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Abstract

We describe the bound state and scattering properties of a quantum mechanical parti-

cle in a scalar N -prong potential. Such a study is of special interest since these situations

are intermediate between one and two dimensions. The energy levels for the special case

of N identical prongs exhibit an alternating pattern of non-degeneracy and (N − 1) fold

degeneracy. It is shown that the techniques of supersymmetric quantum mechanics can be

used to generate new solutions. Solutions for prongs of arbitrary lengths are developed.

Discussions of tunneling in N -well potentials and of scattering for piecewise constant po-

tentials are given. Since our treatment is for general values of N , the results can be studied

in the large N limit. A somewhat surprising result is that a free particle incident on an

N -prong vertex undergoes continuously increased backscattering as the number of prongs

is increased.
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1 Introduction

Various aspects of the solutions of the Schrödinger equation for both scalar and vector

potentials on a wide variety of networks have been discussed by several authors [1-8]. Re-

cent investigations have been motivated in part by the considerable interest in mesoscopic

systems and the experimental observation of persistent currents[9]. Most of the results

correspond to piecewise constant scalar potentials V = V0 [3, 4, 8], vector potentials A as-

sociated with uniform magnetic fields [5], or δ−function potentials at the network vertices

[2, 6, 7]. In this paper we discuss the bound states and the scattering properties of a single

particle moving in an arbitrary scalar N -prong potential. The treatment is kept simple in

order to clearly show the generalization from the two-prong case, which is just the familiar

one-dimensional (particle on a line) problem. The properties of the eigenstates of N -prong

potentials are not a priori evident, since this system is in some sense intermediate between

one and two dimensions.

The plan of this paper is as follows. In Sec. 2, we define N -prong potentials and the

boundary conditions which the wave function must satisfy. The normalization of wave

functions and their orthogonality properties are also discussed. Sec. 3 contains a discussion

of bound states for potentials with N identical prongs. The general solution is quite easy to

obtain and is in fact closely related to the solution of a symmetric one-dimensional potential.

Sec. 4 contains a discussion of bound states inN -prong potentials with non-identical prongs.

Several analytical and numerical solutions are given to illustrate eigenfunction properties. In

particular, we show that a generalized version of the usual rule about one extra node for each

higher eigenstate is probably true but the theorem about non-degeneracy in one-dimensional

problems is not. Since the concept of supersymmetry has yielded many interesting results

for one-dimensional quantum mechanics[10, 11], it is natural to investigate what new results

come from using supersymmetry for N -prong potentials. This is discussed in Sec. 5. Sec.

6 illustrates the use of lowest order perturbation theory to obtain bound state energies.

Scattering is discussed in Sec. 7. For the special case of no potential in any of the N prongs,

very interesting properties are obtained which are quite different from naive expectations.

Finally, in Sec. 8, we extend the usual discussion of tunneling for a double well potential

to the case of N -well potential systems.

2 Multi-Prong Potentials

We are addressing the problem of formulating and solving the Schrödinger equation for

a single particle constrained to remain in a space made up of N lines meeting at a vertex

point (Fig. 1). The prongs are labeled by the indices i (i = 1, 2, · · · , N) and the position on

any prong is given by the positive coordinate xi, with xi = 0 being the vertex point. The

potential is fully specified by giving the scalar potentials Vi(xi) on each prong i. The overall
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wave function ψ(~x) is composed of the individual wave functions ψi(xi) on each prong i:

ψ(~x) ≡ {ψ1(x1), · · · , ψN (xN )}. (1)

We are using the arrow notation to indicate the appropriate N -tuple. The physical require-

ment of single-valuedness of the wave function at the vertex implies for the component wave

functions

ψ1(0) = ψ2(0) = · · · = ψN (0). (2)

In this paper, we will not be considering δ-function potentials at the vertex. Consequently,

the second vertex condition requires the sum of all derivatives to add up to zero [1, 6]:

N
∑

i=1

dψi

dxi

∣

∣

∣

∣

∣

xi=0

= 0. (3)

This can be readily derived as follows. The time independent Schrödinger equation, reads

∇2ψ = (V − E)ψ, taking units in which h̄ = 2m = 1. We assume that the potential

is finite in the neighborhood of the vertex, and integrate over a small sphere of radius

ǫ with the vertex as the center. Using the divergence theorem and letting ǫ → 0 yields

limǫ→0
∫

A ∇ψ · dA = 0, which reduces to Eq. (3) for an N -prong potential. Note that for

the special case N = 2, one has the standard one-dimensional situation and, taking into

account the relative directions of x1 and x2, Eq. (3) is just the statement that the derivative

dψ/dx is continuous across the vertex.

