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The generation of induced pluripotent stem cells (iPSCs) and differentiation to cells composingmajor organs has
opened up the possibility for a new model system to study adverse toxicities associated with chemotherapy.
Therefore, we used human iPSC-derived neurons to study peripheral neuropathy, one of the most common ad-
verse effects of chemotherapy and cause for dose reduction. To determine the utility of these neurons in investi-
gating the effects of neurotoxic chemotherapy,wemeasuredmorphological differences inneurite outgrowth, cell
viability as determined by ATP levels and apoptosis through measures of caspase 3/7 activation following treat-
mentwith clinically relevant concentrations of platinating agents (cisplatin, oxaliplatin and carboplatin), taxanes
(paclitaxel, docetaxel and nab-paclitaxel), a targeted proteasome inhibitor (bortezomib), an antiangiogenic com-
pound (thalidomide), and 5-fluorouracil, a chemotherapeutic that does not cause neuropathy. We demonstrate
differential sensitivity of neurons tomechanistically distinct classes of chemotherapeutics. We also show a dose-
dependent reduction of electrical activity as measured by mean firing rate of the neurons following treatment
with paclitaxel. We compared neurite outgrowth and cell viability of iPSC-derived cortical (iCell® Neurons)
and peripheral (Peri.4U) neurons to cisplatin, paclitaxel and vincristine. Goshajinkigan, a Japanese herbal
neuroprotectant medicine, was protective against paclitaxel-induced neurotoxicity but not oxaliplatin as mea-
sured by morphological phenotypes. Thus, we have demonstrated the utility of human iPSC-derived neurons
as a useful model to distinguish drug class differences and for studies of a potential neuroprotectant for the pre-
vention of chemotherapy-induced peripheral neuropathy.

©2017 TheAuthors. PublishedbyElsevier B.V. This is anopen access article under the CCBY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

With an estimate of N13.7 million cancer survivors in the United
States (Siegel et al., 2012) there is concern regarding long-term effects
of chemotherapy. Chemotherapy-induced peripheral neuropathy
(CIPN) is one of the most common and potentially permanent side
effects of modern chemotherapy that can result in dose reduction or
cessation of therapy (Brewer et al., 2016). CIPN may develop in 20–
40% of cancer patients as a consequence of treatment with platinum
analogues (cisplatin, oxaliplatin, carboplatin), taxanes (paclitaxel, nab-
paclitaxel, docetaxel), vinca alkaloids (vincristine), proteasome inhibi-
tors (bortezomib), epothilones or other chemotherapeutics (Chu et al.,
2015; Grisold et al., 2012). Differences in structural and mechanistic

properties among various chemotherapeutic agents contribute to varia-
tions in clinical presentation including numbness, loss of proprioceptive
sense, tingling, pins and needles sensations, hyperalgesia or allodynia in
the hands or feet in a stocking-glove distribution (Brewer et al., 2016).

Mechanisms underlying CIPN include direct and indirect effects on
sensory nerves such as damage to neuronal cell bodies in the dorsal
root ganglion, alteration of the amplitude of the action potential or con-
duction velocity (Argyriou et al., 2012; Sisignano et al., 2014). Whereas
CIPNmay be reversible for some cytotoxic drugs (e.g. taxanes), for other
agents (e.g. cisplatin), the persistence of CIPN is well documented
(Argyriou et al., 2012; Avan et al., 2015). Wide ranges in incidence
rates likely reflect not only differences in study populations, drug-relat-
ed factors (e.g. dose-intensity) and potential confounders, but also ge-
netic susceptibility (Argyriou et al., 2012; Bhatia, 2011). Patients at
high risk could consider alternative chemotherapy regimens with simi-
lar efficacy or a treatment strategy thatmitigates risk by limiting the cu-
mulative dose of the neurotoxic drug.

For the treatment of painful neuropathies, most drugs fall short of
providing adequate relief (Sisignano et al., 2014). A systematic evalua-
tion of 48 randomized controlled trials concluded that there are no
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agents that can be recommended for the prevention of CIPN
(Hershman, et al., 2014). With regard to the treatment of existing
CIPN, the best available data support a moderate recommendation for
treatmentwith duloxetine, a selective serotonin andnorepinephrine re-
uptake inhibitor (Smith, et al., 2013). Goshajinkigan (GJG), a traditional
Japanese herbal medicine, has been shown to inhibit the progression of
neuropathy or alleviate symptoms of nerve pain resulting from chemo-
therapy treatment with paclitaxel/carboplatin for ovarian and endome-
trial cancer patients (Kaku et al., 2012), docetaxel in breast cancer
patients (Abe et al., 2013), nab-paclitaxel for breast cancer patients
(Ohno et al., 2014) and oxaliplatin in colorectal cancer patients
(Nishioka et al., 2011; Hosokawa et al., 2012; Yoshida et al., 2013). In an-
imalmodels, GJG has been shown to suppress various transient receptor
potential channels that may mitigate the pain responses in the patient
(Mizuno et al., 2014; Kato et al., 2014; Matsumura et al., 2014).

