
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

7-2004

Plone and Content Management Plone and Content Management

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
George K. Thiruvathukal, Konstantin L?ufer, "Plone and Content Management," Computing in Science and
Engineering, vol. 6, no. 4, pp. 88-95, July/Aug. 2004, doi:10.1109/MCSE.2004.19

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2004 George K. Thiruvathukal, Konstantin Läufer

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

era that followed it are well known, so we won’t rehash them
here, but we do want to reflect on why Berners-Lee and his
team created the Web in the first place. The idea was to look
beyond FTP and establish a more sophisticated protocol for
disseminating scientific information. Although nobody would
argue that HTTP and HTML are anything but ground-
breaking, current search technology makes it abundantly clear
that we need better ways of organizing Web content.

Perhaps nowhere other than in academic and scientific cir-
cles is the need for better approaches to managing individual,
community, and research content more apparent. Most Web
sites are maintained by authors who cobble together HTML
pages, many of which bear that evil “under construction” em-
blem or aren’t kept up to date. Worse, most maintainers don’t
have time to invest in learning HTML properly, despite the
wealth of authoring tools that aim to simplify the task of mak-
ing consistent and attractive Web pages.

Content management systems (CMSs) have been the sub-
ject of commercial and open-source community interest for
some time. A CMS is the only way to support distributed
content development, let alone facilitate content mainte-
nance. CMSs take off where most Web authoring tools give
up—for example, as good as Dreamweaver is as an HTML
authoring tool, it’s inadequate for maintaining even small
portal sites managed by a few developers. The model of
publishing remains FTP (not exactly known for its security),
which offers no direct support for version control.

In this column, we’re going to look at Plone
(www.plone.org), which we feel is one of the best CMSs
available today. Even better, it’s distributed under a free
open-source license: the cost of getting started is only lim-
ited to the time you have available to set up the software on
a server. Plone is written in Python and uses the Zope appli-

cation server infrastructure; it runs on most modern operat-
ing systems. We’ve even set it up at Loyola University
Chicago in the Department of Computer Science. Besides
being two faculty members who rely on Plone to host all our
Web content, we have recently customized Plone for our de-
partment’s public Web site (www.cs.luc.edu). The end result
is a site on which content can be maintained entirely over the
Web at zero cost to our department. Everything you see on
our Web pages was generated by a unique combination of
plaintext authoring, clever plug-ins, and a site-wide style.

Plone
Plone lets you organize your public (Web) life: by using it, stu-
dents, colleagues, and outside collaborators and researchers
can find your papers and teaching materials. However, the
word plone doesn’t signify anything. We even checked the dic-
tionary to see if it was one of those words we forgot to study
for the SATs or GREs. All indications are that it’s not a word—
at least, not in English—so is it a noun? A verb? Some other
part of speech? In our own work, we tend to use it like this:

• Have you ploned today? Did you plone home?
• Your page appears to be a plone of my page.
• If you were prehistoric, you’d probably be called a

plonosaurus.

Before we get into trouble with more bad puns on words
that aren’t even words yet, let’s dive into Plone and explore
its vocabulary and salient features.

Typed Content
A key aspect of Plone is support for the notion of typed de-
fault content. With XML, we see this notion in the form of
document type definitions (DTDs). The same idea applies
to Plone, just in a more user-friendly manner: Plone users
can do almost all their work without thinking about markup,
but they can still use XML to customize content appearance.
Other CMSs support similar principles, but in Plone, the
notion of typed content is similar to what we see in operat-
ing systems, with the added twist of rich metadata that is
content-type-specific.

88 Copublished by the IEEE CS and the AIP 1521-9615/04/$20.00 © 2004 IEEE COMPUTING IN SCIENCE & ENGINEERING

PLONE AND CONTENT MANAGEMENT
By George K. Thiruvathukal and Konstantin Läufer

W ITH THE ADVENT OF THE WEB, TIM

BERNERS-LEE AND HIS TEAM AT CERN

CREATED A FRAMEWORK THAT SPARKED A REVO-

LUTION. THIS REVOLUTION AND THE DOT-COM

Editors: Paul F. Dubois, paul@pfdubois.com

George K. Thiruvathukal, gkt@cs.luc.edu

PROGRAMMINGS C I E N T I F I C P R O G R A M M I N G

JULY/AUGUST 2004 89

Here are Plone’s standard content types:

• Folders let you collect other content, including nested folders.
• Documents can be written in plaintext, HTML, or a vari-

ant of plaintext known as structured text. Documents are
rendered according to cascading style sheets (CSSs).

