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Variants in WFS1 and other Mendelian deafness genes are
associated with cisplatin-associated ototoxicity
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Hamilton8, David J. Vaughn9, Clair J. Beard10, Chunkit Fung11, Christian
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Abstract
Purpose—Cisplatin is one of the most commonly used chemotherapy drugs worldwide and one
of the most ototoxic. We sought to identify genetic variants that modulate cisplatin-associated
ototoxicity (CAO).

Experimental Design—We performed a genome-wide association study (GWAS) of CAO
using quantitative audiometry (4–12 kHz) in 511 testicular cancer survivors of European genetic
ancestry. We performed polygenic modeling and functional analyses using a variety of publicly
available databases. We used an electronic health record cohort to replicate our top mechanistic
finding.
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Results—One SNP, rs62283056, in the first intron of Mendelian deafness gene WFS1
(wolframin ER transmembrane glycoprotein) and an expression quantitative trait locus (eQTL) for
WFS1 met genome-wide significance for association with CAO (P=1.4×10−8). A significant
interaction between cumulative cisplatin dose and rs62283056 genotype was evident, indicating
that higher cisplatin doses exacerbate hearing loss in patients with the minor allele (P=0.035). The
association between decreased WFS1 expression and hearing loss was replicated in an independent
BioVU cohort (n=18,620 patients, Bonferroni adjusted P<0.05). Beyond this top signal, we show
CAO is a polygenic trait and that SNPs in and near 84 known Mendelian deafness genes are
significantly enriched for low P-values in the GWAS (P=0.048).

Conclusions—We show for the first time the role of WFS1 in CAO and document a statistically
significant interaction between increasing cumulative cisplatin dose and rs62283056 genotype.
Our clinical translational results demonstrate that pre-therapy patient genotyping to minimize
ototoxicity could be useful when deciding between cisplatin-based chemotherapy regimens of
comparable efficacy with different cumulative doses.

Keywords
cisplatin; hearing loss; GWAS; adverse drug events; genetic architecture

Introduction
Platinum-based compounds are the most widely applied group of cytotoxic drugs
worldwide. A recent multi-center investigation documented that 80% of patients experience
some form of ototoxicity after cisplatin-based chemotherapy, with 18% demonstrating
severe to profound hearing loss (1). For patients with advanced testicular cancer in whom
cisplatin-based chemotherapy is the only curative option (2), this effect is particularly
devastating, given their young median age at diagnosis (31 years) (1). While the period of
testicular cancer survivorship can span upwards of 50 years, it is often accompanied by the
negative impact of hearing loss on quality of life (3). Since there are currently no FDA-
approved treatments for sensorineural hearing impairments, including cisplatin-associated
ototoxicity (CAO), affected individuals can suffer from progressive declines in
communication abilities at work and at home, often contributing to depression and an
increased risk of dementia (4).

Despite over 40 years of clinical cisplatin application, the genetic underpinnings of CAO
remain poorly understood (5). Previous studies of CAO have been largely conducted in
small pediatric cohorts (n = 130–254) and include candidate gene investigations (6–9) with
conflicting results (10–12) and some results await independent replication (7,9). In 2011, the
FDA amended the cisplatin label to recommend TPMT (thiopurine S-methyltransferase)
genotyping in children prior to cisplatin administration (10), based on the findings of Ross et
al. (6). However, subsequent methodological concerns and lack of replication by
independent groups (8,10) led the FDA to remove this recommendation from the drug label
(12). A recent GWAS for CAO in pediatric patients identified a variant in ACYP2 (13),
which has since been replicated (14), highlighting the potential utility of genome-wide
approaches. Given the critical importance of any possible inroad into the genetic
underpinnings of cisplatin-associated ototoxicity, we conducted a GWAS of CAO in a
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multi-center clinical cohort of testicular cancer survivors treated with homogeneous
cisplatin-based chemotherapy. Extensive audiometric data as collected for this study served
as the phenotype (1).

Materials and Methods
Study Design and Patients

All patients were enrolled in the Platinum Study, which includes 8 cancer centers in the U.S.
and Canada (1,5). Eligibility criteria included: men with a diagnosis of histologically or
serologically confirmed germ cell tumor (GCT), age <55 years at diagnosis and 18+ years at
study consent, treatment with cisplatin-based chemotherapy, and no subsequent salvage
chemotherapy. Study procedures were approved by the Human Subjects Review Board at
each institution. All patients provided written consent for participation, including genetic
analyses. For each patient, standardized research protocols and forms were used to collect
demographic and clinical data, including audiometry and treatment information as described
previously (1,5).

