
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

9-2004

Gentoo Linux: The Next Generation of Linux Gentoo Linux: The Next Generation of Linux

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
George K. Thiruvathukal, "Gentoo Linux: The Next Generation of Linux," Computing in Science and
Engineering, vol. 6, no. 5, pp. 66-74, Sep./Oct. 2004, doi:10.1109/MCSE.2004.37

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2004 George K. Thiruvathukal

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

66 Copublished by the IEEE CS and the AIP 1521-9615/04/$20.00 © 2004 IEEE COMPUTING IN SCIENCE & ENGINEERING

Editors: Paul F. Dubois, paul@pfdubois.com

George K. Thiruvathukal, gkt@cs.luc.edu

PROGRAMMINGS C I E N T I F I C P R O G R A M M I N G

talking about a new jingle Frasier is composing for his radio
talk show, a project whose scope has evolved into a minor
symphonic work:

Niles: Whatever happened to the concept of “less is more”?
Frasier: Ah, but if less is more then just think how much more “more”
will be.

One of the reasons scientific programmers love Linux is its
less-is-more philosophy. We can configure it to be anything
from a desktop replacement with USB port support to a blade
in a large SMP compute engine to a powerful Web server. Al-
though Linux’s market penetration in these various sectors re-
mains to be seen, plenty of people are pumping resources into
the Linux world.

The first item of business when installing a Linux system
is to pick a distribution, or distro. The plethora of options
includes Red Hat, Lindows, Debian, SuSe, Mandrake, Gen-
too, and even the emerging Chinese standard, Red Flag. I’ve
used just about every version of Linux and found that almost
all suffer at some point from the same management com-
plexity found in Microsoft Windows. This is important for
those of us who don’t want to spend a lot of time becoming
Linux experts.

In this article, I’ll explain why Gentoo Linux is a good
choice for scientists, and how its structure gives us the flexi-
bility and ease of management we need.

Gentoo Linux
I should point out early on that I’m the pickiest of users. I want
my systems to run optimally for scientific and computer-
science research; toward this goal, I want the OS and its appli-
cations to do nothing that affects my setup’s performance and

reliability. In my experience, most Linux distros are weak in
certain areas:

• Binary packages. Virtually all OSs—and most Linux dis-
tros—are shipped with precompiled binaries. This means
that upgrading a particular tool usually requires a full OS
upgrade because most packages have numerous depen-
dencies.

• Kernel compilation. Linux distros typically have a kernel pre-
compiled to run on all of a particular architecture family’s
machines. On the Intel x86 platform, for example, the ker-
nel is typically configured for the 386 or 586 variants. How-
ever, many processors run less than optimally when running
these instruction sets. In particular, Intel’s latest Pentium 4
and Itanium are hobbled when the kernel doesn’t use newer
instructions and optimization opportunities.

• Differing platform use. Most Linux distros allow optional
desktop setups, but different approaches to managing the
OS exist, depending on intended use. A desktop system,
for instance, requires USB devices that have the ability to
plug or unplug a device at any time, as well as other pe-
ripherals to provide a more user-friendly experience.

Gentoo Linux is a significant distro for several reasons.
First, the entire OS is maintained from source code. Even
when binary packages are directly installed, metadata shows
precisely how the package was configured and built. Second,
we need install the OS only once. We can get upgrades of the
latest packages from one of the myriad Gentoo mirrors. Fi-
nally, it’s completely free, regardless of intended use and con-
figuration. Unlike Red Hat Linux, Gentoo Linux doesn’t
have a commercial edition, meaning users don’t have to
worry that something might be missing in the free version.

Let’s look at some of Gentoo’s salient features.

Metadata and Portage
Perhaps the Gentoo distro’s most significant feature is its
use of metadata—particularly to let us answer questions
about what version of a package is installed, how that pack-
age was built, and whether a newer version is available.
Metadata itself is not an altogether new concept in Linux

GENTOO LINUX:
THE NEXT GENERATION OF LINUX
By George K. Thiruvathukal

A PARTICULARLY INSPIRED EPISODE OF

THE AMERICAN TV SHOW FRASIER,

“THEY’RE PLAYING OUR SONG,” FEATURES THE

TWO BROTHERS, FRASIER AND NILES CRANE,

SEPTEMBER/OCTOBER 2004 67

distros, but Gentoo takes it to a new, network-centric level.
Let’s look at an example:

$ emerge —search gcc

* sys-devel/gcc

Latest version available: 3.3.3-r6

Latest version installed: 3.3.3-r6

Size of downloaded files: 23,203 kB

Homepage: http://www.gnu.org/software/

gcc/gcc.html

Description: The GNU Compiler Collection.

