s scope to introduce all
of Subversion’s ideas, so we’ll focus here instead on its trunk,
which is the main development branch for all our example
codes. Go ahead and click on it—you’re now one level
deeper into the repository. You can see many items here, but
there’s at least one subdirectory (folder) called dimensions-
java. Click again, and you’ll reach the actual source code
featured in our “Unit Testing Considered Useful” article.
All the *.java files, examples, and GUI subdirectories are
the same ones we presented in that article (see Figure 5).

Repository browsing is a great way to get started, but
most of you will probably want to download the code for
offline study. To go this route, you need to install the Sub-
version client tools on your computer. Subversion works
on all platforms—including Macintosh OS X, Linux, and
Microsoft Windows—so read the “Subversion” sidebar for
details on how to get it up and running on your favorite op-
erating system. Once you install the command-line tools,
you can perform the anonymous checkout as in Figure 6.

The command in Figure 6 presumes you want to check
out all the cise code that’s reachable from the trunk into a
local subdirectory called “cise”. For the most part, this is
fine because our repository only has a few dozen files. How-
ever, if you want to check out only the dimensions-java
subdirectory, you should use the following command instead
(the output isn’t shown): 

svn checkout

S C I E N T I F I C  P R O G R A M M I N G

Figure 2. File uploads and downloads. This page is live, so
you can go to it right now and start downloading code.

Figure 3. Source code browsing. The Subversion system
has three core ideas: repository browsing, anonymous
checkout, and developer checkout. 

Figure 4. Repository browsing. We start with a top-level
structure, which is Subversion’s default layout.



MARCH/APRIL 2007 73

http://cise.googlecode.com/svn/trunk/

dimensions-java dimensions-java 

Subversion is designed to be as general as possible, so you
can check out virtually anything to anywhere. For our col-
lective sanity, however, let’s keep the repository structure
simple. You can assume for the most part that all of this de-
partment’s future articles will introduce a new subdirectory
that’s directly reachable from the trunk. I plan to cover Sub-
version in more detail in a future installment, so this isn’t the
last you’ll hear of it. 

Wiki
Many of the tools and features we’ll discuss in this and the
remaining sections are integrated into Google Code and
other project-hosting solutions, which is a huge benefit for
serious collaborative development.

In its basic form, a wiki page is nothing more than a page
name with structured content. Figure 7 shows how to cre-
ate a wiki page called WelcomeToSciProg.

Wiki pages are traditionally named via CamelCase (also
known as WikiWords), wherein at least two words are con-
catenated to form a wiki name. Google Code requires the use
of CamelCase, but some Wiki systems, such as the famous
MediaWiki that powers Wikipedia, allow pages to be created
with any name, including spaces. To refer to another wiki
page within a page, you simply use the CamelCase name
within the page text; it turns into a link automatically. Ulti-
mately, the text in wiki pages is both easier to edit (see Fig-
ure 7) and read (see Figure 8) than it is in other markup
approaches such as HTML.

It might not be readily apparent, but wikis are the preferred
technology for organizing most FOSS projects’ business and
technical ideas. It isn’t uncommon for developers to write
pages describing a proposed project’s core components while
simultaneously writing the code. Wiki pages are also com-
monly used as a project’s initial documentation—sometimes
before the developer has even produced a user manual or
other appropriate documentation (such as technical papers).

Issue Tracking 
As a software project evolves into a product that other peo-
ple can use—especially a large community of other people—
it becomes necessary to provide that community with a
structured way of capturing issues (or bugs). Virtually all
project-hosting sites provide this capability. 

Figure 9 provides a glimpse of how Google Code handles
issue tracking. Because our current project doesn’t have

many issues, I’ve captured the output from a significant proj-
ect called the Google Web Toolkit.

As you can see, this project has several issues, some of
which are actual bugs (defects) and others that are requests
for new features (enhancement). The development team pri-
oritizes these issues and assigns a disposition to them (such
as accepted, rejected, and so on).

Creation of a new issue is straightforward, as Figure 10

Figure 5. Source code. If you click on any of the *.java
files, the actual source code from the November/
December article “Unit Testing Considered Useful” will
appear in the browser window.

Figure 6. Anonymous checkout. Once you install the
command-line tools, you can use the Subversion
command-line client to download code for offline study.



74 COMPUTING IN SCIENCE & ENGINEERING

shows. Here, the user simply enters a concise summary and
description of the issue, and, if it’s a bug, how to reproduce
the problem. The most important thing in reporting an is-
sue is to give it some sort of classification so that the devel-
opment team can best figure out what to do with it.

In my opinion, issue tracking is a critical component in
any quest to organize a project—it’s not just for bug report-
ing anymore. Issue tracking gives a project a way to balance
what users want with what developers view as project prior-
ities. Email alone can’t address this need, primarily because
it lacks structure. 