Genotyping and Imputation

DNA was extracted from the peripheral blood of 849 testicular cancer survivors. SNPs were
genotyped on the Illumina HumanOmniExpressExome chip at the RIKEN Center for
Integrative Medical Science (Yokohama, Japan). Samples were plated randomly with inter-
and intra-plate duplicates. Standard quality control measures for GWAS genotypes were
implemented using PLINK (15). Individuals with pairwise identity by descent (IBD) > 0.125
and excess heterozygosity (F inbreeding coefficient 6 standard deviations from the mean)
were removed, leaving 827 individuals. Principal component analysis using HapMap
populations and SMARTPCA (16) revealed 713 genetic Europeans (Supplementary Fig.
S1), who underwent genotype imputation. A total of 930,450 SNPs (call rate > 0.99, in
Hardy-Weinberg equilibrium (P > 1×10−6)) comprised the input set of SNPs for imputation,
which was performed on the University of Michigan Imputation Server (17) with the
following parameters: 1000G Phase 1 v3 ShapeIt2 (no singletons) reference panel,
SHAPEIT phasing and the EUR (European) population. SNPs with minor allele frequency
(MAF) > 0.05, in Hardy-Weinberg equilibrium (P > 1×10−6), imputation R2 > 0.8, and
INFO scores from 0.6 – 1.05 were retained for subsequent analysis. The GWAS included
5,060,354 SNPs and 511 individuals with full phenotypic data (i.e., audiometry and
cumulative cisplatin dose) available. See Supplementary Fig. S2 for a flow chart of this
genotype quality control process.

GWAS and Statistical Interaction Analyses

CAO was modeled as a quantitative phenotype, using the geometric mean of air conduction
thresholds measured at each frequency (4, 6, 8, 10 and 12 kHz) that demonstrated a
statistically significant relationship between cumulative cisplatin dose and hearing loss, after
age adjustment (1). The geometric mean was rank normalized to form a normal distribution
prior to association testing. Age at audiometry (β = −0.06 ± 0.004, P = 3.0 × 10−49) and
cumulative cisplatin dose (β = −0.003 ± 0.0006, P = 1.4 × 10−5) correlated strongly with the
CAO phenotype and were included as covariates in the GWAS. We have previously shown
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that age at audiometry is strongly correlated with age at diagnosis (R = 0.79) and that the
time between chemotherapy and audiometry did not significantly associate with CAO (P =
0.42) after adjustment for age at audiometry (1). Thus, age at diagnosis and time since
chemotherapy were not included as covariates in our GWAS. SNP genotype dosages were
tested for association with CAO using a linear additive model adjusted for age at
audiometry, cumulative cisplatin dose, and 10 principal components of the genetic European
genotype data only. Genome-wide statistical significance was assigned to SNPs with P < 5 ×
10−8. All statistical tests were two-sided unless otherwise noted.

For the top SNP, we also tested for interaction between SNP genotype and cisplatin dose
using the following model:

The dose term is a binary variable of those with ≤300 mg/m2 (n = 217) or >300 mg/m2 (n =
294). Given the uniformity of treatment for testicular cancer, most patients receive a
cumulative dose of either 300 or 400 mg/m2 and this dichotomization of dose was used in
prior studies of CAO (1).

The GWAS was performed using PLINK 1.90 (15) and subsequent statistical analyses were
performed in R version 3.2.0 and plots were made using the R package ggplot2 (18) and
LocusZoom (19) Functional information on the top SNP was obtained from the GTEx Portal
version 4 (20) and HaploReg version 4.1 (21).

Polygenic Analyses

We estimated the narrow-sense heritability for each gene using a variance-component model
with a genetic relationship matrix (GRM) estimated from genotype data, as implemented
using restricted maximum likelihood in GCTA (22). A Hardy-Weinberg equilibrium
threshold for SNP inclusion of P > 0.05 was used and one of a pair of individuals with an
estimated relatedness above 0.025 were selectively excluded to maximize sample size,
leaving 4,897,434 SNPs and 464 individuals for variance component analysis. We
calculated the proportion of the variance in CAO explained by all SNPs using an additive
linear mixed model.