• Links let users create a symbolic name for any external
URL to be referenced—for example, cise can be created
as an internal name for whenever we want to reach
www.computer.org/cise.

• Files allow a symbolic name to be associated with docu-
ments not written in plaintext or markup that need to be
incorporated into portal sites.

• Events are content with a date, typically associated with a
calendar. Whenever an event is created in Plone, it can be
published on a calendar.

• Images are graphical content that can be incorporated in
documents simply by referencing the image.

• News items are similar to documents but are intended for
informational sites on which news events come and go.
Whenever news items are published, they’ll appear as
news (provided the news still is news).

Plone is not limited to the content types described here—
for example, plugins are tremendously powerful and a key
ingredient to Plone’s success—but we won’t cover such con-
cepts here. Suffice it to say that plugins are to Plone what
the extensions framework is to Python: new components can
be introduced to support new content, in some cases with-
out even having to restart the Zope server.

Content Properties
In addition to managing various typed content, each content
item can have one or more associated properties. Properties
let us go beyond the typical Web site configuration and in-
troduce dynamism. Here are some of Plone’s properties:

• Allow discussion permits a given content item to allow
Web-based threaded discussion. This is usually relevant
to document content, but it can be used for any type of
content in Plone.

• Keywords let users enter keywords facilitating search for a
particular item. Contrasted with HTML, they allow
metadata to be associated with any content, including con-
tent not written in HTML.

Case Study: A Multisite Server
for an Academic Department

Let’s look at the Plone-based Web server we set up in
the Department of Computer Science at Loyola Uni-

versity Chicago.

Requirements
The requirements for this setup were an inexpensive com-
modity hardware and operating system; multiple sites on
one server, including public content, departmental in-
tranet, individual faculty members’ sites, and project sites;
customization of the visual design of each site to match
the PR department’s requirements for public sites and fac-
ulty members’ preferences for individual and project sites;
and integration with static legacy content, including a
public home page with a different layout than the rest of
the site as well as faculty members’ existing static pages
and scripts.

Solution
We came up with a flexible yet easy-to-manage solution
that leverages the Zope and Plone technologies described
in the main article. For under US$2,500, we put together a
dedicated single-processor server with a five-disk SATA
RAID with one terabyte of usable capacity. This server runs
Gentoo Linux, which offers excellent optimization capabili-
ties and configuration management. We are currently run-
ning a single instance of Zope 2.6.1 with Plone 1.0.1; an

upgrade to Plone 2.0 is planned. Each of the various sites
mentioned is realized as a separate Plone site living within
the Zope instance. This allows each site to be customized
separately with respect to visual design, logos, and so on.
The resulting site URLs are www.cs.luc.edu:8080/site1,
www.cs.luc.edu:8080/site2, and so forth.

We’re running Apache 2.0.47 as a front end. This lets us
integrate the various kinds of content as required. Using
Apache’s name-based virtual hosts and the ModProxy mod-
ule in conjunction with a Zope “virtual host monster,” we
can transparently assign one or more different host names
to each site, making the sites look like separate servers. The
virtual hosts can be found at site1.cs.luc.edu, site2.cs.luc.
edu, and so forth, mapping to the site URLs given earlier.

In addition, the Apache ModProxy and ModAlias mod-
ules let us have a static (X)HTML home page whose layout
is as required by our PR department; we can transparently
expose the original faculty home pages that still reside on
our old server. Simply specifying a custom logo and some
custom cascading style sheets customizes most of the
Plone sites, as does changing the layout of the various
page components into columns. This type of customiza-
tion requires no programming and, optionally, only lim-
ited knowledge of (X)HTML.

Our public site has to satisfy the PR department’s require-
ments, including showing a different banner image for
each section of the site. We were able to address this re-
quirement by writing a small Python script that we
dropped into the site’s styles module.

90 COMPUTING IN SCIENCE & ENGINEERING

• Effective date is when the published content item becomes
available; it’s particularly useful for news and community-
style portals.