Given the paucity of available treatments and increasing number of
cancer survivors living with CIPN, there is an urgent need to identify a
reasonable model system to identify more effective compounds
supporting multiple targets and providing relief to patients undergoing
treatment. Previously, we have demonstrated that induced-pluripotent
stem cell (iPSC) derived neurons can be used as a preclinical model sys-
tem to study CIPN (Wheeler et al., 2015). In the presentmanuscript, we
extend these studies by: 1) evaluating additional platinating agents
(oxaliplatin, carboplatin) and taxane analogs (docetaxel, nab-paclitax-
el), a proteasome inhibitor (bortezomib), an antiangiogenic (thalido-
mide), and a chemotherapeutic that does not cause neuropathy (5-
fluorouracil); 2) determining the effect of paclitaxel treatment on elec-
trical activity of neurons; 3) comparing drug sensitivity in iPSC- derived
cortical versus peripheral neurons; 4) and testing GJG, as a potential
neuroprotectant to counteract the effects of paclitaxel, cisplatin and
oxaliplatin by evaluating in neurons and cancer cell lines.

2. Methods

2.1. iCell® Neurons

Commercial human iPSC-derived neurons (iCell® Neurons) were
purchased from Cellular Dynamics International (CDI, Madison, WI).
The cells have been characterized by CDI to represent a pure neuronal
population with N95% pan-neuronal population of GABAergic and to a
lesser degree glutamatergic subtype expressing ßIII-Tubulin, MAP-2,
peripherin having b1% dopaminergic neurons. iCell® Neuronswere de-
termined to express multiple ligand gated and voltage gated ion chan-
nels and be characteristically similar to neurons from the neonatal
forebrain (Dage et al., 2014).

2.2. Peri.4U neurons

Commercial human iPSC-derived neurons (Peri.4U)were purchased
fromAxiogenesis (Cologne, Germany)with N90% purity and expressing
ßIII-Tubulin,MAP-2, peripherin and vGLUT2. These peripheral-like neu-
rons are not DRG nociceptive neurons. All batches of iPSC-derived neu-
ronswere tested for sterility, viability, purity, andmorphology. Neurons
were maintained according to the manufacturers' protocol.

2.3. Cancer lines

Ovarian adenocarcinoma, SKOV3 (HTB-77) and non-small cell lung
cancer, A549 (CCL-185) were obtained from ATCC (Manassas, VA). Au-
thentication of the cancer cell lines were performed by IDEXX
BioResearch (Columbia, MO) for interspecies contamination and mis-
identification, Case # 10952–2014. This authentication was conducted
by measuring short tandem repeat (STR) using the Promega CELL ID
System (Madison, WI) (8 STR markers (CSF1PO, D13S317, D16S539,
D5S818, D7S820, TH01, TPOX, vWA)) and amelogenin (for gender).

2.4. Compound preparations

Drug stocks were prepared and filtered using a 0.22 μM solvent re-
sistant filter (EMD Millipore, Billerica, MA, USA) for sterility. Paclitaxel
(Sigma-Aldrich, St. Louis, MO) and docetaxel (LKT Laboratories Inc., St.
Paul, MN) were dissolved in DMSO to obtain a stock solution of
58.4 mM and 60mM, respectively. Cisplatin and carboplatin (Sigma-Al-
drich) were dissolved in DMSO and water, respectively, at a stock solu-
tion of 20 mM. Oxaliplatin and 5-fluorouracil (both Sigma-Aldrich),
bortezomib and thalidomide (both LKT Laboratories Inc.) were dis-
solved in DMSO at a stock solution of 100mM. Abraxane (nab-paclitax-
el; 1 part paclitaxel/9 parts human albumin; Celegene, Summit, NJ) was
purchased fromUniversity of Chicago pharmacy and dissolved in PBS to
obtain a stock solution of 1 mM. Nab-paclitaxel could not be tested at
100 μM due to its insolubility at this dose. Vincristine (Sigma-Aldrich)
was prepared on ice and in the dark (biological safety and room lights
off, samples under cover) with PBS at a stock solution of 100 mM. Hy-
droxyurea (Sigma-Aldrich) was prepared by dissolving powder in PBS
and filtered to obtain a stock solution of 1 M. All stock drugs were seri-
ally diluted in media for final concentrations from 1 nM to 100 μM for
treatment of iCell® Neurons, 0.01 nM to 100 μM for Peri.4U neurons
or 1.56 to 100 nM for treatment of the cancer lines. Vehicle controls
for each drugwere used at correspondingdilutions offinal drug solution
(0.1–0.2% DMSO).

Goshajinkigan (GJG), supplied by Tsumura & Co. (Tokyo, Japan), was
stored desiccated at −20 °C. Prior to treatment, GJG was dissolved at
10 mg/mL in PBS, sonicated for 10 min and diluted to obtain a 50 to
200 μg/mL GJG solution in specific media per cell line.