We conducted a permutation resampling analysis to test for an enrichment of the 34,095
SNPs within 50kb of 84 Mendelian nonsyndromic deafness genes (23,24) among the CAO-
associated SNPs (GWAS). To this end, the patient phenotypes (CAO, cumulative dose and
age vectors) were randomly shuffled while keeping the genotype data fixed to preserve
linkage disequilibrium. The GWAS was then re-run for each replicate. This process was
conducted 500 times to generate an expected distribution. For each of the 500 permutation
replicates, we tallied the number of SNPs that had P < 0.01 in the GWAS and are in
deafness genes. The distribution of the number of significant SNPs mapping to Mendelian
deafness genes was compared with the observed SNP overlap to generate an empirical P
value, calculated as the proportion of permutations in which the number of GWAS SNPs in
deafness genes is greater than or equal to the observed number. To test the robustness of our

Wheeler et al. Page 4

Clin Cancer Res. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



findings, we calculated an empirical P value across a range of inclusion thresholds for
significance from P < 0.0001 to P < 0.01.

Gene Expression and Drug Toxicity Analyses in Cell Lines

WFS1 gene expression data was obtained from the Broad-Novartis Cancer Cell Line
Encyclopedia (25). The dose of cisplatin, cytarabine, docetaxel and vinblastine required to
inhibit 50% cell growth (IC50) was obtained from the Genomics of Drug Sensitivity in
Cancer Project (26). Because our GWAS results provided an expected direction of effect,
Spearman correlation between WFS1 expression and drug IC50 in central nervous system
cancer lines (27 glioma, 3 medulloblastoma) was tested for significance using a one-sided
test in GraphPad Prism Software (La Jolla, CA).

Meta-analysis with the St. Jude Cohort

We obtained summary statistics from a GWAS of cisplatin-associated hearing loss in a
pediatric cohort of 238 individuals from St. Jude Children’s Hospital (13). In this study,
ototoxicity was modeled as a time-to-event variable, thus, we performed a fixed-effects
meta-analysis of the P-values from our Platinum Study cohort and the St. Jude cohort
weighted by sample size and allelic direction of effect as implemented in METAL (27). A
total of 1,112,545 SNPs in 749 individuals were included in the meta-analysis.

PrediXcan in the BioVU Cohort

We estimated the genetic component of WFS1 expression in 18,620 samples from
BioVU(28), including 220 and 363 individuals with a diagnosis of “hearing loss” (PheWAS
code 389) and “sensorineural hearing loss” (PheWAS code 389.1), respectively, using the
PrediXcan method (29). PheWAS codes are derived from the International Classification of
Disease, Ninth revision, Clinical Modification (ICD9) codes used in medical billing (28).
Code 389 “hearing loss” is a “general term for the complete or partial loss of the ability to
hear from one or both ears” and “causes include exposure to loud noise, ear infections,
injuries to the ear, genetic, and congenital disorders” (30). ICD9 codes are hierarchical, and
code 389.1 “sensorineural hearing loss” (more specific than code 389) denotes a condition
that “often affects a person’s ability to hear some frequencies more than others” (30).
Applying genetic predictors of gene expression built via elastic net regularization (31) using
transcriptome data from artery and 10 brain regions (GTEx Project) (20), we predicted the
genetically regulated expression of WFS1 in the BioVU cohort. In each tissue, to show the
WFS1 expression is amenable to genetic prediction, we estimated the proportion of WFS1
expression that can be explained by genetic effects (heritability) using the Bayesian Sparse
Linear Mixed Model (BSLMM) method (32). We tested the predicted WFS1 expression for
association with each phenotype using logistic regression.

Results
GWAS for Cisplatin-Associated Ototoxicity (CAO)

We conducted a GWAS of CAO with over 5 million common SNPs in 511 patients of
European genetic ancestry (Supplementary Table S1, Supplementary Figs. S1–S2). Age at
audiometry and cumulative cisplatin dose were correlated with CAO and included as
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covariates in the GWAS linear regression model. One SNP, rs62283056, in the first intron of
WFS1, which encodes wolframin ER transmembrane glycoprotein, met genome-wide
significance for association with CAO (β = −0.34 ± 0.06, P = 1.4 × 10−8, Fig. 1, Table 1).
Mutations in WFS1 can cause DFNA6 (deafness, autosomal dominant 6) and the recessive
Wolfram syndrome, also known as DIDMOAD (Diabetes Insipidus, Diabetes Mellitus,
Optic Atrophy, and Deafness) (33,34).