• Expiration date is when the published content item ceases
to become available.

• Format is MIME encoding for a content item. When con-
tent is created in Plone, the correct MIME encoding is
usually deduced, but Plone lets you set MIME type ex-

plicitly whenever it’s incorrectly deduced. (This solves an
important problem on many Web sites where the server
incorrectly deduces the MIME type and causes browsers
to display content as ASCII/Unicode text.)

• Others include language, copyright, and contributors, all
of which should be self-explanatory.

All these properties are useful, but some go well beyond

S C I E N T I F I C P R O G R A M M I N G

Cafe Dubois

“How much pain have cost us the evils which have never
happened?”

–Thomas Jefferson, letter to John Adams, 8 April 1816

Take Two Aspirin
I have a coffee cup I bought in the souvenir shop at Monti-
cello, and it has the saying above from Jefferson that I have
personally found very useful to
remember. (An interesting Web
site about what Jefferson did not
say is “Spurious Jefferson
Quotes” at www.geocities.com/
CapitolHill/7970/jefpco13.htm.)
In my conversations with groups
that do scientific programming, I
often find people concerned
with evils that are never going to
happen. Indeed, it seems it’s hu-
man nature to always be worry-
ing about the wrong thing. Peo-
ple try to make the software
process prevent evil when all it
can really do is prevent accidents
and aid communication.

If someone on your project
gives in to fascist impulses and
wants to impose a set of Dra-
conian procedures that will al-
legedly prevent mistakes, remind him or her of this differ-
ence between evil and accident. We should never mistake
incompetence for bad intentions. Making it easy to do the
right thing and hard to do the wrong thing is about all we
can usefully do. Actually, the evil part often happens when
trying to cover up incompetence.

For example, a friend of mine—I’ll call him Rob—was
devastated when his wife of more than 38 years ran away
with his best friend. Rob, who is a gentle and generous
soul, went into a depression. Rob is diabetic and, in his de-
pressed state, did not eat regularly; his foot started hurting
as it sometimes does if his diet gets out of whack.

After a week, Rob decided that he just wasn’t doing very

well and that he should try to get some help. So he went to
the local emergency room and was ushered into what they
call on ER a “Psych Consult.”

After a few preliminary questions, the shrink asked Rob,
“Are you having any pain?” Rob replied, “Well, yes, I have a
stabbing pain in my foot.”

Wrong answer. The doctor pressed the secret button and
in came some burly orderlies who took Rob by force to the
maximum-security ward where they put him on suicide

watch for three days. The doctor
wrote in his chart that Rob had
stabbed himself in the foot.

Later, someone wrote in the
chart that the “wound” was clean
and did not require attention.

Programming News
Previously we’ve talked about
VPython (vpython.org), a Python
add-on designed to help physics
students do visualizations with-
out learning a lot of program-
ming. VPython now supports 3D:
add one line to your program,
put on your 3D glasses, and
you’re in business.

Bruce Eckel, author of Thinking
in C++, Thinking in Java, and so
on, gave a talk at PyCon 2004
and mentioned a new language,

D. You can read about D at www.digitalmars.com/d/. I
thought it looked interesting.

Recently, I needed to rid one of our home machines of
all the adware and other offensive stuff that my kids had
managed to acquire, so I went looking for SpyBot—
Search and Destroy. This is a donation-supported pro-
gram by Patrick M. Kolla that is easy to install and use,
and, if you have a PayPal account, it’s easy to send in
your donation. But I did encounter something alarming
in the process: evildoers are gaming Google, trying to
misdirect your search for this program into commercial
alternatives or worse. So here’s the right URL: www.safer
-networking.org.

JULY/AUGUST 2004 91

what we find in static HTML and Web content management.
Contrasted to sites where content is maintained manually and
permission bits set content visibility (often incorrectly), Plone
makes the entire process as simple as filling in dates.

Publication States
A notable advantage of Plone is that it goes beyond the tra-
ditional notion of Web sites where all content lives in a file
system. It distinguishes between three states of existence for
all types of content:

• Visible content can be accessed if a user knows the URI to
reach it. To be visible, each item in the URI’s path must
be visible or published.