Includes C/C++, java compilers, pie and

ssp extentions

License: GPL-2 LGPL-2.1

This example shows that I have the latest version of the gcc
compiler installed (the latest version available versus installed
is 3.3.3-r6). The command used to obtain the information,
emerge, is part of the Gentoo system, which maintains pack-
age information and keeps the packages up to date. This com-
mand’s most brilliant aspect is that we can use it at any time to
discover the latest available packages. We do this with emerge
sync, which synchronizes our local Portage database with one
hosted at a randomly selected Gentoo mirror site. Gentoo has
invested significant effort in ensuring that its mirroring scheme
is highly reliable, regardless of the selected mirror.

For the most part, we can install any package of interest sim-
ply by using emerge –search to find it. (Obviously, we need
to have an idea of what we’re looking for—at least part of its
common name.) Once we know the name, we can pretend to
install it (by using emerge –pretend) and then install it for
real, using emerge with the package name as the lone argu-
ment. (The core idea behind pretending is twofold: one, to see
what packages will be installed as a result of emerge, and two,
to see how many packages will be installed. Unlike most in-
staller programs out there today, emerge lets you see the po-
tential effect of something before you actually do it.)

Package Build Complexity
Typical system administration in Linux requires ongoing
maintenance of multiple packages. Most seasoned system
administrator/hackers, such as yours truly, tend to download
packages from the Web and build them by hand:

./configure -{}-prefix=/usr/local

(myriad of options)

make

make install

Only a handful of packages can be built from source code
without downloading and building several dependent pack-
ages beforehand. Take, for example, the world-famous (well,
at least among us geeks) Emacs editor. We can build Emacs
in two ways: as a console application or as a graphical appli-
cation using several different widget sets.

In the past, the system administrator would download
Emacs source code from ftp.gnu.org and then invoke the
configure command with several options to include pro-
gramming libraries for the desired functionality. By default,
Emacs is designed to be compiled as a console application.
Today, however, most users want the ability to run a graph-
ical version on their desktops. Linux users typically use
Emacs with their favorite desktop (Gnome or KDE), so they
want this support compiled into the Emacs binary.

With Gentoo Linux, the administrator can query the
Portage metadata to determine what flags can be set to di-
rect the build. You can find the entire list of flags (known af-
fectionately as USE flags) on the Gentoo site in the Docu-
mentation section (www.gentoo.org/doc/). Let’s look at the
flags we can use to build the Emacs package, which is already
installed on my system:

gkt@develop gkt $ etcat -u emacs

[Colour Code : set unset]

[Legend : (U) Col 1 - Current USE flags]

[: (I) Col 2 - Installed With USE flags]

U I [Found these USE variables in : app-

editors/emacs-21.3-r1] + - X : Adds

support for X11

+ + nls : unknown

+ - motif : Adds motif support

(x11-libs/openmotif x11-libs/lesstif)

- - leim : Adds input methods support to

Emacs

+ - gnome : Adds GNOME support

- - Xaw3d : Adds support of the 3d athena

widget set

- - debug : Tells configure and the makefiles

to build for debugging.

The etcat command is part of the Gentoo Linux toolkit,
which lets us examine the metadata. The U column indicates
how the package would be built if we used the default USE
flags (specified in the configuration file /etc/make.conf);
the I column indicates how the package was actually built.
On my system, which is running the etcat command, I dis-

68 COMPUTING IN SCIENCE & ENGINEERING

S C I E N T I F I C P R O G R A M M I N G

abled X11 support and opted for a pure console application.
Here’s the kicker: Suppose I decide later that I want an in-

stallation of Emacs that supports both the console and the
Gnome desktop using the Gnome Toolkit (GTK) library. I
can pretend to build the Emacs package from the command
line using the emerge command discussed earlier:

gkt@develop gkt $ USE=“gnome” emerge -up

emacs

Pretending is what differentiates Gentoo from most other
Linux distros. As you can see from the following output,
adding Gnome support on my server would require me to in-
stall many packages:

root@develop gkt # USE=”gnome” emerge -up

emacs

These are the packages that I would merge,

in order:

Calculating dependencies...done!

[ebuild U] dev-libs/glib-2.4.1 [2.2.3]

[ebuild U] dev-libs/atk-1.6.1 [1.4.1]

[ebuild U] dev-libs/libxml2-2.6.7 [2.6.6]

[ebuild N] x11-themes/hicolor-icon-theme-

0.4

[ebuild U] x11-themes/gnome-icon-theme-

1.2.1 [1.0.9]

... Many lines omitted for brevity’s sake!

