
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

1994

Distributed-Memo: Heterogeneously Concurrent Programming Distributed-Memo: Heterogeneously Concurrent Programming

with a Shared Directory of Unordered Queues with a Shared Directory of Unordered Queues

William T. O'Connell

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Thomas W. Christopher

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
William T. O'Connell, George K. Thiruvathukal, and Thomas W. Christopher, Distributed Memo:
Heterogeneously concurrent programming with a shared directory of unordered queues. In Sixth ISMM/
IASTED Conference on Parallel and Distributed Systems, 1994.

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1994 William T. O'Connell, George K. Thiruvathukal, and Thomas W. Christopher

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

*Research in coorperation with Argonne National Laboratory High-Performance Computing Research Facility

Abstract
Heterogeneously distributed and parallel computing
environments are highly dependent on hardware, data
migration, and protocols. The result is significant difficulty
in software reuse, portability across platforms, and an
increased overall development effort. The appearance of a
shared directory of unordered queues can be provided by
integrating heterogeneous computers transparently. This
integration provides a conducive environment for parallel
and distributed application development, by abstracting
the issues of hardware and communication. Object
oriented technology is exploited to provide this seamless
environment.

Index Terms - Parallel and distributed processing.
Languages, Heterogeneous computing. Directories of
unordered queues. Dynamic Data Migration. Portability.

1 Introduction

Heterogeneously distributed parallel computing allows
applications to execute over an interconnected cluster
instead of a single supercomputer or Massively Parallel
Processing (MPP) machine. This provides the flexibility
of using under-utilized high-performance workstations,
single MPP machines, multiprocessor machines, and/or
vector supercomputers to accomplish a task [1]. The
purpose is to exploit this under-utilization by combining
the power of heterogeneous high-performance machines
into a unified virtual parallel machine. The last several
years have seen a widespread acceptance of this
alternative approach to parallel processing.

This does not imply that a cluster of workstations can
replace a $30M supercomputer. However, a cluster of
high-performance workstations using the proper
granularity can be used with some impressive results [1].
The key to this ability is the scalability of several hundred
million dollarsí worth of networked computers, described
by Gordon Bell as the ìUltracomputer: a Scalable
computerî, by creating a teraflopís worth of networked
computers for an application [2].

The irony to this enormous parallel computation through
scalable clustering is that software technology has taken
second seat to the hardware movement which has taken
place over the last two decades [3]. It has become
extremely difficult to design, write and maintain parallel
applications which are distributed over heterogeneous
machines, especially for the general computer scientist.
The scientist must not only focus on the problem space to

be solved but is burdened with differences in hardware and
operating system interfaces over multiple machines [3]. To
further separate the real problem space from the
programmer, transport protocols must be differentiated.
For example, a typical application may be spread over
several machines using multiple transport protocols, such
as an IBM SP-1 MPP and a dedicated alpha cluster
interconnected with a HiPPI switch.

In this example, process communication within the SP-1
would use the IBM EUI-H transport in order to minimize
latency times using the high-speed switch.
Communication within the Alpha cluster would use the
HiPPI transport maximizing the capabilities of the
clusterís giga-switch. Between the cluster and SP-1, the
application may need to use the TCP/IP transport due to
distance and reliability. As a result, the application would
be cluttered with interoperability code.

The goal of supercomputingís recent software movement
in high-performance computing is to make parallel
processing a more attractive option. This includes
providing improved systems, libraries, tools, and
languages which are easier to use. One notable system that
attempts this is Linda, which provides virtual shared
memory over multiple machines [6].

Out intent is to show that we have taken Linda, an elegant
coordination language over heterogeneous machines,
saved the good ideas, disposed of the rest, and added
simple but powerful mechanisms for communication and
synchronization. In [5], we have illustrated mechanisms of
Distributed-Memo which greatly enhance system
efficiency along with how Application Description Filesa

can be used to vastly improve flexibility.

In this paper, we will emphasize the Distributed-Memo
programming model by showing examples of common
programming techniques and shared data structures. We
will also describe the systems integrated framework
structure which also provides additional communication
techniques to the application [5]. We will then contrast its
primary interface with the similar Linda programming
model illustrating areas of enhancements and deletions.
Finally, we will present conclusions.

2 Problem Spaces to be Addressed
We have taken a step back from the direct Linda approach

a. These files allow applications to define the topology, where
folder servers and user processes will be placed, etc.