• Published content includes the definition of visible content
plus the ability to actually see a link to the content from
within another content item. The distinction between vis-
ible and published content is not obvious without a few
clarifying examples, which we’ll discuss shortly.

• Private content can’t be accessed by anyone except users in
the portal with sufficient privileges. Plone’s security
model—as well as that of most CMSs—is deliberately sim-
ple compared to standard Unix- or Windows-style security.

In Plone, the notion of visible and published content
seems largely academic until the notion of content manage-
ment becomes more familiar. Consider an event content
item: if an event is created and placed in the visible state, vis-
itors to the portal who are not content managers will not see
the item on the calendar. The calendar itself is a plugin that
aggregates event content and highlights dates, but for events
to show up on the calendar, we must publish the event for-
mally, especially if it’s to be visible to general site visitors.

The distinction becomes apparent when using Plone to
make a personal or community site. Site visitors will not see
visible items at first glance, but those who maintain the por-
tal will see all items (private, visible, or published).

The notion of states allows for truly private content to re-
main private. However, we stress that this model is not the
equivalent of user/group security (as with Unix) or access
control lists (as with Windows). It is designed to distinguish
only between maintainers and nonmaintainers, and results
in a useful simplification that lets maintainers focus on real
content and not the innards of Unix security that plague so
many maintainers of static HTML sites.

Authoring Content with Structured Text
We usually create content in Plone by creating document

content items, which we can write in plaintext, HTML, or
structured text. To create a page, we go to a folder in the
Contents View and use a drop-down list to select the type of
item (document) to be added. A form is then displayed to
specify the document’s attributes (name, title, and content).

Structured text was conceived as a simplification to HTML
and was part of another common collaboration tool known as
a Wiki. Ward Cunningham (one of the fathers of so-called ob-
ject-oriented analysis) created the Wiki concept, which is de-
signed to support straightforward content authoring. This idea
is not altogether new: LaTeX and HTML both aimed to pro-
vide a straightforward markup that was more or less plaintext
in nature. However, structured text abandons the idea of for-
mal markup altogether, instead focusing on clever uses of in-
dentation and regular sequences of characters to provide spe-
cial textual emphasis, such as italics. We can’t go into extreme
detail on this here, so let’s look at an example. Figure 1 shows
an example of structured text source, illustrating some com-
mon text elements. Figure 2 shows how a browser, depending
on the exact CSS styles applied, might display this text.

We’ve found we can use structured text for just about any-
thing that we want to make into a page within the CMS. When
utter sophistication is required (a rare but sometimes necessary
evil), or when we have a lot of legacy content, we can always up-
load regular HTML. When doing so, we recommend using
vanilla (X)HTML, thereby allowing the CSS to make your
content look consistent. For highly collaborative sites that have
multiple authors, structured text is a clear winner. It’s easy to
read and write, and it lets authors who couldn’t care less about
HTML and all its idiosyncrasies focus on actually writing.

Customization and Personalization
The idea of using a CMS to maintain a portal sounds great,
but many Plone and CMS users get discouraged once they
see the default look (skin). It makes them reminisce about
the days of HTML when they could do whatever they
wanted, simply by clever coding.

Plone allows for virtually unlimited customization—
completely separate from content authoring—through sev-
eral mechanisms.

CSS
CSSs are to Web publishing what paragraph styles are to
Word files or document classes are to LaTeX. Using a CSS
lets you determine how something in HTML is formatted
without having to apply explicit formatting. Most CMSs rely
on a CSS to format rendered content, simply by linking the
content to the CSS (using HTML syntax for CSS linking).

92 COMPUTING IN SCIENCE & ENGINEERING

Plone goes one step further by providing Web-based forms
for specifying the CSS, thus allowing users to specify how
each HTML tag will be formatted without requiring them
to learn anything about the actual details. For the record,
CSS is a complex beast compared to HTML, and most Web
authors don’t even bother trying to figure out how it works.
You can actually upload a CSS created with a tool such as
Dreamweaver to a Plone site to create the ultimate person-
alized appearance.