[ebuild N] gnome-base/gnome-keyring-0.2.0

[ebuild U] gnome-base/libgnomeui-2.6.0

[2.4.0.1]

[ebuild U] x11-themes/gnome-themes-2.6.0

[2.4.1]

[ebuild U] gnome-base/gnome-desktop-

2.6.0.1 [2.4.1.1]

[ebuild U] app-editors/emacs-21.3-r2

[21.3-r1]

This command might look odd to casual Unix users. Essen-
tially, what’s happening is that a local shell variable definition is
temporarily affecting the environment for the emerge com-
mand’s execution. The definition will take precedence over the

Copyright 1999-2004 Gentoo Technolo-

gies, Inc.

Distributed under the terms of the GNU

General Public License v2

$Header: /var/cvsroot/gentoo-x86/app-

editors/emacs/emacs-21.3-r3.ebuild,v 1.5

2004/06/10 19:44:32 vapier Exp $

inherit flag-o-matic eutils

DESCRIPTION=”An incredibly powerful, ex-

tensible text editor”

HOMEPAGE=”http://www.gnu.org/software/ema

cs”

SRC_URI=”mirror://gnu/emacs/${P}.tar.gz

leim? (mirror://gnu/emacs/leim-

${PV}.tar.gz)”

LICENSE=”GPL-2”

SLOT=”0”

KEYWORDS=”~x86 ~ppc ~sparc -alpha arm -

hppa ~amd64 -ia64 ~s390”

IUSE=”X nls motif leim gnome Xaw3d less-

tif”

RDEPEND=”sys-libs/ncurses

sys-libs/gdbm

X? (virtual/x11

>=media-libs/libungif-4.1.0.1b

>=media-libs/jpeg-6b-r2

>=media-libs/tiff-3.5.5-r3

>=media-libs/libpng-1.2.1

!arm? (

Xaw3d? (x11-libs/Xaw3d)

motif? (

lesstif? (x11-libs/lesstif)

!lesstif? (>=x11-libs/openmotif-

2.1.30))

gnome? (gnome-base/gnome-desktop)

)

)

nls? (sys-devel/gettext)”

DEPEND=”${RDEPEND}

>=sys-devel/autoconf-2.58”

PROVIDE=”virtual/emacs virtual/editor”

SANDBOX_DISABLED=”1”

DFILE=emacs.desktop

src_compile() {

-fstack-protector gets internal com-

piler error at xterm.c (bug 33265)

filter-flags -fstack-protector

epatch ${FILESDIR}/${P}-amd64.patch

epatch ${FILESDIR}/${P}-hppa.patch

export WANT_AUTOCONF=2.1

Figure 1. Gentoo Ebuild file for Emacs. This file is used to describe the build process for the Emacs package.

SEPTEMBER/OCTOBER 2004 69

USE variable defined in the global environment, which is set in
/etc/make.conf. In normal day-to-day Gentoo Linux use,
we don’t have to set the USE variable on the command line;
however, it’s a handy trick when we want to ensure that a par-
ticular library (or set of libraries) is compiled into a binary.

Sneaking Around the Emerge System
First-time Gentoo Linux users will find themselves frus-
trated by something known as a masked package—so named
because they can’t be built, either due to an architectural
limitation or because they haven’t been tested extensively.
For example, the application we want to emerge might have
been tested and known to work on the Intel x86 family, but
not on a PowerPC or SPARC.

Every package available via the Portage system (and
emerge) provides an ebuild file, which you might have noticed
in the previous emerge command output. Figure 1 shows the
text for the Emacs ebuild file; you can find ebuild on your
new Gentoo system in the /usr/portage/app

-editors/emacs directory. This file contains many variable
definitions that control how the package is built:

• DESCRIPTION is a summary of why we should install
the package.

• HOMEPAGE is where we can download the file to install it.
• SRC_URI is where the emerge system downloads the

source during installation.
• The LICENSE for every package in Gentoo is clearly

specified in the ebuild file, which helps us sleep at night,
knowing that any package installed on the system is legal,
from an open-source perspective.

• KEYWORDS are where we see firsthand the interaction with
the USE flags. Emacs, for example, can be built on just about
any system, including x86, PowerPC (ppc), and SPARC
(sparc). However, it can’t be built on Gentoo Linux running
on an Alpha, which more than likely means that someone at
Gentoo or in its user community tried it without success.