Distributed-Memo: Heterogeneously Concurrent Programming
with a Shared Directory of Unordered Queues*

George K. Thiruvathukal
R.R. Donnelley Technical Center

750 Warrenville Road
Lisle, IL 60532

gkt@disney.donnelley.com

William T. OíConnell
AT&T Bell Laboratories

600 Mountain Ave.
Murray Hill, N.J. 07974
 wto@research.att.com

Thomas W. Christopher
Illinois Institute of Technology

10 West Federal Street
Chicago, IL 60616

tc@iitmax.acc.iit.edu

Proceedings of the IASTED Intíl Conference on Parallel and Distributed Computing and Systems, Wash. D.C., Oct., 1994

[6] to study the problem space of heterogeneously
distributed parallel computing for the general programmer
[3]. Our emphasis is on:

ï The need for an easy to use application programming
interface (API).

ï The need to model the heterogeneous platforms and
protocols, including dynamic data modeling.

The API must present a solid coordination language to the
programmer that is simple to use, yet must support major
MIMD parallel programming paradigms. Also, the system
must also be able to handle heterogeneity in an elegant
fashion by offering portability, reusability, and
extensibility for the application as well as the system as a
whole, yet maintain high performance. Heterogeneity
issues are accomplished through the integration of the
Generic Modelling Framework by incorporating its design
into the kernel of the Distributed-Memo system [5].

3 Distributed-Memo Programming Model

The Distributed-Memo (D-Memo) system provides simple
synchronization and communication mechanisms for
parallel processes distributed over heterogeneous
machines. The communication method is provided
through a shared directory of unordered queues (or a
shared table of bags). A secondary method is also
available by accessing methods provided directly within
the implementation of the Generic Modelling Framework
[4]. This implementation serves as the kernel of the D-
Memo system. Such communication methods offered by
this model are direct process to process communication.

Since we are primarily concerned with concurrent
programming with the shared directory, our discussion
will focus on it. Readers interested in access methods
provided by the Generic Modelling Framework should see
ì Integrated Framework for Heterogeneityî on page 6 and
[3][4]. In addition, readers interested in application start
up methods along with application control through
ìApplication Description Filesî are referred to [5].

Many conventional distributed-memory programming
models allocate one process to each node, achieving
communication through message passing. The issue with
such systems is that data structures are not global, but
rather localized in each process. One of the most common
programming techniques is to manipulate a data structure.
But, when trying to use that technique on distributed-
memory systems, the data structures must be partitioned
and the parts hidden in a fixed number of processes. This
creates a sense of artificial complexity in programs.

This notion of virtual shared memory (or a shared
directory) is not new, for example distributed shared
memory operating systems and file systems, such as the
Andrew File System [3], have been around for some time.
A notable parallel processing package supporting virtual
shared memory is Linda [6]. The Linda parallel
programming system attempts to provide a more natural
parallel programming environment through a shared
associative memory, referred to as tuple space. It is
obvious that programming in a shared memory paradigm
is more intuitive and easier than a distributed memory

paradigm. A comparison of major message passing and
shared memory packages in [7][8] illustrate this point.

D-Memo cannot claim to provide any type of new
computational model, since both directories and queues
have a long history and have been known to be useful in
operating systems and parallel programming. By making
directories and queues globally accessible to a
heterogeneous parallel processing application, we believe
that the D-Memo system will be a valuable parallel
programming system to support high-performance
computing.

3.1 Distributed-Memo Concepts

The D-Memo system presents a virtual shared directory of
unordered queues which can support a variety of shared
data structures and parallel programming techniques, such
as named objects, arrays of objects, locks and semaphores,
unordered and ordered queues, job jars, futures, remote
procedure calls, selection of alternatives, and barriers.
Some of these data structures and techniques are discussed
in the seminal paper on generative communication in
Linda [6]. D-Memo retains the simplicity and power of
Linda in its ability to support the major parallel
programming paradigms but is also able to support less
popular paradigms, such as dataflow.

In this system, queues are referred to as folders and
messages as memos. The communication scheme allows
processes to communicate through memo passing. Memos
are deposited into any one of the shared folders (directory
of unordered queues). If a folder does not exist, it is
created when a memo is deposited. This allows any
process to either examine, extract, or place memos into
them. By distributing the folders over the network, a pool
of segments are used to create a larger virtual shared
segment. This provides the abstraction of executing on a
single shared-memory MIMD machine. This high level
abstraction removes the underlying concurrent memory
access and communication problems of parallel and
distributed programming and provides a seamless
heterogeneous environment; made possible by the Generic
Modelling Framework.

The system is installed with a default configuration file,
e.g. where to place the user processes and folder servers,
what the network topology looks like, and the associated
processor and link costs. Each application has the ability
to override any part of the configuration through the use of
Application Description Files [5]. Typically, applications
just override where to place processes during start-up and
where the executables located.