2.5. Drug treatment of iCell® Neurons

iCell® Neuronsweremixedwith 3.3 μg/mL laminin (Sigma-Aldrich)
in maintenance media containing 0.025 g/L albumin (final concentra-
tion) prior to seeding on Poly-D-Lysine coated 96-well Greiner Bio-
One plates (Monroe, NC, USA) in 100 μL for a density of 1.33 × 104

cells/well. Four hours following plating, iCell® Neurons were treated
with chemotherapeutic drug (1 nM to 100 μM) for 48 and 72 h and
evaluated for morphological changes. For experiments with neuro-
protectants, GJG was added at the same time as the chemotherapeutic
agent.

2.6. Drug treatment of peripheral neurons

Peri.4U were thawed using Axiogenesis thawing media and
suspended in 100 μL complete Peri.4Umedia containing 0.025 g/L albu-
min (final concentration) prior to seeding (final density 1.0 × 104 cells/
well) onto Gel-Trex, reduced-growth factor basement membrane ma-
trix (Life Technologies Inc., Carlsbad, CA) coated Poly-D-Lysine 96-well
Greiner Bio-One plates as described above. Four hours following plating,
Peri.4U cells were treated with chemotherapeutic drug (0.01 nM to 100
μM) for 48 and 72 h and evaluated for morphological changes.

2.7. High content imaging of neuronal morphological characteristics

After drug treatments (48 or 72 h), neurons were stained for 15min
at 37 °C with 1 μg/mL Hoechst 33342 (Sigma-Aldrich) and 2 μg/mL
Calcein AM (Molecular Probes, Life Technologies) then washed twice
using dPBS without calcium or magnesium. Imaging was performed at
10×magnification using an ImageXpressMicro imaging device (Molec-
ular Devices, LLC, Sunnyvale, CA) at the University of Chicago Cellular
Screening Center. Supplemental Fig. 1 illustrates the processing of a rep-
resentative image used to quantitate individual cell measurements of
mean/median/maximum process length, total neurite outgrowth (the
sum of the length of all processes), number of processes, number of
branches, cell body area, mean outgrowth intensity, straightness and
cell numbers using the MetaXpress software Neurite Outgrowth
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ApplicationModule. At least 1000 cells per dose were imaged in each of
three independent experiments.

2.8. Cell viability and apoptosis assays

Cell viability was assessed by ATP measurement 72 h post drug
treatment using the Cell Titer-Glo assay (Promega, Madison, WI) and
apoptosis was determined at 48 h post drug treatment using the Cas-
pase-Glo 3/7 assay (Promega). Three biological replicates of the viability
assay and four of the apoptosis assaywere performed. At least twowells
per drug dose were measured in each experiment.

2.9. Multi-electrode arrays

iCell® Neurons (100,000–125,000 cells) were centered in 10 μL
media containing 10 μg/mL laminin onto each well of a PEI
(polyethylenimine, Sigma-Aldrich) treated 48-well multi-electrode
array plate (MEA, Axion Biosystems, Atlanta, GA). The plates were
placed in a humidified 37 °C incubator for 30 min followed by addition
of 300 μL pre-warmed iCell®maintenancemedia as described in the CDI
protocol (#AP-NC120615). Sterile water (2 mL) was added to the area
surrounding thewells of the 48-wellMEAplate to prevent droplet evap-
oration and the plate was covered with a sterile, hydrated MicroClime
Environmental lid (LabCyte Inc., Sunnyvale, CA), as per manufacture's
instructions. Media was exchanged with pre-warmed Neurobasal A
(Gibco) containing 10% FBS (Hyclone) and 1% Penicillin-Streptomycin
(Gibco) on day1 and50%ofmedia exchanged ondays 3 and 5 post-plat-
ing. On day 6, paclitaxel was added to obtain a final concentration of
0.01, 0.02 and 1 μM or bicuculline at 10 μM for each of 6 replicates per
dose while the control wells received 0.0017% DMSO (paclitaxel) or
0.01% DMSO (bicuculine) in complete Neurobasal A media.

Electrical measurements were made with the Axion Maestro
multiwell, micro-electrode array (MEA; Axion Biosystems, Atlanta,
GA) using the neural datastream settings (200–3000 Hz window with
a spike threshold of 5.5 spikes per second and burst detector set to
“Poisson surprise”). Four minute MEA recordings were made pre and
post drug addition and at 0.07, 4, 24 and 48 h thereafter. Electrical mea-
surements at each time point were normalized to the vehicle control
and the change of mean firing rate calculated over time then averaged
between wells. 2-way ANOVA analysis was performed to compare the
drug to vehicle at each dose. At the end of the 48 h recording, 300 μL
CellTiter-Glo was added into the MEA wells, cells lysed for 30 min at
room temperature with gentle agitation and 150 μL was transferred to
a white assay plate (Costar-Corning, Tewksbury, MA) for viability
assay readings performed as described above.