Polygenicity of CAO and Enrichment of Top GWAS SNPs in Mendelian Genes for Deafness

While single variant analysis revealed one genome-wide significant signal in a plausible
gene, we also explored the possibility that many variants are involved in CAO by estimating
the heritability explained by all common SNPs. Linear mixed modeling and variance
component analysis (22) showed that all SNPs explained a large proportion of the variance
(0.92 ± 0.62, P = 0.039).

As mutations in WFS1 are known to cause deafness (33,34), and to test our hypothesis that
related phenotypes share genetic liability with adverse drug events, we examined additional
Mendelian genes that cause deafness for enrichment in the top GWAS signals. We found
that SNPs within 50kb of 84 genes known to cause Mendelian nonsyndromic deafness
(23,24) are significantly enriched for low P-values, as indicated by the departure from the
null in the quantile-quantile plot and a permutation resampling analysis of the GWAS data
(P = 0.048, Fig. 2). The enrichment was consistent across P-value thresholds
(Supplementary Fig. S3). Of 84 autosomal deafness gene regions examined, 33 loci had at
least one SNP with P < 0.01 (Supplementary Table S2).

Risk Allele in rs62283056 Associates with Decreased WFS1 Expression

WFS1 is expressed in a variety of tissues including inner ear sensory cells such as outer hair
cells, spiral ganglion neurons, and cochlear lateral wall fibrocytes (35,36). The minor allele
of rs62283056 (frequency 0.21 in the GWAS cohort) associates with both increased hearing
loss (Fig. 1C) and decreased expression of WFS1 in several human tissues (FDR < 0.05,
Supplementary Fig. S4) (20). Thus, the intronic SNP is a cis-acting eQTL for its host gene
WFS1. The SNP has been shown to alter a binding motif for the transcription factor groups
E2F, HAND1, NANOG and POU5F1, using combined ENCODE data across cell types,
indicating potential regulatory function (21).

Decreased WFS1 Expression is Correlated with Increased Sensitivity to Cisplatin

Using publicly available data from 30 central nervous system cell lines (25,26), we analyzed
cisplatin IC50 (the concentration required for 50% cell growth inhibition) for association
with WFS1 gene expression. We found that lower levels of WFS1 baseline gene expression
correlate with greater sensitivity to cisplatin-associated cytotoxicity (P = 0.036), but that no
relationship existed between WFS1 levels and cytotoxicity induced by other, non-ototoxic
chemotherapeutics including cytarabine, docetaxel, and vinblastine (Fig. 3). These results
are in agreement with our GWAS and eQTL results, suggesting that patients with lower
WFS1 levels are more susceptible to cisplatin-induced damage, likely also resulting in
greater injury to inner ear sensory cells. There are no data from testicular cancer (germ cell
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tumor) cell lines in the Cancer Cell Line Encyclopedia (25), precluding assessment of any
such an effect on testicular tumors.

Interaction between Cisplatin Dose and rs62283056 Genotype

Importantly, we found a significant interaction between rs62283056 genotype and
cumulative cisplatin dose, indicating higher doses may further increase hearing loss in
patients with the minor allele (P = 0.035, Fig. 4). For patients in the ≤ 300 mg/m2 group,
each minor allele increases hearing loss by 0.20 relative units, however in the >300 mg/m2

category, each minor allele increases hearing loss by 0.46 relative units. Thus, each minor
allele increases hearing loss 2.3 times more in patients who received >300 mg/m2 compared
to those given ≤ 300 mg/m2 (P = 0.035). We found no significant interaction between
rs62283056 genotype and age at audiometry (P = 0.36).

Meta-analysis with Pediatric Adverse Drug Event GWAS

In a meta-analysis of 1,112,545 common SNPs present in both the St. Jude Children’s
Hospital GWAS (13) and our GWAS, rs62283056 remained the top signal (P = 5.4 × 10−8).
There was a consistent direction of effect as the risk allele was the same in both
investigations, but the association was primarily driven by our study (PSt.Jude = 0.18). No
other SNP reached genome-wide significance (Supplementary Table S3).