• DEPEND describes the dependency tree for compiling
the package. The syntax is a somewhat complex beast
based on regular expressions.

For brevity’s sake, I can only provide an introduction here,
but knowing just a bit about how the Ebuild files work can

autoconf

local myconf

use nls || myconf=”${myconf} —disable-

nls”

if use X ; then

if use motif && use lesstif; then

export LIBS=”-L/usr/X11R6/lib/less-

tif/”

fi

myconf=”${myconf}

—with-x

—with-xpm

—with-jpeg

—with-tiff

—with-gif

—with-png”

if use motif ; then

myconf=”${myconf} —with-x-

toolkit=motif”

elif use Xaw3d ; then

myconf=”${myconf} —with-x-

toolkit=athena”

else

do not build emacs with any

toolkit, bug 35300

myconf=”${myconf} —with-x-

toolkit=no”

fi

else

myconf=”${myconf} —without-x”

fi

econf ${myconf} || die

emake || die

}

src_install() {

einstall || die

einfo “Fixing info documentation...”

rm -f ${D}/usr/share/info/dir

for i in ${D}/usr/share/info/*

do

mv ${i%.info} $i.info

done

einfo “Fixing permissions...”

find ${D} -perm 664 |xargs chmod 644

find ${D} -type d |xargs chmod 755

dodoc BUGS ChangeLog README

keepdir /usr/share/emacs/${PV}/leim

if use gnome ; then

insinto /usr/share/gnome/apps/Applica-

tion

doins ${FILESDIR}/${DFILE}

fi

}

Figure 1., continued.

70 COMPUTING IN SCIENCE & ENGINEERING

prove helpful when troubleshooting the packages that fail to
build properly—a rare event in Gentoo—or adding your own
packages. Gentoo’s greatest strength as a Linux distribution
is that it is community-focused, allowing software develop-
ers anywhere to contribute their own packages and make
them available through the intuitive emerge command.

Install the Kernel Yourself and Be Happy!
Gentoo Linux is one of the few Linux distros that insists we
build a proper kernel on our own, which means we don’t get
a precompiled kernel under any circumstances. At first, you
won’t be thrilled with this idea, but if you use any other
Linux distro and find yourself wanting to rebuild the kernel,
you might end up at a loss. Worse, most Linux distributions
make it difficult to upgrade the kernel without basically wait-
ing for an upgrade CD (the Microsoft approach), rein-
stalling new packages, and rebooting your computer.

Because the kernel is the code at the nucleus of any oper-
ating system, building it sounds scarier than it really is. Gen-
too Linux provides first-time users with a script that config-

ures the kernel exactly as the Gentoo development team has
it configured on the distribution media. The program,
genkernel, will automatically set up the kernel with the
most commonly needed options and perform an optimized
build for your particular processor.

Initialization Scripts
Initialization scripts present one of the biggest headaches
when it comes to managing Linux systems, but they’re es-
sential for bringing up the needed system services in the
proper order. Such scripts are typically found in the
/etc/rc.d/rcN.d directory, where N corresponds to a
numbered run level. (In my experience with Solaris and Red
Hat Linux systems, a server typically runs at run level 2 or
3.) The entries in the rcN.d directory are actually symbolic
links to shell scripts in the /etc/init.d directory.

Suppose we wanted to run the Apache Web server (httpd).
We’d want this service started, say, after the networking support
starts. In a Red Hat setup, we could ensure that this occurs by
having one script named S05net and another named S25apache.

S C I E N T I F I C P R O G R A M M I N G

#!/sbin/runscript

Copyright 1999-2003 Gentoo Technolo-

gies, Inc.

Distributed under the terms of the GNU

General Public License v2

$Header: /home/cvsroot/gentoo-x86/net

-www/apache/files/2.0.40/apache2.initd,

v 1.13 2003/10/31 07:17:45 rajiv Exp $

opts=”${opts} reload”

depend() {

need net

use mysql dns logger netmount

after sshd

}

start() {

ebegin “Starting apache2”

[-f /var/log/apache2/ssl_scache] && rm

/var/log/apache2/ssl_scache

env -i PATH=$PATH /sbin/start-stop-

daemon —quiet \

—start —startas /usr/sbin/apache2 \

—pidfile /var/run/apache2.pid — -k

start ${APACHE2_OPTS}

eend $?

}

stop() {

ebegin “Stopping apache2”

/usr/sbin/apache2ctl stop >/dev/null

start-stop-daemon -o —quiet —stop

—pidfile /var/run/apache2.pid

eend $?