2.10. Effect of neuroprotectant ± chemotherapeutic on cancer cell lines

A549 cells were maintained in F-12 K media and SKOV3 in McCoy's
5A.Media were supplementedwith 10% FBS (Hyclone, Fisher Scientific)
and 1% Penicillin-Streptomycin (Gibco, Life Technologies). Cultures
were incubated in a humidified incubator at 37 °C with 5% CO2. Effect
of treatment on A549 cells was determined following treatment with
GJG alone or with paclitaxel. Briefly, 4000 cells per well were plated in
96-well flat bottom plates (Corning) and at 24 h treatedwith increasing
concentrations of paclitaxel (1.56 to 100nM) in the presence or absence
of GJG at either 50, 100 or 200 μg/mL for 72 h followed by assay of cell
viability with CellTiter-Glo, as described above.

3. Results

3.1. Differential sensitivity of iCell® Neurons to various chemotherapeutic

iCell® Neurons (iPSC-derived human cortical neurons) were treated
with increasing concentrations of various chemotherapeutics and
changes in total neurite outgrowth (sum of the length of all processes),

relative number of processes, relative number of branches, relative
neurite mean/median/maximum process length, cell body area and
straightness of the neurites as quantified using high content image
analysis. There were unique patterns of response across drug classes
(Fig. 1, Supplemental Fig. 2). For example, the platinating agents in-
duced changes in neurite outgrowth in a pattern indistinguishable
from the effects on cell viability and caspase 3/7 activation, a measure
of apoptosis (Fig. 1a–d). Neurite outgrowth of cells was inhibited 55%,
23% and 1% for 10 μM cisplatin, oxaliplatin or carboplatin for 72 h, re-
spectively, compared to control (P b 0.05, Fig. 1a, Supplemental Table
1). Similarly, at this samedose, neuronal cellsweremost sensitive to cis-
platin compared to carboplatin and oxaliplatin as measured by change
in relative number of processes (P b 0.005, Fig. 1b), cell viability (P b

0.05, Fig. 1c), apoptosis ( P≤ 0.05, Fig. 1d), as well as relative number
of branches, straightness and mean outgrowth intensity (all P b 0.05)
with no difference in cell body area among platinating agents (Supple-
mental Fig. 2 and Supplemental Table 1). Fig. 2 images illustrate changes
in the cells are most dramatic at the 10 μM clinically relevant dose for
cisplatin and oxaliplatin compared to carboplatin, where some increase
in neurite outgrowths can be visualized.

The pattern of neuronal sensitivity for the taxanes (paclitaxel, doce-
taxel or nab-paclitaxel) was observed to be a gradual reduction of
neurite outgrowth parameters at increasing concentrations of drug
without an effect on cell viability. Overall, the dose response curves
were not significantly different as measured by morphological charac-
teristics of the neurites for the 3 taxanes and determined by 2-way
ANOVA (except for straightness) even though at specific concentrations
we observed significant differences in some of these phenotypes (Fig.
1e–h, Fig. 2, Supplemental Fig. 2 and Supplemental Table 2). In contrast,
there were significant differences in cell viability comparing docetaxel
or nab-paclitaxel to paclitaxel (P b 0.05, Fig. 1g and Supplemental
Table 2). Caspase 3/7 activation (P b 0.05, Fig. 1h and Supplemental
Table 2) showed some differential effect onlywhen docetaxel was com-
pared to paclitaxel.

We also evaluated three additional mechanistically distinct drugs:
bortezomib, a 26S protease inhibitor, used to treat multiple myeloma
and relapsed mantle cell lymphoma; thalidomide, an antiangiogenic
compound also used to treat multiple myeloma; and 5-fluorouracil,
used to treat colorectal cancer but does not result in neuropathy (nega-
tive control). Bortezomib produced a dramatic dose-dependent decline
for all the phenotypes measured including relative total outgrowth and
number of process per cell (Fig. 1i,j and Fig. 2) matching its decline in
cell viability (Fig. 1k) but with no significant effect on apoptosis as de-
termined by lack of caspase 3/7 activation (Fig. 1l). In contrast, thalido-
mide and 5-fluorouracil demonstrated no significant effect on relative
total outgrowth, number of processes, cell viability or induction of
apoptosis (Fig. 1i–l). Additional morphological phenotypes (relative
number of branches, max process length, relative mean outgrowth in-
tensity) showed similar patterns of response to those seen for out-
growth measures for bortezomib, thalidomide and 5-fluorouracil
(Supplemental Fig. 2,i–l). Fig. 2 illustrates the dramatic effects with
0.01 μM Bortezomib compared to no distinguishable effects for 1000
times higher concentrations of 5-fluorouracil and thalidomide.

3.2. Effect of paclitaxel on electrical activity of the cells

In addition to evaluating morphological changes following chemo-
therapeutics, neurons forming neuronal networks onmultielectrode ar-
rays can be measured using electrophysiological interrogation. We
evaluated paclitaxel-induced changes in neuronal network function
and observed a significant dose dependent (0.02 μM paclitaxel, P =
0.0002; 1 μM paclitaxel, P b 0.0001) reduction of mean firing rate (Hz)
compared to vehicle control over a 48 h period (Fig. 3a) without loss
of cell viability (Fig. 3b). Bicuculline, a known GABA-receptor antago-
nist, was used as a positive control (McConnell et al., 2012) and was
shown to produce the expected increase in mean firing rate (Fig. 3c)
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from 3 to 7 fold compared to vehicle control over 48 h without signifi-
cant reduction in cell viability (Fig. 3d).