3.2 Basic Distributed-Memo Facilities

Before discussing the basic D-Memo facilities, folder
names will be described. A folder name acts as a key to a
specified folder, it is used to identify a unique unordered
queue. The following code fragment shows the folderís
name construct in C.

typedef struct FolderName {
SYMBOL S;
unsigned long X[NUM_X];

} FOLDER_NAME;

A SYMBOL is an unsigned integer which is intended to be
unique over the execution of the program. The system can
generate a unique symbol by invoking an available member
function. The S member represents the name of the data
structure that this folder is part of, e.g. the name of an array.
For an array, the X member contains the indices. By default,
NUM_X equals three, but it can be changed if the
application demands it.

3.2.1 Basic Procedures

The central operations of D-Memo examine, extract, and
insert memos into folders. Table 1 shows a subset of the
systems API.

In addition to the basic operations shown above, a subset of
the systemís process management interfaces are illustrated in
table 2. These interfaces provide the application with control
over its environment.

To illustrate some of the basic principles of memo
manipulation, several examples will be shown. The
following segment of code extracts a memo object from a
folder, modifies it, then places it back into the folder.

The programmer creates a message similarly to structures in
C. A translator is used to convert each message reference
into an objecta. Each object then becomes what is known as a
complex transferable which is constructed using other
complex or scalar transferables [4]. In this case the int16 is a
scalar transferable supplied by the system, which is a 16-bit
integer. The following example illustrates a more complex
message where an application may build a tree structure,
with possibly circular lists:

The application references the message definition in the code
just like a structure definition. When the user passes this
transferable to the system, it will recursively encode itself
(which indicates that the whole tree structure will be passed
as part of the message).

Since object-oriented technology is being used, each
message type has a base class (base transferable object). It is
the base class reference that is being used with the Get and
Put operations above.

Each transferable is in fact a persistent object that knows
how to encode/decode itself (including linearization of non-
contiguous memory) for transmission over a network. For
the case of complex objects, they are encoded/decoded
recursively. This does not require programmer intervention.

For most applications, the typical message is either a single
structure or a scalar transferableb (e.g. int16) which causes

a. This packages is built using object technology
and provides an object-oriented API.

Table 1:

Subset of Application Programming Interface

Interface Description

Put Put a memo into a folder

PutDelayed Facilitates dataflow and futures

Get Extract memo (blocking)

GetCopy Get copy of memo (blocking)

GetSkip Extract memo (non-blocking)

GetCopySkip Get copy of memo (non-blocking)

Alt Extract memo from any one of multi-
ple folders (blocking)

AltSkip Extract memo from any one of multi-
ple folders (non-blocking)

Key Given a memo, return its name (key)

Free Free a memo

Table 2:

Subset of Process Management Interfaces

Interface Description

Init Start D-Memo system, including start-
ing initial multi-processes

Exec Create threads and/or different execut-
ables on this or another machine

GetMyId Get logical process ID for application

NumWorkers Number of processes in application

Exit Process exit D-Memo

Table 2: (Continued)

Subset of Process Management Interfaces

Interface Description

Message something { int16 member; } *ptr;
FOLDER_NAME what_ever;
...
ptr = (something *) Memo.Get(what_ever);

Memo.Put(what_ever, ptr);
...

Message msg_tag_name {
int16 node_value;
Message msg_tag_name *left;
Message msg_tag_name *right;

};

little or no real-time impact for data encoding. As
applications become more elaborate, higher complexity data
structures can be created and passed transparently. However,
as the complexity goes up, so does the cost of linearization.
For example, using the previous message definition with left
and right node pointers, a complex tree can be constructed as
shown in figure 1.

Figure 1 Elaborate complex transferable

As shown in figure 1, the application has a variable pointing
to the treeís root. When passing this value to a D-Memo
operation, the entire tree structure will be linearized when
passed. When a process extracts this complex transferable, it
will be reconstructed. Note that self-referencing lists with
cycles can be constructed.

Another important aspect of the systemís API, is to be able
to retrieve a memo from any one of multiple folders.

The key_list parameter is an array of pointers to folder
names where the list_len indicates the number of folders in
the list. The interface will nondeterministically return one
memo from within the list. The one_found parameter is the
index into the array from where the memo was extracted.

3.2.2 Data Structures and Programming Techniques

Many common data structures and programming techniques
are directly supported by D-Memo. The system easily
supports any of the major parallel programming paradigms,
such as SPMDa, MPMDb, host-node, and data parallel. The
type of paradigm being used by an application is mainly
attributed to its layout in the application description file [5].
The following list is some of the most useful programming
techniques.