XML
Plone differs from static authoring tools such as Dreamweaver
in its use of XML: Plone uses it to support the notion of page
templates, which is best thought of as a mix of HTML and

XML. One of XML’s advantages is that we can use it do many
of the tasks found in higher-level scripting languages such as
Python. For example, the Loyola Computer Science Depart-
ment Web site needed a graphical banner for each major de-
partment category. Based on the top-level folder’s name, the
correct graphical banner is displayed. We were able to support
such a feature thanks to Plone’s powerful page template (and
XML) functionality. The same task, even in professional tools
such as Dreamweaver, is cumbersome at best, often requiring
separate templates for each different header to be displayed.

Python
Plone is written in Python, so one of the world’s greatest pro-
gramming languages is at your fingertips for custom func-

S C I E N T I F I C P R O G R A M M I N G

Figure 1. Plone example. Structured text source of some sample text. Figure 2 shows it via a browser.

My Heading

This text is part of a paragraph. This text belongs to the same paragraph. So does

this text. We know that My Heading is a heading, because any paragraph indented with

whitespace denotes a new level, resulting in an actual heading being generated when

Plone transforms the structured text to HTML.

To make another paragraph, a blank line is left between paragraphs, similar to what

is done in LaTeX.

Unlike LaTeX, however, I do not need to learn markup rules, which sometimes trip up

even the most seasoned users. Of course, LaTeX is still the greatest system ever, but

it might not be the best choice for authoring simple Web content.

Another Heading

Making a link to “the CISE site”:http://computer.org/cise is straightforward. When

Plone processes the structured text, the text in quotes will become the link label. The

text encountered until whitespace is seen will be the hypertext reference.

Other things, like descriptions, are straightforward:

Hydrogen -- The first element.

Helium -- The second element.

Lithium -- The third element.

Basically, structured text is designed for writing up pages quickly by having an ex-

tremely light syntax. Here is how we write *bold* and _underlined_ text. You can even

do ‘typewriter’ text, similar to LaTeX, by surrounding the text with single quotes.

Of course, structured text may not be for everyone. So you can always write HTML and

upload it to your Plone site. If you avoid explicit styling and formatting, the Plone

system will automatically style the text for you with attractive results.

JULY/AUGUST 2004 93

tionality. We can use Python on two levels: to develop a
server-side plugin for new content and to provide additional
functions within the XML-provided page-template mecha-
nism. The example we described earlier (with the changing
banners) required an auxiliary Python function to get the
top-level folder name of an arbitrary folder path to select the
banner to be displayed. For example, if the currently selected
path is /admission/graduate, the admission.gif banner is to
be displayed. The same is true for when the path is /admis-
sion/undergraduate. To support this capability, we added a
function to map the path to an image. getPath(‘/admis-
sion/undergraduate’) returns ‘admission’.

It’s possible to maintain all your content without a CMS
and achieve total personalization while having some of
Plone’s benefits—for example, you could use PHP Hyper-
text Preprocessor (PHP) to achieve much of the dynamic be-
havior found in Plone. However, Plone’s tremendous power

is achieved by allowing all the content to be maintained from
within the Plone software itself. You’re never put in the po-
sition of having to copy files to the remote server, then en-
suring all permissions bits are set correctly, and then ensur-
ing consistent appearance and navigation.

Hosting Plone
A major question that invariably arises is this: How do I get
started? We can answer this in one of two ways, depending
on whether you just want to experiment with Plone or if you
actually want to host serious content in a production envi-
ronment. We’re going to assume the latter.

Hardware
We recommend addressing hardware first. For our depart-
ment, we decided to go for broke and build a serious box for
hosting our Web environment. We weren’t just looking to

My Heading
This text is part of a paragraph. This text belongs to the same paragraph. So does this text. We know that My Heading
is a heading, because any paragraph indented with whitespace denotes a new level, resulting in an actual heading be-
ing generated when Plone transforms the structured text to HTML.

To make another paragraph, a blank line is left between paragraphs, similar to what is done in LaTeX.

Unlike LaTeX, however, I do not need to learn markup rules, which sometimes trip up even the most seasoned users.
Of course, LaTeX is still the greatest system ever, but it might not be the best choice for authoring simple Web content.

Another Heading

Making a link to the CISE site is straightforward. When Plone processes the structured text, the text in quotes will be-
come the link label. The text encountered until whitespace is seen will be the hypertext reference.

Other things, like descriptions, are straightforward:

Hydrogen
The first element.

Helium
The second element.