3.3. Effect of chemotherapeutics on peripheral neurons

Over the course of this study, peripheral neurons became available
through Axiogenesis. We, therefore, chose a subset of chemotherapeu-
tics (cisplatin, paclitaxel, vincristine, and bortezomib, hydroxyurea, 5-
fluorouracil) to compare changes in morphological and cell viability in
cortical neurons versus peripheral neurons.We chose dose rangeswith-
in the clinically relevant plasma concentrations for paclitaxel (Zasadil et
al., 2014), vincristine (Sethi et al., 1981), cisplatin (Urien and Lokiec,
2004) and bortezomib as shown with gray shading on each plot (Fig.
4). Within these clinically relevant concentrations, Peri.4U peripheral
neurons were found to be more sensitive to cisplatin, paclitaxel and

vincristine for at least one concentration as determined by neurite out-
growth and cell viability compared to cortical neurons (Fig. 4 a–h). Both
types of neurons were equally sensitive to bortezomib-induced relative
neurite outgrowth but with increased sensitivity in cell viability for
Peri.4U cells (Fig. 4 d,h). A representative image of each cell type with
a clinically relevant dose for each drug shows similar morphological
changes after 72 h treatment (Fig. 4, right panel). Peri.4U effects with
cisplatin are visualized in detail with videography in Supplemental
video 1. In both cortical and peripheral neurons, the effect on cell viabil-
ity relative to the effect on neurite outgrowth was similar for all four
chemotherapeutics (Supplemental Fig. 3). Hydroxyurea, a chemothera-
peutic not shown to cause CIPN, did not exhibit significant changes for
any phenotypes in peripheral neurons (Supplemental Fig. 4) or cortical
neurons, as expected (Wheeler et al., 2015). In contrast 5-fluorouracil, a
drug not thought to cause CIPN did produce a slight but significant

Fig. 1. Effect of chemotherapy agents on iCell® Neurons. Neurons treated with chemotherapy agents were evaluated for cell changes in relative total outgrowth, relative number of
processes, cell viability and apoptosis following 48 or 72 h treatment. With platinating agents, significant decline in (a) neurite outgrowth was most dramatic for cisplatin (orange
circle) when compared to oxaliplatin (blue triangle) and carboplatin (teal square) at 10 μM drug in total neurite outgrowth, (b) relative number processes and (c) CellTiter-Glo and
(d) caspase 3/7 activation (P ≤ 0.05). For the taxanes, neurons were less sensitive to docetaxel (red inverted triangle) compared to paclitaxel (lilac triangle) at the 100 μM dose for (e)
relative total outgrowth, (f) relative number processes and (g) cell viability as measured by CellTiter-Glo (P b 0.05); however at the same dose docetaxel resulted in significantly
greater (h) caspase 3/7 activation (P b 0.05). A t-test was used to compare each dose per phenotype for carboplatin or oxaliplatin against cisplatin (Supplemental Table 1) and also for
docetaxel or nab-paclitaxel against paclitaxel. (Supplemental Table 2). The last panel shows the severity of the effects due to bortezomib (green diamond) to (i) total outgrowths, (j)
number processes and (k) decreased cell viability without any induction of (l) caspase 3/7 activation. 5-Fluorouracil (brown hexagon) and thalidomide (black hexagon) were not
expected to be neurotoxic and did not show significant effects. Each treatment represents three independent experiments and at least 1000 cells for imaged phenotype per drug dose.
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decline in all phenotypes (P b 0.05) except for mean outgrowth intensi-
ty for peripheral neurons (Supplemental Fig. 4) but not cortical neurons
(Fig. 1i–l, Supplemental Fig. 2).

3.4. Effect of potential neuroprotectants on neuronal sensitivity to
chemotherapeutics

As a result of clinical evidence that GJG has utility as a
neuroprotectant when combined with various neurotoxic chemothera-
peutics (Kaku et al., 2012; Abe et al., 2013; Ohno et al., 2014; Nishioka et
al., 2011; Hosokawa et al., 2012; Yoshida et al., 2013), we treated corti-
cal neurons with paclitaxel or oxaliplatin in the presence or absence of
GJG for 72 h and evaluated neurite changes in total outgrowth and cell
viability. When cortical neurons were treated with paclitaxel plus 100
μg/mL GJG for 72 h, there was a slight but significant decrease in pacli-
taxel-induced neurotoxicity as measured by relative total outgrowth,
mean number of processes, mean/max process length, relative number
of branches, cell numbers and cell viability. Shown in representative im-
ages (Fig. 5 a–c). In contrast, GJG did not protect against effects of either
oxaliplatin (Fig. 5 d–f) or cisplatin treatment (data not shown). Statisti-
cal analysis is shown in Fig. 5g with images of paclitaxel with and with-
out paclitaxel in Fig. 5h.