Previously Reported Cisplatin-Associated Ototoxicity SNPs

Previously reported CAO SNPs in candidate gene studies of GSTP1 (37), TPMT (6), COMT
(6), ABCC3 (9), or SLC22A2 (7) were not replicated (Supplementary Table S4). The GWAS
of cisplatin-associated hearing loss among the 238 patients treated at St. Jude Children’s
Hospital found that rs1872328 in ACYP2 met genome-wide significance, a finding which
was replicated in 68 children (13) and in an independent cohort of 156 pediatric and adult
osteosarcoma patients (14). However, in our cohort of 511 patients, the low frequency
ACYP2 SNP (MAF = 0.02) was not significantly associated with CAO (P = 0.76).

Replication of WFS1 in BioVU via Mechanism-Based PrediXcan

We applied PrediXcan (29) to impute genetically determined WFS1 gene expression levels
in eleven relevant tissues in >18,000 genotyped individuals in the BioVU cohort (28).
PrediXcan uses gene expression prediction models (31) built from genome-transcriptome
datasets such as the Genotype-Tissue Expression (GTEx) Project (20). As such, this method
incorporates a priori functional data on potential regulatory elements to provide both
directionality and a mechanistic basis for association with a phenotype. The proportion of
the variance in WFS1 expression explained by SNP effects in ten brain regions and arterial
tissue ranged from 0.09–0.85 (Supplementary Table S5), demonstrating there is a heritable
component of WFS1 expression amenable to genetic prediction. For validation of the WFS1
finding, we tested the imputed genetic component of WFS1 expression for association with
two phenotypes, “hearing loss” and “sensorineural hearing loss”, defined by PheWAS
(ICD9-derived) codes (details in Methods) (28). Based on the number of tissues (n = 11) and
the two PheWAS phenotypes tested, decreased WFS1 expression in hypothalamus
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significantly associated with common hearing loss (P < 0.002) after Bonferroni adjustment
(Table 2).

Discussion
In the first GWAS of CAO in adults, we found that rs62283056 in the plausible gene WFS1
was significantly associated with CAO (P = 1.4 × 10−8), a relationship exacerbated by
increased cumulative cisplatin dose. To our knowledge, our study is the first to document an
interaction (P = 0.035) between genotype and cisplatin dose in CAO, with important clinical
implications. A major strength of our study is the homogeneity of cisplatin-based
chemotherapy and collection of detailed dose information for all cytotoxic drugs. In contrast
to many other cancer types, the curative cisplatin-based treatment regimens and doses for
testicular cancer are standardized across the world, allowing us to assess CAO in a large
number of homogeneously treated patients. Most patients with good risk advanced testicular
cancer receive either 3 cycles of BEP (bleomycin, etoposide, cisplatin) or 4 cycles of EP
(etoposide, cisplatin), corrresponding to 300 mg/m2 or 400 mg/m2 of cisplatin, respectively,
with excellent equivalent survival (Table S1) (2). We previously showed that for every 100
mg/m2 increase in cumulative cisplatin dose, a 3.2-dB decline in overall hearing threshold (4
to 12 kHz) occurred after age adjustment (1). Thus, when choosing between these
therapeutically equivalent regimens, genotypes predictive of CAO could potentially be
assessed pre-treatment, also taking into consideration risk factors for other adverse events
such as bleomycin-associated pulmonary toxicity (2). Importantly, cisplatin is widely used
in chemotherapy regimens for many other types of cancer (5), thus, robust genotypic
predictors of ototoxicity would have widespread application in clinical decision making and
post-treatment follow-up care.

Mutations in WFS1 cause both autosomal dominant low-frequency sensorineural hearing
loss and Wolfram syndrome, characterized by autosomal recessive hearing loss, diabetes
mellitus, diabetes insipidus and optic atrophy (33,34). In addition, prior GWAS have shown
WFS1 may also play a role in type 2 diabetes susceptibility (38). Testicular cancer survivors
are at increased risk of type II diabetes (3), but small numbers of diabetic patients (n = 14) in
our cohort limited our ability to evaluate this association. Dominant mutations that cause
low-frequency hearing loss are nearly always found in the 3′ end of WFS1 and are usually
non-inactivating (34). On the other hand, WFS1 mutations causing the recessive Wolfram
syndrome are numerous, usually loss-of-function, and distributed along the entire gene
(34,39). Hearing impairment in patients with Wolfram syndrome is progressive and largely
affects the high frequencies (34,40), as is also true for CAO, with hearing loss presenting in
the 4–12 kHz range, which is critical for speech perception (1). The top GWAS SNP,
rs62283056, is in the first intron of WFS1 (5′ end) and the risk allele is associated with lower
expression (loss-of-function) of the gene (20).