Administration 
No project-hosting solution is complete without the ability
to actually manage the project. I’m not talking about the
general notion of project management but that it must have
facilities for administration (and customization). 

Fortunately, Google Code provides many screens for
administration: 

• Project Metadata describes the project’s public information,
such as what you see when you visit http://code.google.
com/p/cise/. This is by far the most important adminis-
trative screen when it comes to a project’s public face. 

• Project Members is used to add or remove members from a
project and establish their roles within it. Most project-
hosting sites have two roles, administrators and developers. 

• Downloads, Wikis, and Issue Tracking Labels are the config-
uration options for the labels assigned when developers
or users create something in a project. Although the label
concept is somewhat endemic to Google applications, the
capability is present in most other project-hosting sites. 

Google Code also lets you create an incredible amount of
project metadata: 

• summary, a one-line explanation of your project;
• description, additional details for those who might not un-

derstand your exceedingly terse summary;

S C I E N T I F I C  P R O G R A M M I N G

Figure 7. Wiki page creation. This is how we’d create a
page called WelcomeToSciProg.

Figure 8. Wiki page rendering. From the creation stage in
Figure 7, we get a final rendered page.

SUBVERSION

The home of “all things Subversion” is http://subversion.tigris.org. Among all the things it offers is the official Subversion
code itself. 

svnX (www.lachoseinteractive.net/en/community/subversion/) is a Cocoa GUI aimed at providing a more natural integra-
tion of Subversion with Macintosh’s OS X. 

Tortoise SVN (http://tortoisesvn.tigris.org) is a Subversion client for Windows that works as a Windows “shell” extension.
It literally lets you connect to a subversion repository and perform all the Subversion commands through the Windows
Explorer interface by bringing up the context menu and doing what you expect it to. It’s a great way to keep a permanent
connection to our examples and simply update your checked-out copy as new examples appear—all from the comfort and
safety of your own desktop. Subclipse (http://subclipse.tigris.org) is an Eclipse plug-in that lets you do everything in the
Eclipse development environment.



MARCH/APRIL 2007 75

• license, the FOSS licensing scheme for distributing your
code (you can choose from several, depending on your
needs, but you shouldn’t use Google Code or any FOSS
hosting solution if you don’t embrace at least one FOSS
licensing scheme); 

• links, the ability to connect to other related pages, such as
the developer’s home page, blog, groups, or other related
work (there’s no limit); and

• notifications, one of the most important options on the page
because it handles communication between developers.

It’s important for any development team with more than one
person on it to use notification, especially for code changes.
When anything happens to our repository, for example, I
have email sent to an alias, cise-svn@etl.luc.edu, which
results in a message to me and Konstantin at our regular
email addresses. 

Project Members is a fairly straightforward administra-
tive screen. Basically, it has two boxes for you to indicate
project administrators and developers. You must have a
Google account ending in @gmail.com to own a Google
Code project, but the same is true of all project-hosting sites
(all developers must register for an account). An interesting
question is how you become a project administrator—rather
simply, the answer is to create a project. When you do, you
become the administrator by default, but you can add oth-
ers as administrators as well. Once you’re anointed as a de-
veloper or administrator, you can do whatever you want with
the actual project data, so these roles shouldn’t be doled out
lightly. It’s beyond this article’s scope to talk at length about
FOSS culture, but many FOSS projects don’t allow some-
one to become a developer without demonstrating initial
competence in the software being developed. 

The screens for Wiki, Issues, and Downloads are interesting
but mostly trivial. With these screens, you can define or change
sets of labels—for example, when entering an issue, you have
only four types of “types” available (Type-Defect, Type-En-
hancement, Type-Task, and Type-Other) and for “priorities”
(Priority-Critical, Priority-High, Priority-Medium, Priority-
Low). This granularity is fine for most projects, but in some
environments, you might want more or fewer options. Google
Code and most other project-hosting sites give you the ability
to customize the labels used in any particular situation. 

A lthough a certain amount of collaboration can happen in
a proprietary or closed setting, I’m convinced that the no-

tion of sharing as defined in FOSS communities will help sci-

ence—especially computational science—become even better
than it is today. I hope this article helps you get started, if not
for your own projects, then to encourage others to do so!

George K. Thiruvathukal is a professor of computer science at Loy-

ola University Chicago. His research interests include programming

languages, operating systems, distributed systems, architecture and

design, computing history, and enhancing science and computing

education with emerging technologies. Thiruvathukal has a PhD

from the Illinois Institute of Technology. Contact him at gkt@cs.

luc.edu or http://people.cs.luc.edu/gkt/.

Figure 9. List of issues. Our current project doesn’t have
many issues, so this list comes from the Google Web
Toolkit project. 

Figure 10. Creating a new issue. The user enters a
summary and description of the issue, and, if it’s a bug,
how to reproduce it.


	Project Hosting: Expanding the Scientific Programmer's Toolbox
	Recommended Citation

	untitled