}

reload() {

ebegin “Gracefully restarting apache2”

/usr/sbin/apache2 -t ${APACHE2_OPTS}

&>/dev/null

if [“$?” = “0”]

then

if [-f /var/run/apache2.pid]

then

kill -USR1 $(</var/run/apache2.pid)

eend $?

else

svc_start

eend $?

fi

else

if [-f /var/run/apache2.pid]

then

svc_stop

fi

#show the error(s)

/usr/sbin/apache2 -t ${APACHE2_OPTS}

eend 1

fi

}

Figure 2. The script for /etc/init.d/apache2. This script starts, stops, or restarts the server at boot time.

SEPTEMBER/OCTOBER 2004 71

(The actual names and numbers don’t matter, provided the net-
work script name lexicographically precedes the Apache script
name.) The init process is a bit cumbersome for a system ad-
ministrator (especially at the command line) because it places a
great premium on clever script names and rebooting the system
to ensure it really comes up correctly after any change.

The Gentoo Linux folks have developed a superior ap-
proach for managing the complex (and often unknown) in-
teractions between startup scripts. They defined a pattern for
organizing the script, a sample of which is shown in Figure
2. This figure shows four functions: depend(), start(),
stop(), and reload(). The depend() function provides
details of how the service is to be run. Without going into ex-
cessive details, the service needs networking (need net) be-
fore starting. This makes sense: we need networking to start
a Web server. The service also uses other services (depen-
dent services)—for example, the default Apache setup
script needs MySQL, DNS, Logger, and network mounting.
Finally, Gentoo also gives us the ability to specify that a ser-
vice should start after another service, even if the service
doesn’t depend on that service’s availability. The big innova-
tion is that Gentoo lets every script provide partial ordering
information that can be sorted topologically to establish an
execution order automatically and at runtime. This saves the
system administrator from having to devise a creative nam-
ing scheme for ensuring that services start as expected.

Most packages, when emerged, provide a startup script
(known historically in Unix as “rc” scripts) named after the
package itself—for example, the apache2 package provides a
script bearing the same name. Gentoo does not require the sys-
tem administrator to actually create the script, but after emerg-
ing the package, he or she must install the script separately us-
ing the rc-update command and indicate the run levels at
which the script is to be started. Gentoo Linux provides mul-
tiple run levels (boot, nonetwork, and default), so you’ll prob-
ably boot the OS at the default when setting up your own Gen-
too Linux system. Here’s how to install the apache2 service:

/usr/sbin/rc-update add apache2 default

Gentoo Linux automatically recomputes the correct order
in which the scripts are to be started and starts apache2 ac-
cording to the constraints established in the depend()
function. It’s also possible to uninstall a service without unin-
stalling the package: instead of using the rc-update add
command just listed, you simply use the del command.

The ability to manage startup scripts so easily and intu-
itively is a major advance over other Linux distributions and

a huge win for managing several Linux systems consistently
and coherently.

Install What You Need, Then What You Want
Unfortunately, we’re in an age of more is more. With the po-
tential for terabytes of disk space and gigabytes of RAM, does
it matter how much disk space and memory are consumed
when there’s seemingly plenty to burn? Why not just install the
veritable cornucopia of free software packages and be done with
it? In practice, this mentality leads to installing a bunch of stuff
on your system that you simply don’t need. True, you might
have resources to burn, but unwanted services running in the
background still affect system performance, often dramatically.

With Gentoo Linux, a minimal but fully usable system is
installed when performing the base stage3 installation (see the
“Getting Started” sidebar). The stage3 installation is a mini-
mal Gentoo setup that gets the system going without having
to compile absolutely everything from scratch (which can take
a long time even on the fastest systems). Notably, the base sys-
tem contains only the most essential materials for building
other packages: basic Unix commands, the gcc compiler (with
support for C and C++), the standard C and C++ libraries, and
the Portage system. Most users will want more, even those of
us who truly believe that less is more. I tend to do a lot of
Python hacking (part of the base system), Web programming
(emerge apache2), and work with scientific programming
tools. Here are the commands for installing some of my fa-
vorite scientific programming packages:

MPICH emerge sys-cluster/mpich
LAM MPI emerge sys-cluster/lam-mpi
HDF emerge dev-libs/hdf or emerge dev-libs/hdf5
LAPACK emerge app-sci/lapack

When in doubt, use emerge –search package-name-
substring, where you type a few characters of the pack-
age name in place of package-name-substring. This
gives you a list of matches from which you can then perform
an emerge similar to the above examples.