For the N -prong system, we call two functions ψ(~x) and φ(~x) orthogonal if

N
∑

i=1

∫

ψ∗
i (xi)φi(xi)dxi = 0, (4)

where the sum indicates that all prongs are included and each integral runs over the appro-

priate prong length. The normalization condition, which also includes all prongs, reads

N
∑

i=1

∫

ψ∗
i (xi)ψi(xi)dxi = 1. (5)

The eigenfunctions of the Schrödinger equation in a multi-prong potential not only have

to satisfy the vertex conditions given in Eqs. (2) and (3), but also appropriate boundary

conditions at each prong end. These conditions depend on the energy E and the specific

behavior of Vi(xi) for the maximum allowed value of xi. Eigenfunctions corresponding

to bound state solutions have to vanish at the prong ends. For potentials which reach

a constant value fast enough at the prong ends, one has standard plane wave solutions

(eikxi , e−ikxi) for the scattering states.
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3 Bound States: Identical Prongs

We begin by discussing the interesting special case of N identical prongs, i.e. Vi(xi) =

V (xi). Note that this does not imply that the wave functions are identical on all the prongs.

In fact, Eq. (3) implies the wave functions are often different, since their derivatives at the

vertex have to add up to zero. This statement is the generalization of the two-prong case,

where one has symmetric and antisymmetric solutions.

The general bound state solution for N identical prongs is easily obtained from the

two-prong situation. For two identical prongs, one has the situation schematically shown

in Fig. 2. We can define the single variable x such that x = x1 for positive x, and

x = −x2 for negative x. Effectively, one is mapping the two prongs onto the real axis,

−∞ < x < ∞. Clearly, this is the familiar situation of a symmetric, one-dimensional

potential. Its eigenstates correspond to even and odd solutions ψ(n)(x) at energies En,

labeled by a quantum number n (n = 0, 1, 2, · · ·).

Theorem: The eigenstates of a potential with N identical prongs can be constructed from

the eigenfunctions ψ(n)(x) of the corresponding symmetric two-prong system, and have

exactly the same eigenenergies. Explicitly,

ψ(n)(~a, ~x) ≡
{

a1ψ
(n)(x1), a2ψ

(n)(x2), · · · , aNψ
(n)(xN )

}

, (xi > 0). (6)

where ~a is a compact notation for the N -tuple (a1, a2, · · · , aN ). For even numbered states

the boundary conditions at the vertex imply a1 = a2 = · · · = aN ; for odd numbered states

one has the constraint
∑

i ai = 0, and there is an (N − 1) fold degeneracy.

Proof: By construction, the wave function ψ(n)(~a, ~x) for an eigenenergy En satisfies all the

boundary conditions at the prong ends. It only remains to show that the vertex conditions,

Eqs. (2) and (3) are also satisfied by Eq. (6). a) For even eigenfunctions of a two-prong

potential one has ψ′(0) = 0, and in general ψ(0) 6= 0. Eq. (3) is therefore trivially satisfied,

and Eq. (2) implies a1 = a2 = · · · = aN . The eigenfunction is therefore determined

upto one overall normalization constant, and the energy level is non-degenerate. b) For

odd eigenfunctions of a two-prong potential, one has ψ′(0) 6= 0, and ψ(0) = 0. Now,

Eq. (2) is trivially satisfied (since each wave function vanishes at the vertex) and the

derivative condition Eq. (3) implies
∑

i ai = 0, as claimed. This constraint is not sufficient

to fully determine the constants ai, and the levels have an (N − 1) fold degeneracy. The

completeness of states in Eq. (6) seems intuitively reasonable, and can be established from

the completeness of the eigenfunctions of a symmetric one dimensional potential.

As a first illustrative example, consider a particle of mass m moving in a harmonic
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potential with three identical prongs

V (xi) =
1

2
mω2x2

i . (7)

Each prong corresponds to the positive half of a harmonic oscillator potential. The ground

state of this three-prong potential will have the same energy E0 = 1
2 h̄ω as the two-prong

case. The un-normalized eigenfunction is given by

ψ(0)(~a, ~x) ≡
{

aψ(0)(x1), aψ
(0)(x2), aψ

(0)(x3)
}

, (8)

where, ψ(0) ∝ e−ωx2/4 is the Gaussian harmonic oscillator ground state wave function. We

assume ψ(n)(x) to be normalized to unity over one prong, so that the wave function in

Eq. (6) is properly normalized. The next level at energy E1 = 3
2 h̄ω is doubly degenerate.