3.5. Effect of potential neuroprotectant on cancer cell sensitivity to
paclitaxel

For GJG to be useful in combination with paclitaxel for patients with
cancer, the “protectant” effects would need to be specific to neuronal
cells and not present in tumor cells. We, therefore, evaluated the effect
of GJG (50, 100 or 200 μg/mL) on sensitivity of tumor cell lines

representing cancers likely treated with paclitaxel including non-small
cell lung cancer (A549) and ovarian cancer (SKOV3) in combination or
alone using the CellTiter-Glo assay. GJG did not alter the sensitivity of
A549 cells to paclitaxel and slightly increased sensitivity of SKOV3
tumor cells at 50 and 100 μg/mL GJG with paclitaxel (P = 0.0081 and
0.006, respectively) (Fig. 6 a,b). GJG alone had no effect on A549 cells
but a small, albeit significant effect on reducing cell viability for SKOV3
(74% viability with 200 μg/mLGJG, P b 0.001) compared to noGJG treat-
ment (Fig. 6 c, d).

4. Discussion

We have demonstrated that induced pluripotent stem cell derived
cortical and peripheral neurons provide new opportunities to evaluate
neurotoxicity associated with chemotherapeutic agents. Differences in
sensitivity to various classes of chemotherapeutics and different drugs
within a class are evident. For example, platinating agents (at ≥10 μM)
cause a dramatic increase in caspase 3/7 activation in neurons concom-
itant with a decrease in both cell viability and neurite outgrowth sug-
gesting apoptotic cell death as a mechanism for neurotoxicity. In
contrast to platinating agents, other chemotherapeutics evaluated (pac-
litaxel, nab-paclitaxel, docetaxel, thalidomide and 5-fluorouracil) donot
exhibit effects on cell viability through an increase in caspase 3/7 activa-
tion. Taxanes had minimal effect on cell viability, yet resulted in a grad-
ual dose dependent inhibition of neurite outgrowth parameters.
Bortezomib, a targeted drug, showed themost dramatic effects with in-
creased sensitivity as measured by neurite outgrowths and cellular via-
bility but not in activation of caspase 3/7. Chemotherapeutic drugs not
known to cause CIPN, such as 5-fluorouracil andhydroxyurea caused lit-
tle, to no effect, on neurite formation or cell viability in iPSC-derived

Fig. 2.Representative images of iCell®Neurons to drug at clinically relevant dose. Neuronswere stained after 72 h drug treatment (or vehicle alone)with Calcein AM to highlight the outer
membranes and with Hoechst 33342 to detect the nucleus. They were imaged using 10× magnification on the ImageXpress Micro. The panel shows how the effects of the drugs were
similar within the drug classes, as expected.
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cortical neurons. Comparable results as measured by cell viability and
neurite outgrowth were observed using either sensory or peripheral
neurons for various neurotoxic chemotherapeutics (cisplatin, paclitaxel,
vincristine and bortezomib); however peripheral neurons tended to be
more sensitive to the effects of chemotherapy. GJG demonstrated some
promise as a neuroprotectant for use with paclitaxel, but not with cis-
platin or oxaliplatin.

Previously, in vitro studies of CIPN were performed in rat pheochro-
mocytoma or SK-N-SH human neuroblastoma cell lines as model sys-
tems to evaluate decreases in neurite outgrowth in response to
neurotoxic chemotherapy drugs, such as paclitaxel, vincristine,
oxaliplatin and cisplatin (Rovini et al., 2010; Verstappen et al., 2004;
Wheeler, et al., 2013; Takeshita et al., 2011; Mendonca et al., 2013).
Our knowledge of the mechanisms of CIPN has also been enhanced
through studies using primary rat andmouse dorsal root ganglion neu-
rons (Xiao et al., 2012; Xiao et al., 2011; Cavaletti et al., 1995; Zheng et
al., 2012; Staff et al., 2013). Other models used by researchers include
behavioral tests in rodents to assess sensory thresholds to nociceptive
stimuli; however, the results, especially regarding cold/heat and me-
chanical sensitivity, have been, at times, contradictory (Authier et al.,
2009). There is a lack of consensus regarding which behaviors best rep-
resent human manifestations of sensory peripheral neuropathy. Al-
though insights into the mechanism of CIPN have been made through
animalmodels, these studies have not yielded effective drugs to prevent
or treat CIPN (Hershman, et al., 2014). This is likely because rodent
models do not reflect the complex genetic interactions that result in
CIPN in humans; however they are complementary to neurons because

animal studies allow an evaluation of behavior that cannot be studied in
vitro.