Lithium
The third element.

Basically, structured text is designed for writing up pages quickly by having an extremely light syntax. Here is how we
write bold and underlined text. You can even do text, similar to LaTeX, by surrounding the text with sin-
gle quotes.

Of course, structured text may not be for everyone. So you can always write HTML and upload it to your Plone site. If
you avoid explicit styling and formatting, the Plone system will automatically style the text for you with attractive results.

typewriter

Figure 2. Example text. This is how the example text in Figure 1 would look like in a browser window.

94 COMPUTING IN SCIENCE & ENGINEERING

S C I E N T I F I C P R O G R A M M I N G

host the department’s Web site but to provide an infrastruc-
ture that faculty, students, research groups, and collabora-

tors could use to exchange ideas. The machine we built pro-
vides one terabyte of RAID-5 storage (with hot-swappable

Other Types
of Content Management Systems

L et’s review some of the other types of content man-
agement systems (CMSs) and related systems, with

an emphasis on open-source systems.

Slash and Slashclones
Slash (the software used by Slashdot), PHP-Nuke, and their
numerous derivatives (sometimes referred to as Slashclones)
are intended as community news portals and weblogs. They
usually come with a variety of modules that provide func-
tionality such as discussions, calendars, and polls, making it
easy to set up a community site from scratch. However,
they often support only a fixed set of content types and lay-
out options, and any major customization requires hacking
around a sometimes-unwieldy code base.

Wikis
The original WikiWikiWeb and its numerous clones, which
now exist in almost any imaginable technology, are Web
server applications that let users create and edit collections
of Web pages through a browser.

Actually, the structured text markup language used by
Plone is based on the kinds of simplified markup languages
used to author Wiki pages. Wikis can be a very effective
knowledge-capturing tool, but they vary considerably in
terms of the features they provide, such as markup capabili-
ties, customization, versioning, searching, permissions, and
so forth.

Zope and CMF
Technically, Zope is an application server written in Python,
and CMF (Content Management Framework) is a Zope
product, a plugin that runs on top of a Zope installation.
CMF supports different content types, such as articles,
news items, links, and documents, and lets programmers
define new content types. The Plone CMS, in turn, is a
Zope product that leverages the Zope CMF.

Various other Zope products are available and can pro-
vide much of the functionality that comes out of the box
with a typical Slashclone. There is even a Wiki clone and a
Slashclone available as Zope products, allowing Wiki and
community news content to coexist with Plone sites.

Java-Based Systems
In case you’re looking for a Java-based CMS, there are sev-
eral reasonable open-source choices. OpenCMS is full-fea-

tured but depends too heavily on MS Internet Explorer for
WYSIWYG editing. Cofax (Content Object Factory) is geared
toward news content management and aggregation. There
is even a Slashclone in the Java world, JBoss Nukes, which
was launched by the JBoss group as a more scalable, robust
alternative to the Perl and PHP-based versions.

Other Open-Source and Commercial Systems
A plethora of open-source and commercial CMSs are avail-
able now, varying greatly in terms of features, supported
platforms, technology, and, for commercial systems, price.
In some cases, these systems support specific aspects of
content management required in certain industries—for
example, role-based workflow.

Where to Look for More Information
thocar.free.fr/ChoosingACmsKDBSoftware.html: A detailed

comparison of several open-source CMSs based on a list of
required features and feedback from advanced users and
developers. This site helped us choose Plone for the con-
tent management needs of our department.

www.quakernet.org.uk/sites/ituse/CMSs.htm: A white paper
on CMSs in the context of the Web strategy for a nonprofit
organization. This paper provides background and com-
pares various open-source and commercial systems.

www.commonsgroup.com/ideas/fulltext.shtml?x=212: A
systematic high-level comparison of several CMSs includ-
ing Plone. This paper also includes a detailed feature chart.

www.cmsinfo.org: A community of CMS users and develop-
ers. It focuses mainly on news and information on open-
source CMSs.

www.oscom.org: The official site of the International Associ-
ation for Open Source Content Management. The site in-
cludes a matrix of open-source CMS products.

www.cmsmatrix.org: Another CMS matrix that includes use-
ful statistics. Incidentally, Plone is the frontrunner in most
categories.

www.contentmanager.eu.com: A site for users and providers
of CMSs, which includes background information and re-
sources on choosing a CMS.

www.la-grange.net/cms: A list of open-source CMS products
categorized by technology.

www.clueful.com.au/cmsdirectory: A metadirectory of sites
related to Web content management.

www.opensourcecms.com: This site lets you try out some
CMSs online without installing them yourself. However, it
specializes in systems with a PHP front end and a MySQL
database back end.