Eigenfunctions at this level are given by

ψ(1)(~a, ~x) ≡
{

a1ψ
(1)(x1), a2ψ

(1)(x2), a3ψ
(1)(x3)

}

, (9)

where, ψ(1) ∝ xe−ωx2/4 is the wave function for the first excited state of the two-prong

case. There is an infinite number of wave functions ψ(1)(~a, ~x) that correspond to the same

energy 3
2 h̄ω. Each of these wave functions is characterized by a set of coefficients ai obeying

the constraint
∑

i ai = 0. Due to this constraint, we see that all allowed ai span a two-

dimensional space, thus leading to a two fold degeneracy at this level. The following two

functions then provide one choice for an orthonormal basis in this two-dimensional, two-fold

degenerate space:

ψ(1)(~a1; ~x), ~a1 ≡
(

1√
2
, 0,

−1√
2

)

;

(10)

ψ(1)(~a2; ~x), ~a2 ≡
(

1√
6
,
−2√

6
,

1√
6

)

.

This pattern of nondegeneracy/degeneracy keeps repeating as we consider higher energy

states. All even numbered states are nondegenerate and all odd numbered states have two

fold degeneracy. The three lowest eigenstates are shown in Fig. 3. The normalization has

been chosen such that
∫∞
0 ψ(n)∗(x)ψ(n)(x)dx = 1.

Similarly, the eigenfunctions for the potential V (xi) = 0, xi ≤ 1 are shown by the

dashed lines in Fig. 4. The wave functions are sinusoidal, and the energies are En =

n2π2/4 (n = 1, 2, · · ·), since they correspond to a symmetric two-prong potential which is

an infinite square well of width 2.

From the above examples, it becomes clear that a potential with N identical prongs

will have alternate nondegenerate and (N − 1) fold degenerate energy levels. Clearly, the

familiar non-degeneracy property of one-dimensional potentials is maintained for N = 2,

but not for situations with more prongs.
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4 Bound States: Non-Identical Prongs

Let us now consider the general case of an N -prong system with potential Vi(xi) on

the i-th prong. Let ψi(xi) be the solution of the Schrödinger equation with energy E along

that prong:

−d
2ψi

dx2
i

+ (Vi − E)ψi = 0, (i = 1, 2, · · · , N).

Of the two linearly independent solutions to this equation, let φi(xi, E) be the one that

vanishes at the end point of the i-th prong. This implies ψi(xi, E) = aiφi(xi, E), where ai

is a constant. These ψi(xi, E), glued together properly so as to satisfy vertex requirements,

will produce the wave function for the entire domain. From vertex conditions (2) and (3),

we get

ψi(0, E) = aiφi(0, E) ≡ U, (11)

and
N
∑

i=1

ψ′
i(0, E) =

N
∑

i=1

aiφ
′
i(0, E) = 0. (12)

The energy eigenvalues E are then determined by eliminating the unknowns ai and U from

the above set of (N + 1) linear equations. The eigenvalue condition is:

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(0, E) 0 · · · 0 1

0 φ2(0, E) · · · 0 1

· · · · · · · · · · · · · · ·
0 0 · · · φN (0, E) 1

φ′1(0, E) φ′2(0, E) · · · φ′N (0, E) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (13)

For any given eigenvalue En, Eq. (11) then determines all the constants ai in terms of one

unknown constant U . The corresponding bound state wave function is:

ψ(~x,En) = U

{

φ1(x1, En)

φ1(0, En)
, · · · , φN (xN , En)

φN (0, En)

}

. (14)

If desired, the constant U can also be fixed by requiring overall normalization of the wave

function.

To illustrate the procedure for determining eigenvalues, consider the example of a par-

ticle that is free to move inside a domain of three prongs of lengths l1, l2 and l3. Since the

potential along the prongs is zero, the wave functions along them are given by sinusoidal

functions that vanish at the end points. An eigenfunction of energy E = k2 has the form:

ψ(~a, ~x) = {a1 sin k(l1 − x1), a2 sin k(l2 − x2), a3 sin k(l3 − x3)} . (15)

In this case, Eq. (11) is:

a1 sin kl1 = a2 sin kl2 = a3 sin kl3 = U, (16)
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where U is the common value of the wave function at the origin. The derivative condition

(12) gives:

a1 cos kl1 + a2 cos kl2 + a3 cos kl3 = 0. (17)

The eigenvalue condition (13), when simplified reads

cos kl1 sin kl2 sin kl3 + sin kl1 cos kl2 sin kl3 + sin kl1 sin kl2 cos kl3 = 0. (18)

As a specific case, consider the situation l2 = 0.8 and l1 = l3 = 1. For this case,

the solutions to Eq. (18) are found to be k = 1.68, π, 3.61, 5.08, 2π, 7.17, 8.54, 3π, .... The

solutions k = mπ (m = 1, 2, ...) are a consequence of maintaining partial symmetry by

taking two prongs to be identical (l1 = l3 = 1). The corresponding wave functions are

shown by the solid lines in Fig. 4. [For comparison, we have also plotted the dashed lines

corresponding to the wave functions for the case of all three identical prongs of length 1].