In efforts to create more relevant models, human neurons have be-
come available through reprogramming skin or blood cells into a state
in which the cells have the capability to self-replicate indefinitely and
differentiate into many cell types including neurons (Karagiannis and
Yamanaka, 2014). Previously, human iPSC-derived neurons have been
evaluated to screen for neurotoxic compounds (Ryan et al., 2016). Our
laboratory has used commercially available iPSC-derived cortical neu-
rons to evaluate their potential as a model of neurotoxicity (Wheeler
et al., 2015) and to functionally validate genes identified in human clin-
ical genome wide association studies of peripheral neuropathy follow-
ing treatment with paclitaxel (Wheeler et al., 2015; Komatsu et al.,
2015), vincristine (Diouf et al., 2015) and docetaxel (Hertz et al.,
2016). Our work reported here extends previous studies to evaluate
mechanistically distinct chemotherapeutics in iPSC-derived cortical
and peripheral neurons, for effects on morphological characteristics
and electrical activity. Our data suggest that this model has potential
for screening neuroprotectants, a much needed area of research. A lim-
itation of our study is that measures of cell viability, neurite outgrowth
and apoptosis could be indicators of cellular response to chemothera-
peutics, thus other phenotypes such as effects on neuronal hyperexcit-
ability (increased firing in response to a noxious stimulus) may better
represent clinical manifestations of peripheral neuropathy. In support
of this, studies utilizing rodent sensory neurons suggest that neuronal
hyperexcitability is phenotypically linked with CIPN, potentially due to
potassium channel dysfunction (Zhang and Dougherty, 2014). Large-
scale implementation of these human cells for high throughput charac-
terization will require further optimization experiments. For example,
the development of patient derived neurons from individuals who
have experienced severe neuropathy after chemotherapeutics to identi-
fy in vitro characteristics that recapitulate clinical manifestations of pe-
ripheral neuropathy (motor, sensory, pain) would be highly beneficial
for the development of appropriate preclinical assays that represent
CIPN and to use in drug development. Previouswork using patient-spe-
cific human iPSC-derived cardiomyocytes in which cellular conse-
quences of drugs were shown to recapitulate the sensitivity and
insensitivity to doxorubicin induced cardiotoxicity of individual pa-
tients supports this concept (Burridge et al., 2016).

Although the use of iPSC-derived neurons offer a number of advan-
tages because they are human derived and more closely resemble neu-
rons than tumor cell lines, there are some limitations which should be
considered (Gurwitz, 2016). They are expensive, do not grow indefi-
nitely and require some level of expertise to use. Currently, large cohorts
of genetically diverse iPSC-derived neurons for genotype-phenotype
studies are not available. A limitation related to their use in studies of
CIPN is that CIPNmaynot be entirely due to a direct effect of chemother-
apy on neuronal tissue. Other cell types/tissues (e.g. vascular endotheli-
um, cellular immunity) or serum factors (pro-inflammatory cytokines)
may play an intermediary role in the pathophysiology of CIPN (Brewer
et al., 2016; Grisold et al., 2012; Sisignano et al., 2014). These factors
are missing from pure neuronal cultures in vitro. To overcome this lim-
itation, there have been efforts to develop culture systems that integrate
multiple cell types into a complex organoid structure that allow for a
microenvironment that supports the formation of cell-cell interactions
and cell-extracellular matrix interactions (Hunsberger et al., 2015).
These 3D cell culture models have demonstrated closer physiological
similarity over 2D cultures to in vivo conditions for voltage-gated ion
channel functionality, resting membrane potentials, intracellular Ca +
dynamics, compound action potential and anatomically relevant neural
growth (Huval et al., 2015). Although organoid cultures have great po-
tential for high throughput screenings (Fatehullah et al., 2016), limita-
tions that complicate the analysis of drug toxicity and efficacy include:
1) the limited presence of stromal components, including immune
cells; 2) variable drug penetration and; 3) intrinsic heterogeneity in
terms of viability, size and shape (Fatehullah et al., 2016). The 3D

Fig. 3. Effect of paclitaxel and bicuculline on electrical signaling and cell viability of iCell®
Neurons. Neurons were treated with paclitaxel (0, 0.01, 0.02, 1 μM) and evaluated for (a)
mean firing rate of neurons at 0, 4, 24 and 48 h usingmeasurements frommulti-electrode
array and (b) cell viability at 48 h measured by CellTiter-Glo. Neurons were also treated
with a selective GABA antagonist, bicuculline, as a positive control for (c) mean firing
rate of neurons at 0.07, 4, 24 and 48 h using multi-electrode array measurements and
(d) cell viability at 48 h measured by CellTiter-Glo. Significant decline over time for 0.02
μM paclitaxel (P = 0.0002), 1 μM paclitaxel (P b 0.0001) and increase firing with 10 μM
bicuculline (P = 0.0188) was observed. Each drug was tested in 3 independent
experiments for multi-electrode array and 2 independent experiments for CellTiter-Glo.

84 C. Wing et al. / Stem Cell Research 22 (2017) 79–88



organoid system is a step towards testing multiple variables in play in
human disease complementing both 2D cell culture models that have
utility for mechanistic studies and animal models that provide
interacting organ systems.