You might argue that you could spend a substantial amount
of time selecting which packages are or aren’t necessary.
There’s really no solid counterargument to that, but I want
as few inessential packages installed on my computers as pos-
sible. I’m willing to pay the price of having to install some-
thing later that I truly needed but originally forgot to install.
Using the Portage tools, I can find all the installed packages
I consider useful and use this list to clone the setup on an-
other system in my cluster. The Gentoo community knows

72 COMPUTING IN SCIENCE & ENGINEERING

S C I E N T I F I C P R O G R A M M I N G

that not all users want to exert such fine-grained control, so
it’s arranging packages into groups to allow a collection of re-
lated packages to be installed in one fell swoop. The Portage
system is so flexible that there’s no reason such convenience
can’t be extended to users. Two predefined groups of pack-
ages—system and world—refer to essential system packages
and all packages that have been installed to date, respectively.
With these names, the user can periodically update packages
(after synchronizing the Portage metadata) by using emerge
–update system or emerge –update world. This
makes the Gentoo setup’s ongoing maintenance almost (but
not completely) trivial. You still need to know a thing or two
about Linux system administration, but Gentoo takes the
Linux world one step closer to user-friendliness when it
comes to administration. Plus, its ability to reliably perform
live, real-time updating from source code is unique.

Clustering: An Advanced Need
Let’s touch briefly on the topic of cluster computing, which
is one of my present areas of research. Gentoo facilitates

cluster maintenance in a variety of ways. I can’t go into ex-
haustive detail, but I can share my general approach to us-
ing Gentoo Linux in a clustering environment, especially a
homogenous one (that is, where every system in the cluster
is nearly the same in terms of hardware).

Easy-to-Clone Reliably
Installing Gentoo Linux in a cluster is more or less a matter of
getting one of the nodes up and running. Once the node is
configured as desired, we can reliably clone the setup by using
a tool like rsync (yes, you can emerge it, if it’s not installed al-
ready) to replicate the file systems from the first node to a new
node. This works a bit like magic, but Gentoo’s distro CD is a
key enabler. The Gentoo folks call it a live CD because it lets
you boot the OS, mount read-only file systems on the source,
and then perform synchronization.

distcc
Cluster computing has the potential to be a killer app for
Gentoo Linux. Packages can be compiled in parallel on the

Chez Thiruvathukal

In this issue’s installment, I’m taking the opportunity to dis-
cuss some interesting developments in the open-source

community that I think will be of interest to all the scientific
programmers out there. We’ve already
seen several major announcements (or
accomplishments, depending on how
you view these things).

Mono
The Mono project aims to build a com-
plete implementation of the .Net plat-
form and C# (pronounced “C sharp”)
programming language developed by
Microsoft. The .Net platform is
Microsoft’s answer to the Java plat-
form, which by now everyone
knows—along with the browser—
played a major role in defining the dot-
com era. I’m particularly excited about
this development, which I think will be
instrumental in ensuring a long-term
competitive environment for software.
Using Mono, you can develop .Net ap-
plications on any platform, including
Linux. In fact, on the Gentoo Linux
platform discussed in the main text, it’s a simple matter of typ-
ing emerge mono to install it.

A perfectly natural question to ask about any 1.0 release is,
“How good is it, really?” I’ve been working on a commercial

parallel-processing project this summer using (grrr...) the
Microsoft platform. Most of the code I’ve written thus far can
be compiled and run cleanly and efficiently using the Mono
C# compiler and runtime environment. For a 1.0 release, it’s
notable that Mono can compile the codes we tend to write in

high-performance computing. My
early experiments suggest about 20
to 30 percent improvement over the
Visal Studio .Net compiler and run-
time environment.

Of course, it’s not all perfect. The
Windows and Windows Forms frame-
works are not fully working yet,
which makes it difficult to write
portable graphical applications. How-
ever, a short-term solution allows
programmers to leverage native GUI
libraries such as the GTK toolkit (so-
called GTK#). The next release will of-
fer the ability to develop Windows
applications that run natively on Win-
dows and use the WINE library on
Linux. As an aside, the GTK# toolkit
has already been put to use by the
mono.develop project (www.
monodevelop.com), which aims to
be a complete integrated develop-

ment environment (IDE) for developing C# applications. You
can also get this in the Gentoo project by doing emerge
monodevelop.

Anyway, if you’re interested in seeing what C# code looks

SEPTEMBER/OCTOBER 2004 73

computing cluster by using the distcc service, which offloads
lengthy compiles to nodes in the cluster as they are brought
online. In my experience, this can be a significant timesaver
because numerous packages are built in parallel, especially
as I’m trying to get my system going.