JULY/AUGUST 2004 95

drives). We took advantage of a RAID controller from a
company called 3ware (www.3ware.com), which provides a
line of controllers for building scalable storage solutions
from commodity ATA or Serial ATA hard drives. We chose
3ware for its excellent Linux support.

Linux
For us, the only rational choice is Linux. Of course, Plone
runs on all platforms that support Python, including Win-
dows and Macintosh OS X. We chose Gentoo Linux
(www.gentoolinux.org), which is rapidly evolving as a Linux
distribution of choice. The ongoing management of the en-
vironment is achieved by updating local metadata to learn
about new packages. Gentoo Linux differs from the major
Linux distributions (such as Red Hat) by optionally build-
ing everything from source code. What’s great about Gen-
too is the availability of most major open-source packages,
including Plone. Once your Gentoo system is up and run-
ning, all you need to do is make a few configuration changes,
and you’re ready to begin Plone hosting!

Apache
The Apache Web server plays a key role in properly hosting
Plone. You’ll want to run Apache, especially if you want to take
advantage of Secure Sockets Layer (SSL) and virtual hosting.
Virtual hosting plays a major role in our environment—for ex-
ample, www.thiruvathukal.com and www.cs.luc.edu are hosted
on the same system. The Plone software doesn’t provide these
useful capabilities, even though it does feature an embedded
Web server to serve all content that it manages.

C ontent management is a powerful idea, but it’s also easy
to see why many people don’t even bother maintain-

ing their Web pages. The notion of static HTML author-
ing doesn’t scale well and requires a tremendous amount of
expertise to execute even minimally. Plone is one of the best-
of-breed solutions, and we think you’ll agree, but in the
meantime, we’re going to get back to some of our human
ploning experiments.

George K. Thiruvathukal is an associate professor of computer science

at Loyola University Chicago. He also is president and CEO of Nimkathana

Corporation, which does research and development in high-performance

cluster computing, data mining, handheld/embedded software, and dis-

tributed systems. He wrote two books with Prentice Hall covering concur-

rent, parallel, distributed programming patterns and techniques in Java and

Web programming in Python. Contact him through www.cs.luc.edu/gkt.

Konstantin Läufer is an associate professor of computer science at Loy-

ola University Chicago. He is also director of architecture and application

services at Nimkathana Corporation. His research interests include pro-

gramming languages, software architecture and frameworks, concurrent

and distributed systems, and mobile computing. He received a PhD in

computer science from the Courant Institute at New York University.

Contact him through www.cs.luc.edu/laufer.

Writers

For detailed information on submitting articles, write to cise@
computer.org or visit www.computer.org/cise/author.htm.

Letters to the Editors

Send letters to Jenny Ferrero, Contact Editor, jferrero@computer.org. Please
provide an email address or daytime phone number with your letter.

On the Web

Access www.computer.org/cise/ or http://cise.aip.org for information
about CiSE.

Subscription Change of Address (IEEE/CS)

Send change-of-address requests for magazine subscriptions to address.
change@ieee.org. Be sure to specify CiSE.

Subscription Change of Address (AIP)

Send general subscription and refund inquiries to subs@aip.org.

Subscribe

Visit https://www.aip.org/forms/journal_catalog/order_form_fs.html or
www.computer.org/subscribe/.

Missing or Damaged Copies

If you are missing an issue or you received a damaged copy (IEEE/CS),
contact membership@computer.org. For AIP subscribers, contact
kgentili@aip.org.

Reprints of Articles

For price information or to order reprints, send email to cise@
computer.org or fax +1 714 821 4010.

Reprint Permission

To obtain permission to reprint an article, contact William Hagen, IEEE
Copyrights and Trademarks Manager, at copyrights@ieee.org.

How to
Reach CiSE

	Plone and Content Management
	Recommended Citation

	untitled