WFS1 encodes wolframin, which normally controls endoplasmic reticulum (ER) stress
response through degradation of ATF6α, a key transcription factor involved in ER stress
signaling (41). As shown in pancreatic β-cells from Wfs1−/− mice and human lymphocytes
from Wolfram syndrome patients (36,41), dysfunction of wolframin in inner ear cells likely
results in increased expression of the ER stress response genes and apoptosis. In addition to
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causing DNA damage, cisplatin also induces ER stress and nucleus-independent apoptosis
(42,43). Because both cisplatin and WFS1 loss-of-function induce ER stress, increased ER
stress is likely one potential mechanism for the significant interaction we found between
cumulative cisplatin dose and rs62283056 genotype, with higher cisplatin dose exacerbating
hearing loss in patients carrying the minor allele.

The association between decreased expression of WFS1 and hearing loss was replicated
among 18,620 patients in the BioVU cohort (28) using more general hearing loss
phenotypes that encompasses multiple causes. We used two ICD9-derived PheWAS codes
(28) to define the phenotypes in our replication analysis. Decreased WFS1 expression
significantly associated with case status defined using either code (Table 2). This suggests
that CAO shares underlying genetic mechanisms with more general hearing loss phenotypes.

In addition to WFS1, we found that SNPs mapping to other genes implicated in Mendelian
forms of hearing impairment (23,24) were also associated with CAO more often than
expected by chance. We note that the SNPs mapping to the extended loci defined by the
deafness genes are not protein-altering mutations that would cause deafness. Rather, a subset
of these SNPs are likely to affect expression of the local gene, thereby leading to an
increased risk of CAO and general hearing loss. Future GWAS of CAO with larger sample
sizes may reveal additional variants in deafness gene loci that meet genome-wide
significance. Consistent with the enrichment results in these loci, the heritability estimate for
CAO (0.92 ± 0.62, P = 0.039) using a variance-component approach (22) provides
preliminary support to the hypothesis that many common variants with small effect sizes
underlie CAO; thus, it is a polygenic trait.

Lack of replication of candidate genes reported in previous smaller studies of CAO (n =
130–254 patients) also supports the hypothesis that large-effect variants for ototoxicity are
unlikely. However, differences in CAO phenotypes and patient cohorts (Supplementary
Table S4) could also explain inability to replicate previous findings. For example, unlike in
our investigation, in the St. Jude GWAS (13), ototoxicity was prospectively modeled as a
time-to-event variable in a clinical trial, which may better capture acute effects. A previous
GWAS of age-related hearing impairment in a Belgian population also supported a
polygenic architecture; although no individual variant attained genome-wide significance,
22% of the variance in hearing loss was explained by the collective effect of all genotyped
SNPs, although the standard error was not reported (44).

Taken together, our results show for the first time a shared genetic etiology among drug-
induced, Mendelian, and other types of hearing impairment. Similar examples of shared
genetics have been demonstrated in GWAS of other adverse drug events. SNPs in FGD4, a
Mendelian gene for congenital peripheral neuropathy (Charcot–Marie–Tooth disease),
associated with paclitaxel-induced peripheral neuropathy (45). SNPs in VAC14 associated
with docetaxel-induced peripheral neuropathy (46), and the gene was recently shown to be
mutated in pediatric-onset neurological disease (47). Beyond chemotherapy studies, genetic
variants that associate with the euphoric effects of d-amphetamine significantly overlap with
variants that decrease risk for schizophrenia and attention deficit hyperactivity disorder (48).
The broad implication is that adverse drug events and related, non-drug-induced phenotypes
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may have related genetic etiologies, especially in the absence of large effects from genetic
variation in enzymes involved in drug absorption, metabolism, distribution or excretion.