3.2.2.1 Named Objects

A folder that holds at most one memo can represent a
dynamically allocated object on a heap. Instead of pointers
to the objects, we use folder names.

b. Scalar transferables can be passed directly with-
out being placed in a message format.
a. Single Process, Multiple Data
b. Multiple Processes, Multiple data

node_value
left right

node_value
left right

node_value
left right

node_value
left right

node_value
left right

node_value
left right

node_value
left right

node_value
left right

variable

ptr = (something *) Memo.Alt(key_list,
list_len, one_found);

3.2.2.2 Arrays

Arrays of shared objects may be created similarly. The
element a[i,j] can be stored in a folder whose name, key, is
constructed as:

The key is now a folder name for the a[i,j] array element.
Each array element is itself stored in a separate folder. All
array elements are not necessarily associated with the same
folder server (one or more folder servers may be used by the
run-time system, each managing a set of folders [5]). By
spreading folders (that will be referenced within close
locality of each other in the application code) throughout the
distributed machines, the system does not congest one server
by creating communication hot spots. But, is able to provide
a more balanced concurrent access model.

3.2.2.3 Locking Shared Data Structures

Shared records are accessed by getting them from their
folders, examining and updating them, and then putting them
back. While the record is being updated, its folder is empty,
and any process trying to access it will be blocked until the
record is replaced; the records are implicitly locked. The
following exemplifies operations on shared records:

In this example, the record template was already declared
(possibly in a header file), the ptr variable is defined just like
a C structure pointer.

3.2.2.4 Locks and Critical Sections

Naturally, an explicit lock can simply be represented by an
empty memo in a folder.

This is a typical example of a SPMD application, where the

FOLDER_NAME key;
SYMBOL a;
...
a = Memo.Symbol();
key.S = a;
key.X[0] = i;
key.X[1] = j;
key.X[2] = 0;

Message record_obj *ptr;
...
ptr = (record_obj *) Memo.Get(record);
... /* Operate on record ptr*/
Memo.Put(record, ptr);

FOLDER_NAME record;

FOLDER_NAME lock;
char8 *token;
...

token = (char8 *) Memo.Get(lock);
... /* Perform critical section */
Memo.Put(lock, token);

if (Memo.GetMyId() == DM_MASTER)
Memo.Put(lock, token);

...

/* Initialize Lock */

master process initializes the lock. The master process is
always logical process ID number zero (DM_MASTER).

Note that a message structure definition is not being used as
the lock object, but a 8-bit character is (scalar transferable).
Scalar transferables supplied by the system also have a base
class of Message. Other examples of scalars are int8, int16,
uint16, int32, int128, float32, etc.

3.2.2.5 Semaphores

The simplest implementation of a counting semaphore is
identical to a lock, except that to initialize the semaphore, a
process places as many empty memos into the semaphoreís
folder as are required by the initial count.

3.2.2.6 Unordered Queues

A folder is an unordered queue, so if order is not vitally
important, processes can communicate simply by passing
memos through a folder.

3.2.2.7 Job Jar

An important use of an unordered queue is a job jar. The
memos in the job jar indicate tasks to perform. Whenever a
process requires more work to do, it pulls a memo out of the
job jar. Whenever a process creates more work to do, it drops
memos in to the job jar. It is often convenient to have one job
jar for each process and one common jar for all. The
individual job jars are used for operations that must be
performed by a particular process, e.g. file I/O on a
particular machine or a process running on a special purpose
machine. Expanding this idea one step further, all process on
a particular class machine, such as the IBM SP-1 MPP
machine, may want to share a job jar. While, all processes on
a Cray C-90 may share another.

The Alt interface can be used to get a memo from one of
multiple job jars.

3.2.2.8 Futures and I-Structures

A future is an assign-once variable used to communicate
between a producer (typically a subroutine) and a consumer
(its caller). Both the producer and consumer may run in
parallel, with the consumer only being delayed if it attempts
to fetch from a variable before it has been assigned. An I-
Structure (an ìincremental structureî) is a collection (e.g. an
array) of futures. I-Structures were invented for dataflow
hardware [9].

In D-Memo, any folder that will have only one memo ever
placed in it may correspond to a future. The consumer
executing either a Get, GetCopy, or Alt fetching from that
folder will be delayed until the value as been produced. The
folder will vanish once the memo has been removed.

Since it is usually better not to block an entire process, the
consumer can delay a memo that will eventually be placed in
its job jar after a future is populated, and continue executing.
When the producer finally a memo into the futureís folder, it
will trigger the desired computation by delivering the
delayed memo to the consumerís job_jar.