Clinical manifestations of neuropathy differ with different classes of
chemotherapeutics. For example, platinum-induced peripheral neuro-
toxicity can present as two clinically distinct syndromes (Brewer et al.,
2016; Argyriou et al., 2012; Cavaletti and Marmiroli, 2010). The acute
transient paresthesia in the distal extremities, which is commonly
seen with oxaliplatin, usually occurs within the early phase of drug ad-
ministration. In contrast, cisplatin is associated with worsening CIPN
that occurs after the discontinuation of the platinum agent, a phenom-
enon called “coasting” (Avan et al., 2015). Our data with platinating
agents is consistent with previous data showing that cisplatin and
carboplatin harmmainly peripheral nerves and dorsal root ganglia neu-
rons, through progressive DNA-adduct accumulation and/or oxidative
stress, both resulting in apoptosis (Avan et al., 2015).

Thalidomide and bortezomib, mechanistically distinct agents are
both used to treat multiple myeloma, with about half of newly diag-
nosed patients experiencing neuropathy (Morawska et al., 2015). Tha-
lidomide affects sensory and sensorimotor and bortezomib affects
sensory neurons (Morawska et al., 2015). The mechanism of thalido-
mide is thought to be through its antiangiogenic properties explaining

why in our neuronal system we did not observe a significant effect on
cell viability or neurite outgrowth. Neuronal cell models that can reca-
pitulate the multi-tissue environment such as the 3D organoid model
would have utility for evaluating drugs with this mechanism. In con-
trast, bortezomib interferes with cellular process such as transcription,
nuclear processing and transport, and cytoplasmic translation of mes-
senger RNA in dorsal root ganglion neurons (Casafont et al., 2010). In
our system, bortezomib exhibited the most dramatic effect on neurite
outgrowths concomitant with effects cell viability, but not through cas-
pase 3/7 apoptosis.

Multi-electrode array approaches have been proposed as a tool for
detecting functional changes in electrically excitable cells, including
neurons, exposed to drugs or toxins and allow use in high throughput
studies (McConnell et al., 2012). Although there are a number of elec-
trophysiological measures to evaluate, mean firing rate has been
shown to be sensitive, robust and accurate for the identification of the
effect of compounds on neural network function (McConnell et al.,
2012; Novellino et al., 2011; Vassallo et al., 2016; Defranchi et al.,
2011). Recent investigations with human iPSC-derived neuronal cul-
tures appear to be useful for high throughput screening studies
(Rosenkopf, 1989). In our studies, we were able to measure significant
decreases in mean firing rate in iCell® Neurons indicative of neurotox-
icity for paclitaxel and, as expected, increases following treatment

Fig. 4. Comparison of sensitivity of Peri.4U peripheral versus iCell® cortical Neuron to chemotherapy drugs. Peri.4U peripheral (blue square) and iCell® cortical (black square) neurons
were treated with increasing doses of cisplatin, paclitaxel, vincristine and bortezomib for 72 h and measured for relative neurite outgrowth (a-d) and CellTiter-Glo (e-h). Included is
the clinically relevant plasma range for each drug as shown with gray shading on each plot. All data is representative of three independent experiments per cell line analyzed using
multiple t-test. *P b 0.05 between the two types of neurons at the dose specified. The right panels illustrate visually between Peri.4U and iCell® Neurons the effects with clinically
relevant dose after 72 h drug shown at 10× magnification and stained with Calcein AM and Hoechsts 33342.
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with bicuculline, a GABA antagonist used as a positive control
(McConnell et al., 2012). Mean firing rate could be another phenotype
to evaluate potential neuroprotectants.

There is a great need for discovery of agents to prevent peripheral
neuropathy in patients at risk. One such pharmacological herbal mix-
ture, GJG, has been shown in animal studies and small clinical studies
to prevent CIPN (Schroder et al., 2013; Tawata et al., 1994). GJG allevi-
ates paclitaxel induced hyperalgesia by preventing degeneration of
the ganglion cells and suppressing TRPV4 expression (Matsumura et
al., 2014), bortezomib-induced mechanical allodynia through the
kappa opioid receptor (Higuchi et al., 2015) and oxaliplatin through at-
tenuation of the generation of oxaliplatin-induced reactive oxygen spe-
cies (Kono et al., 2015). Our research has demonstrated the potentiality
of GJG to protect human iPSC-derived cortical neurons against paclitax-
el-induced neuropathy without causing decreased sensitivity of partic-
ular cancer cells (i.e. A549, SKOV3) to paclitaxel. However, we did not
observe neuroprotection of oxaliplatin with GJG consistent with lack

of clinical evidence from a randomized phase III study of GJG combined
with oxaliplatin (Oki et al., 2015).

In summary, human iPSC- derived neurons offer a new model for
studies related to CIPN. Evaluation of morphological characteristics
and/or electrical activity following chemotherapy provides potential
phenotypes for high throughput screening of compounds that may pre-
vent or treat existing peripheral neuropathy.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scr.2017.06.006.
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