Our approach has broad study-design implications for clinical translational research directed
toward chemotherapeutic drug toxicities for which the genetic underpinnings remain unclear
after standard analytic approaches and for which replication under a similar protocol in a
large cohort is unlikely (49). We have shown for the first time that an adverse drug event
(ototoxicity), Mendelian disorders, and multi-cause, common phenotypes share related
underlying genetic etiology. Therefore, following a GWAS of an adverse drug event, a
related general, multi-cause phenotype with a larger sample size, but less detailed clinical
data, could be used for replication. Polygenic analyses of both the adverse drug event and
the general phenotype could be performed to quantify the shared genetic architecture and to
provide the basis for not only clinical risk prediction, but also preventive and interventional
strategies. Thus, this type of multi-modal approach has considerable potential to identify a
priori those patients at high risk for drug-induced toxicities, with the ultimate goal of
informing clinical decision-making.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Elucidation of genetic predictors of cisplatin-associated ototoxicity (CAO, i.e.,
permanent, bilateral hearing loss) could inform treatment decisions to avoid unnecessary
toxicity. We performed a genome-wide association study of CAO among testicular
cancer survivors treated with homogenous cisplatin-based chemotherapy. One SNP in
WFS1 met genome-wide significance, with the risk allele also associated with decreased
WFS1 expression. WFS1 mutations can cause the Mendelian disorders DFNA6 (deafness,
autosomal dominant 6) and Wolfram Syndrome (with hearing loss). The significant
interaction we found between cumulative cisplatin dose and the WFS1 SNP indicates that
ototoxicity in patients with the risk allele could be reduced with lower doses of cisplatin.
Replication of the association between decreased WFS1 expression and hearing loss in
the BioVU cohort demonstrates that genetic findings related to an adverse drug event can
be replicated among patients with a related phenotype using electronic health record data.

Wheeler et al. Page 14

Clin Cancer Res. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. GWAS of cisplatin-associated ototoxicity (CAO)
(A) The association of SNP genotype and CAO in 511 testicular cancer survivors was tested
for significance via linear regression. −log10 P-values are plotted against the respective
chromosomal position of each SNP. The red line indicates the genome-wide significance
threshold (P = 5 × 10−8). (B) The top GWAS signal rs62283056 is in the first intron of
WFS1 (wolframin ER transmembrane glycoprotein). The color of each dot represents the
SNP’s linkage disequilibrium r2 with rs62283056 in the 1000 Genomes European
populations. (C) For individuals with the CG and CC genotypes at rs62283056, the absolute
value of median hearing threshold increases by 6 dB and 20 dB over those with the GG
genotype, respectively. Hearing loss begins at thresholds below the red line (< −20 dB).
Boxes define the inter-quartile range (IQR) and the middle horizontal line represents the
median. The upper whisker extends from the third quartile to the highest value that is within
1.5 × IQR. The lower whisker extends from the first quartile to the lowest value within 1.5 ×
IQR.
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Figure 2. Enrichment of top GWAS SNPs in Mendelian deafness genes
(A) Quantile-quantile plot showing the distribution of P-values from all SNPs in the GWAS
compared to the SNPs within 50kb of 84 Mendelian deafness genes (23,24). (B) Distribution
of the number of top SNPs (P < 0.01) in Mendelian deafness genes based on 500
permutations of the GWAS phenotype-genotype connections. The black dot is the number of
observed GWAS SNPs with P < 0.01 that are within 50kb of Mendelian deafness genes, a
significant enrichment (empirical P = 0.048).
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Figure 3. Lower expression of WFS1 associates with increased cellular sensitivity to cisplatin
WFS1 gene expression data from the Cancer Cell Line Encyclopedia are plotted against
cellular sensitivity (log2 IC50) of CNS tumor cell lines (27 glioma and 3 medulloblastoma)
to (A) cisplatin, (B) cytarabine, (C) docetaxel, or (D) vinblastine from the Genomics of
Drug Sensitivity in Cancer database. Spearman’s rho (r) and P-values are shown. Only
cisplatin IC50 significantly associated with WFS1 expression (P = 0.036).
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Figure 4. Interaction between rs62283056 genotype and cisplatin dose
Hearing threshold (CAO phenotype) is plotted against rs62283056 genotype dichotomized
by cumulative dose group (≤ 300 mg/m2 or > 300 mg/m2 cisplatin). We found a significant
interaction between rs62283056 genotype and cumulative cisplatin dose (P = 0.035),
indicating higher doses exacerbate the hearing loss effect in patients carrying the minor (C)
allele. Boxes define the inter-quartile range (IQR) and the middle horizontal line represents
the median. The upper whisker extends from the third quartile to the highest value that is
within 1.5 × IQR. The lower whisker extends from the first quartile to the lowest value
within 1.5 × IQR.
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