In the following example, the consumer delays a memo for
its job jar. After the producer places the data into the folder

named future, the delayed memo will then be placed into
folder job_jar, which is the job jar for the consumer. This
prevents the consumer from blocking on the memo that is
not available yet.:

3.2.2.9 Dataflow

Dataflow programming triggers execution of code when its
operands become available [10][12]. The D-Memo system
facilitates dataflow programming by providing the
PutDelayed interface. Assume the operands are futures. The
application simply arranges to have an operation dropped
into a job jar when an operand memo arrives in a folder.

Thus, using the PutDelyed interface (as shown above), when
the operand (memo) arrives into the operand folder, the
delayed memo (operator) will be placed into the job jar.
When this job jar messages is processed, the operand will be
read by the process executing the operation.

If the operation requires more than one operand, then the
operation can poll for each of the operands (e.g. the
MemoPresent interface) and delay itself (using Put Delayed
again) on absent operand folders until all are available.

3.2.2.10 Reactive Objects

A reactive object is an object that executes only in response
to messages it receives. Reactive objects are central to the
Actors model of parallel computation [11]. A reactive object
can be implemented with a job jar folder plus one input
folder per object. A memo containing the object is delayed
(using PutDelayed) on its input folder. When an input memo
arrives, the object is placed into the job jar. Eventually some
process fetches the object from the job jar and executes the
code, which reads the input message (in the input folder) and
responds to it. Once the object responds to the message, a
memo is delayed again in the input folder waiting for the
next input message for this object.

For efficiency, it is better to loop reading all available input
messages with the GetSkip interface, rather than delaying
the object after each individual incoming message.

3.2.2.11 Ordered Queues

The simplest implementation of an ordered queue is an array
of futures. For example, the producer can write memos into
folders as:

Message operation *op;
...

FOLDER_NAME future, job_jar;

Memo.PutDelayed(future, job_jar, op);

FOLDER_NAME dest;

#define QUEUE ...
...

int outposition = 0 ;
dest.S = QUEUE;
dest.X[1] = dest.X[2] = 0;...
while (1) {

... Produce item M ...
dest.X[0] = outposition++;
Memo.Put(dest, M);}

And the consumer can remove them similarly:

3.2.2.12 Remote Procedure Calls

Remote procedure calls can be simply emulated by using a
specific process as a subroutine handler. This process can
handle one or more subroutine calls using the Alt operation.
Each subroutine will have an invocation call folder
associated with it (similar to a job jar). Invocation of the
subroutine is caused by writing a memo into its folder. The
subroutine handler will read the memo, which contains the
subroutineís arguments, and will execute the appropriate
code. If a return code (message) is required from the
subroutine, the return folder should be stated in the
subroutine call arguments (this eliminates concurrency
problems when writing to one return folder).

3.2.2.13 Barriers

In a parallelizing loop, it is often important to synchronize
the processes executing the loop at one or more points within
it using a barrier. If a barrier is initialized with a count N,
then N processes must wait at the barrier before any of them
are allowed to proceed. The barrier is automatically re-
initialized so that the processes can synchronize over and
over again at the same barrier. In D-Memo, a barrier can be
implemented with two folders and a single memo containing
an integer count. the presence of the memo in a folder allows
the processes to proceed past the barrier.

The processes alternate which folder they look for the memo
in. When a process comes to a barrier, it gets the memo and
decrements the count in it. If the count is greater than zero,
this is not the last process to arrive, so it puts it back and tries
to get a copy of the memo in the other folder (which is not
present yet).

If the process decrements the count to zero, then this is the
last process to arrive at the barrier. It puts a memo with the
full count of the number of processes to synchronize into the
other folder and continues executing. This will allow all
other processes to retrieve a copy of this memo in the other
folder, concurrently, and continue executing.

Sample code using a barrier:

We should note that this code can easily be placed into a
library routine, and return to the caller after all processes
reach the barrier.

4 Integrated Framework for Heterogeneity
For applications to fully exploit heterogeneously distributed
and parallel environments, software support must be
provided that is easy to use. By eliminating platform specific
issues, the task of writing software in this complex
environment is cleaner and allows the application to
concentrate on the problem space. In addition, transparency
offered by proper layering provides better code reusability
and portability when moving applications to new
architectures.

As we described in [4], the Generic Modelling Framework
describes the foundation for building the core of any
heterogeneous parallel application. We have built a set of
generic software modelling techniques through the
utilization of object frameworks, each being an object cluster
providing a generic interface.