Familiar Packages Available Painlessly
Perhaps one of the arguments for using Gentoo over other
Linux distros is the availability of high-performance com-
puting (HPC)-friendly packages via the Portage system.
Parallel virtual machine (PVM), message-passing interface
(MPI), and others are all available via the trusty emerge
command. For scientific programmers and scientists, this
means that a parallel programming environment can be es-
tablished with minimal pain and suffering. I’ve never run
into any problems with these so-called staples of HPC
compiling and running cleanly on Gentoo Linux; all you
need to do is edit a few configuration files (such as MPI’s
famous machines file to list the host names), and you’re
good to go!

OpenMosix
One of my students, Sean McGuire, actually set up our labo-
ratory at Loyola University, Chicago, with Gentoo Linux. Be-
ing clever, he decided to experiment with a special kernel
known as OpenMosix, which allows for processes to be created
from any node and launched on any node under suitable mi-
gration conditions. OpenMosix is useful for environments that
feature batch-style parallel processing, wherein the goal is to
maximize the throughput of jobs that have minimal data I/O
requirements or transaction environments in which the I/O is
offloaded to a transaction server. Gentoo Linux again makes it
possible to take advantage of experimental kernels and software
tools that other distributions tend to avoid like the plague.

A t my private company and at my university, I have
built my own low-cost computing clusters using

ShuttleX nodes (www.shuttle.com), which at the time of
this writing run approximately US$400 apiece. The
Nimkathana cluster (www.nimkathana.com/products/low

like, check out my Web site dedicated to Java and HPC (www.
jhpc.info); there, I provide a snapshot of a multithreaded class
library (written for my first book), which has just been ported
to C# (www.jhpc.info).

Eclipse
Meanwhile, back on the other side of the world (Java), the
Eclipse Project has released version 3.0 of what is more
than likely the most impressive Java project that few peo-
ple are aware of. Eclipse is an open-source project that
emerged from IBM’s Visual Age software development.
Originally an internal project, IBM realized that its invest-
ments in Eclipse had greater potential for payoff by involv-
ing the broader Java software development community in
extending the Eclipse platform, mostly through the cre-
ation of plug-ins and experimental projects.

Eclipse goes beyond the traditional IDE by supporting the
notion of configurable perspective—an example is a lan-
guage editing/browsing perspective. In Eclipse, perspectives
exist for Java, C/C++, and XML language editing. Another
example is a source-code repository browsing perspective,
which lets you examine a concurrent versioning system
(CVS) tree similar to Windows Explorer. The Eclipse frame-
work goes one step further by allowing for near seamless in-
tegration between perspectives—the source-code browsing
plays nicely with both Java and C code. You can easily switch
between perspectives, and Eclipse doesn’t get confused. The
Eclipse Project describes its approach as an environment for
“everything and anything or nothing in particular.”

This makes for an environment that is configurable for
just about any type of development.

Subversion
Subversion is an emerging alternative to the aforemen-
tioned CVS, which for all practical purposes, is the incum-
bent version control software when it comes to open-
source and academic research projects. It’s not likely to go
away anytime soon, especially given the number of projects
that use it. If you judge by SourceForge use alone, there are
tens of thousands of projects actively using CVS.

CVS is not without its share of problems, especially from a
systems viewpoint. Setting up CVS to support even a small
development team requires extreme care and, therefore, ex-
pertise. Familiarity with creating users and groups on Unix is
a must, and the “setgid()” bit must be enabled to ensure
group ownership of files contained in project directories so
all members of the group can continue to check out, update,
and commit files. The Subversion Project (subversion.tigris.
org) aims to create a tool that’s mostly compatible with CVS
from the user perspective while simultaneously employing
modern systems design techniques. Instead of keeping ver-
sion files in a hierarchical directory structure (that mirrors the
project’s source hierarchy), all information is kept in a single
embedded database—specifically, the Berkeley DB storage
engine. The advantages of databases over file systems in-
clude transactional safety, consistency, and portability. In just
a short time, the Subversion team has ported its C code to all
modern OS platforms, so Windows users can also run the
Subversion server or client.

Subversion is a project worth keeping any eye on. I’m
going to hold out just a bit longer—at least for my Java pro-
jects—until the integration with Eclipse (my favorite soft-
ware tool) is completed.