The model is characterized by five clusters of abstractions:
communication (message passing), transferables (data
coercion and dynamic data migration), shared memory,
locking (synchronization), and process management. To
support a new computer in a heterogeneous network, one
must consider these five aspects. Our view is that a new
computer can be supported by learning the differences from
the base definition (called a base class in object-oriented
terminology) and either extending or overriding the services
provided in the base definition. This extension would be
done once by a specialized programmer, all software using
the services of these core abstractions will then reap the
benefits of transparency, reuse, portability, and
interoperability.

We have built D-Memo on top of an implementation of this
model in order to provide a seamless interface to the
incompatibilities of hardware, operating systems, and
transport protocols. The application program no longer must
deal with these issues and can spend more time solving the

...
while (1) {

mine.X[0] = inposition++;
ptr = (message *) Memo.Get(mine);

}
... Consume item M ...

FOLDER_NAME barrier[2] =

int which = 0;
int16 Tcount = NUM_TO_SYNCH;
...
/* Initialize barrier */
Memo.Put(Barrier[0],&Tcount);
...

{{BARR0,0,0,0}, {BARR1,0,0,0}};

while (TRUE) {
int16 *count;
...

count = (int16 *) Memo.Get(barrier[which]);
/* Synchronize at the barrier */

(*count)-- ;
if (*count == 0) {

/* Iím the last to arrive */
which = 1 - which;
Memo.Put(Barrier[which], &Tcount);

} else {

/* I am not the last to arrive */
Memo.Put(Barrier[which], count);
which = 1 - which;
count = (int16 *) Memo.GetCopy(

barrier[which]);
}
Memo.Free(count);
...

}

...

real problem space issues. This allows the system to be more
portable and extensible over different architectures and
protocols with a higher degree of software reusability.

To understand how the abstractions aid in designing D-
Memo, the reader is referred to [4][5]. The reader should
note that while these frameworks are being used by D-
Memo, they are also accessible to upper layering software
or software at large.

5 Contrasting Linda
Linda has been considered by many as a candidate for a
more natural parallel programming system which provides a
shared associative memory, the tuple space [6]. A tuple is a
sequence of fields, each of which has a type and contains a
value or a variable.

Tuples are written into the tuple space with an out operation,
are removed with an in, and are read without being removed
with a rd. For an in or rd, the tuple accessed in tuple space
must match the tuple provided with the operation. The
number and types of fields in both the operation and tuple
space must be identical. A positional value in an operation
must match the identical positional value in the tuple space.
A variable in either must match a value in the other. A
variable will not match a variable. The in and rd operations
will block until there is a matching tuple in the tuple space.
Recent implementation of Linda have provided non-
blocking versions of rd and in, rdp and inp, which return a
boolean indication of successa.

Linda also has the command eval, which will start a process,
referred to as an ìactive tupleî, which will return its value by
becoming a tuple.

Various implementations of Linda have restricted the format
of tuples, the implementation of eval, or have provided
multiple tuple spaces.

The tuple space does allow data structures to be shared
among processes, and the designers of Linda are quick to
point out the advantages of being able to design programs
around shared data structures. Still, a question persists: why
does tuple space suddenly become a natural structure for
programming when there is no demand for it in sequential
programs? An explanation is that in almost all cases, the
tuple space is being used as a shared, flat directory of
queues. Since both directories and queues have long been
known to be useful in multiprogramming and multitasking
systems and since they can so easily be implemented in tuple
space, it is no surprise that Linda is successful. But, this does
suggest that a system built directly on a shared directory of
queues might work as well as or better than Linda and that
clarity on the data structures actually being used might
suggest useful facilities that tuple space would not suggest.

The D-Memo system was designed and implemented to
investigate the possibilities for parallel programming system
built around a shared directory of queues. The system design

a. This implementation was developed by Scientific
Computational Associates. Two versions exist, C-
Linda and F-Linda for C and fortran programming
languages respectively.

not only considered the shared directory of queues design,
but an implementation on top of the Generic Modelling
Framework. This allows the system to easily support high-
performance heterogeneous systems by seamlessly building
a virtual machine [5].

When reviewing the vast majority of published Linda
algorithms, it is obvious that many of the code segments are
directory-of-queue algorithms. In most Linda algorithms, the
first several fields of a tuple, which we will call the key
fields, area specified explicitly in both out and in operations.
The remaining fields, the entry fields. are all given values by
an out operation and are all assigned to variables by an in
operation. Hence, the key fields correspond to the name of a
queue, and the entry fields correspond to a structure
(message) written into it. Translated into D-Memo, out
corresponds to Put, in to Get, and rd to GetCopy.

There are a few other usages of Linda that requires slightly
more than simple translation. For the same keys, there may
be several different numbers and types of non-key fields.
Linda provides further matching on their number and types.
This can easily be encoded in D-Memo by using multiple
folders, or by writing and reading discriminated unions.

The existence of tuples containing variables has no direct
equivalent in D-Memo, but the examples of their use are
infrequent. Linda provides an alternative, asynchronous
write: server processes wait for tuples specifying their
individual names. A request for service by a particular server
specifies the serverís name. A request for service by any
server specifies a variable in the name field, so that any
server can pick it up [6]. Is cleaner and more efficient to have
one queue for all servers in addition to an individual queue
for each, and to have the servers wait for commands with the
Alt operation. Linda lacks a read with alternatives, so this
solution is unavailable to it.

Linda does try to integrate process creation and termination
by eval creating active tuples. The ability to create many
processes does make the lack of analogues to the Alt and
PutDelayed operations less serious. However, D-Memo does
support Exec where threads and other executables may be
started. In addition, eval has been difficult to implement in
portable forms and the many small processes it creates are
expensive to run, especially on RISC processors. The
assumption in D-Memo is that an application can easily
incorporate data-parallel, macro-dataflow, reactive objects,
or multiple small tasks using memos for state vectors and
scheduling via job jars. In any case, a limited number of
large processes is adequate.

With D-Memo, there is no need for a special compiler,
unlike Linda which needs to compile the tuple patterns.
However, if transferables are used, a translator is required to
convert the message definitions to persistent objects. Linda
does not support the idea of transferables.

D-Memo offers a number of advances over linda (in
addition to clarifying the abstraction). The Alt operation
allows the implementation of an analogue of a guarded input
command. The PutDelayed operation facilitates dataflow
and reactive object programming.

In addition, to the general D-Memo interfaces, the
application also has access to the Generic Modelling

Framework interfaces. This model is the foundation for D-
Memo. This includes a simple generic interface to the
following:

ï Process creation over heterogeneous machines, both
create threads and processes from different executables.

ï Direct process to process communication, over-riding
the directory of queues.

ï Locking and shared memory capabilities outside the
directory of queues on a machine basis.

Finally, the transferable framework provides an easy to use
and powerful dynamic data migration package.

6 Conclusions
D-Memo is a parallel programming system based on
communication through a shared directory of unordered
queues. It makes possible a variety of shared data structures,
including named objects, arrays of objects, locks and
semaphores, unordered and ordered queues, job jars, futures,
I-structures, remote procedure calls, and barriers. It also
facilitates macro-dataflow [13] and reactive object
programming.

If an application requires direct process to process
communication, the system allows access to the capabilities
of the Generic Modelling Framework [4]. This not only
includes direct process communication, but generic shared
memory and locking interfaces to the software. This
provides a level of transparency to the application, so that it
maintains a high level of portability, extensibility, and
reusability over multiple architectures, operating systems,
and protocols.

In our comparison to Linda, we suggested that Linda is
successful not because of its tuple space abstraction, but
rather that tuple space is valuable primarily because it allows
the simulation of a directory of queues.

To conclude, D-Memo has taken the Linda programming
model, an elegant but inefficient language under
heterogeneity, saved the good ideas, disposed of the rest, and
added simple but powerful mechanisms which greatly
enhance efficiency. The result is just as elegant as Linda, but
much more efficient and vastly more flexible [5].

7 Acknowledgments
The authors gratefully acknowledge use of the Argonne
High-Performance Computing Research Facility. The
HPCRF is funded principally by the U.S. Department of
Energy Office of Scientific Computing.

8 References
[1] A. Benguelin, et al., ìSolving Computational Grand

Challenges Using a Network of Heterogeneous
Supercomputersî, Proc. fifth SIAM conf. on parallel
proc. for scientific computing, Houston, TX, Mar., 91.

[2] G. Bell, ìUltracomputers: A Teraflop Before itís
Timeî, Comm. of the ACM, Vol. 35, No. 8, Aug. 1992.

[3] W. OíConnell, ìA Generic Modelling Framework for
Building High-Performance Environmentsî, Ph.D.
Thesis, IIT-HPLS-94-4, Illinois Inst. of Tech., 1994.

[4] W. OíConnell, G. Thiruvathukal, T. Christopher, ìA
Generic Modelling Framework for Building Parallel
and Distributed Programming Environmentsî, Proc.
10th Intíl Conf. on Adv. Sci. and Technology,
Naperville, IL, Mar. 26, 1994, FTP access: glen-
ellyn.iit.edu;/pub/research/parallel/papers.