74 COMPUTING IN SCIENCE & ENGINEERING

S C I E N T I F I C P R O G R A M M I N G

_cost_clustering), which varies between 8 and 12 nodes, is
an example of such a cluster built for under $5,000, with
access to a storage server built for under $2,500. We use
this cluster for data mining and simulations, and it runs
Gentoo Linux exclusively. Who would have thought that
we could build a terascale cluster for under $5,000, let
alone have access to another terabyte off-cluster for
$2,500? However, the best aspect of the cluster isn’t its
cost: it’s the ability to install a great Linux distro, Gentoo
Linux, and keep it up to date at all times without ever hav-
ing to reinstall the OS again (barring an unanticipated
hardware failure).

This article only scratches the surface of what’s possible
with Gentoo Linux. With a robust metadata framework
and network-centric architecture, the Gentoo approach
provides a great example of the Internet’s potential to

make OSs easier to maintain (live and in real time) and
keep up to date in an age in which security has risen to the
forefront of serious problems, necessitating the ability to
incorporate patches before vulnerabilities are exploited.
Although I didn’t cover it here, Gentoo releases its own
security advisories. In short, the OS sports a modern de-
sign and is well-suited to everything from desktop to ad-
vanced computing.

George K. Thiruvathukal is an associate professor of computer science

at Loyola University, Chicago. He is also president and CEO of

Nimkathana Corporation, which does research and development in high-

performance cluster computing, data mining, handheld/embedded soft-

ware, and distributed systems. He wrote two books covering concurrent,

parallel, distributed programming patterns and techniques in Java and

Web programming in Python. Contact him at www.cs.luc.edu/gkt.

Getting Started

G etting started with Gentoo is easy. It’s a bit more work
than setting up something like Red Hat, but that’s a

price well worth paying, especially if you relish the thought of
having a clue about what’s being installed and how to config-
ure things. The Gentoo Linux documentation is excellent,
with many helpful tips on how to do useful types of setups
such as running a mail-hosting environment.

Here are the steps:

• Visit www.gentoolinux.org. It has an installation document
that you’ll want to download and print. A printed version
of the document on which you can write notes is ex-
tremely helpful.

• Download the ISO image to create an installation CD. This
more than likely means that you should have a CD-burn-
ing utility on your computer. On OS X, you can run the
Disk Utility; on Windows, a great program is Ahead Nero
(www.ahead.de/us/index.html).

• The site provides many different images. For most users with
modern PCs, the images having Pentium, Pentium4, or
Athlon in the name should be adequate. (One tidbit: regard-
less of whether you use Pentium or Athlon processors, both
are compatible with the 686 instruction sets.) Gentoo pro-
vides a universal CD, but you should pursue this option only
if you don’t know what architecture your computer is using.

• Once you’ve burned the CD-ROM, try booting your com-
puter with it. This might not work if your CD-ROM is disabled
as a boot device, which forces you to go into the BIOS setup
to enable CD-ROM booting. Usually, you need to specify the
order in which the various devices should be tried. These
days, you can select just about anything as a boot device. If
you’ve installed Windows on your system, you might already
be set to boot from CD-ROM, but check before proceeding.

Once you’re booted, you can complete the setup as de-
scribed in the installation guide. The process is relatively
straightforward from this point: you create partitions and file
systems on the partitions, and then proceed to install the
base OS. Next, you’ll build the kernel, install a bootloader
(to let you boot Linux or Windows), and you’re done.

In addition to the previous steps, some questions should
be on your mind:

• Do you plan to keep Windows on the same computer? This
is known as the dual-boot option. If you plan to install both
Windows and Linux, you should seriously think about mak-
ing a backup...now.

• Do you know what hardware is in your computer? Certain
devices, usually found in ultra-cheap PCs, are designed to
work only with Windows. Some modems and integrated
video logic don’t work with Linux and never will, but such
problems can usually be remedied by replacing or adding
the device in question. If you have integrated video, for ex-
ample, you’ll want to go out and get a relatively standard
video card that is known to work with Linux.

• Are you going to use Linux mostly in terminal mode or
graphical mode? If you don’t plan on running desktop
applications and just want to tinker around with Linux in
console mode, you can get a setup running with mini-
mal pain and suffering. Most of my servers are config-
ured to run exclusively in terminal mode, which I then
access remotely from my laptop running OS X (and
sometimes Windows). If running in terminal mode, I
strongly recommend that you install OpenSSH (which
can be done with emerge and rc-update as de-
scribed in the article).

My ultimate advice? Learn the answers to all these questions
before attempting to install Gentoo or any version of Linux.

	Gentoo Linux: The Next Generation of Linux
	Recommended Citation

	untitled