[5] W. OíConnell, G. Thiruvathukal, T. Christopher,
ìDistributed-Memo: A Heterogeneously Distributed
Parallel Software Development Environmentî, Proc.
23rd Intíl Conf. on Parallel Processing, St. Charles,
IL, Aug. 1994, FTP access: glen-ellyn.iit.edu;/pub/
research/parallel/papers.

[6] D. Gelernter, ìGenerative Communication in Lindaî,
ACM Transactions on Parallel Languages and
Systems, Vol. 7, No 1, Jan. 1985, Pages 80-112.

[7] T. Mattson, ìProgramming Environments for Parallel
Computing: A Comparison of CPS, Linda, P4, PVM,
PSYBL, and TCGMSGî, Intel Corp Research Rep,
1993.

[8] N. Carriero, D. Gelernter, ìLinda and Message
Passing: What have we learned?î, Tech. Rept.
YALEU/DCS/RR-984, Aug., 1993.

[9] Arvind. ì I-structures: An Efficient Data Type for
Functional Languagesî, TR LCS/TM-178, MIT, ë80.

[10] A.H. Veen ì Data Flow Architectureî, ACM
Computing Surveys, 18, 4, Dec. 1986. pp. 365-396.

[11] T.W. Christopher, ìMessage Driven Computing and its
Relationship to Actorsî, Proc. ACM Sigplan Wkshop
on Object-Based Conc. Prog., San Diego, CA. 1988.

[12] G. Thiruvathukal and T. Christopher, ìA Simulation of
Demand Driven Dataflow: Translation of Lucid into
Message Driven Computing Language.î, 5th Intíl
Symp. on Parallel Proc., Anaheim, Ca. 1991.

[13] G. Thiruvathukal and T. Christopher, ìMacrodataflow
Implementation of Distributed Array Objectsî, Tech.
Rpt. TR-HPLS-94-100. FTP access: glen-
ellyn.iit.edu;/pub/research/parallel/papers.

[14] G. Thiruvathukal, W. OíConnell, and T. Christopher,
ìTowards Scalable Parallel Software: Interfacing to
Non-von Neumann Programming Environmentsî,
Proceedings of the SIAMí95, San Francisco, CA. Feb.
1995.

	Distributed-Memo: Heterogeneously Concurrent Programming with a Shared Directory of Unordered Queues
	Recommended Citation

	Abstract
	1 Introduction
	2 Problem Spaces to be Addressed
	3 Distributed-Memo Programming Model
	3.1 Distributed-Memo Concepts
	3.2 Basic Distributed-Memo Facilities
	3.2.1 Basic Procedures
	Table 1: �
	Table 2: (Continued)
	Figure 1 Elaborate complex transferable

	3.2.2 Data Structures and Programming Techniques
	3.2.2.1 Named Objects
	3.2.2.2 Arrays
	3.2.2.3 Locking Shared Data Structures
	3.2.2.4 Locks and Critical Sections
	3.2.2.5 Semaphores
	3.2.2.6 Unordered Queues
	3.2.2.7 Job Jar
	3.2.2.8 Futures and I-Structures
	3.2.2.9 Dataflow
	3.2.2.10 Reactive Objects
	3.2.2.11 Ordered Queues
	3.2.2.12 Remote Procedure Calls
	3.2.2.13 Barriers

	4 Integrated Framework for Heterogeneity
	5 Contrasting Linda
	6 Conclusions
	7 Acknowledgments
	8 References
	[1] A. Benguelin, et al., “Solving Computational G...
	[2] G. Bell, “Ultracomputers: A Teraflop Before it...
	[3] W. O’Connell, “A Generic Modelling Framework f...
	[4] W. O’Connell, G. Thiruvathukal, T. Christopher...
	[5] W. O’Connell, G. Thiruvathukal, T. Christopher...
	[6] D. Gelernter, “Generative Communication in Lin...
	[7] T. Mattson, “Programming Environments for Para...
	[8] N. Carriero, D. Gelernter, “Linda and Message ...
	[9] Arvind. “I-structures: An Efficient Data Type ...
	[10] A.H. Veen “ Data Flow Architecture”, ACM Comp...
	[11] T.W. Christopher, “Message Driven Computing a...
	[12] G. Thiruvathukal and T. Christopher, “A Simul...
	[13] G. Thiruvathukal and T. Christopher, “Macroda...
	[14] G. Thiruvathukal, W. O’Connell, and T. Christ...

	Distributed-Memo: Heterogeneously Concurrent Progr...
	with a Shared Directory of Unordered Queues*