From the figure, it is apparent that the ground state wave function at E0 = 1.682 has no

nodes. The first excited state at E1 = π2 has one node at the vertex point. Note that

for this state, the wave function in prong 2 is zero. The second excited state is at energy

E2 = 3.612 and has two nodes, one in prong 1 and the other in prong 3. This result is

very suggestive - one expects one extra node to appear for each higher eigenstate, similar

to the familiar one-dimensional situation.

We have also studied the variation of the eigenvalues k systematically as the prong length

l2 is varied. The results are shown in Fig. 5. As discussed above, the solutions k = mπ are

present, and when l2 is an integral multiple of l1(= l3), one has the interesting occurrence

of degeneracy and level crossing. The curves in Fig. 5 are labeled by the number of nodes

in the wave functions. At any fixed value of l2, the number of nodes increases with energy.

Note that as l2 → 0, the eigenvalues become doubly degenerate at k = mπ, (m = 1, 2, ...).

This is intuitively clear since the limit l2 → 0 forces the wave function to vanish at the

vertex, thereby effectively breaking the problem into two infinite square well potentials of

widths l1 = 1 and l3 = 1. Finally, in Fig. 6, we take l1 6= l3, and plot eigenvalues k. This is

a completely asymmetric situation, and there is now no degeneracy of energy levels. Again

note that the number of nodes in the overall wave function increases by one with increasing

energy levels.

As a second example, we determine the eigenstates of a three-prong potential Vi(xi) =
1
4ω

2
i x

2
i , composed of three harmonic oscillators of different angular frequencies ωi (i =

1, 2, 3), and h̄ = 2m = 1. The wave functions which vanish at xi → ∞ are [13]

ψi(xi) = aiDνi
(
√
ωixi) , νi =

E

ωi
− 1

2
, (19)

where Dν is a parabolic cylinder function. The eigenvalue condition [Eq. (13)] gives

√
ω1D

′
ν1

(0)Dν2
(0)Dν3

(0) + cyclic permutations = 0 . (20)
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The parabolic cylinder function and its derivative at the origin have simple expressions in

terms of gamma functions [13]:

Dν(0) = 2
ν
2

Γ(1
2)

Γ(1
2 − ν

2 )
, D′

ν(0) = 2
ν
2
− 1

2

Γ(−1
2)

Γ(−ν
2 )

. (21)

The solutions of the eigenvalue equation are then easily found. For the choice ω1 = 1.0, ω2 =

2.0, ω3 = 3.0, one gets the four lowest eigenstates at energies E = 0.83, 1, 94, 3.29, 3.85.

There is no degeneracy since all ω’s are different.

In the above two examples, exact analytic forms for the solutions ψi(xi) were available.

Even if this is not the case, it is easy to use numerical Runge-Kutta techniques applied to

each prong.

5 Supersymmetric Quantum Mechanics on Multi-Pronged

Domains

Given any one-dimensional potential V (x), the powerful techniques of supersymmet-

ric quantum mechanics can be used to generate a partner potential Ṽ (x) with the same

eigenvalues [10, 11]. This property has been extensively used to get a deeper understanding

of exactly solvable potentials and for generating improved approximation methods (SWKB

method [14], large N method [15], etc.) for determining eigenvalues. Supersymmetric quan-

tum mechanics provides an elegant formalism which includes and goes substantially beyond

the method of factorization previously applied to some potentials [16]. In this section,

we show how the ideas of supersymmetric quantum mechanics can be applied to a given

N -prong system V (~x) in order to generate solutions for a new N -prong potential Ṽ (~x).

As in the previous section, consider a scalar N -prong potential V (~x) composed of po-

tentials Vi(xi) on prong i (i = 1, 2, ..., N). Its eigenvalues and eigenfunctions are then given

by Eqs. (13) and (14) respectively. The un-normalized ground state wave function is

ψ(0)(~x,E0) ∝
{

φ
(0)
1 (x1, E0)

φ
(0)
1 (0, E0)

, · · · , φ
(0)
N (xN , E0)

φ
(0)
N (0, E0)

}

. (22)

This can be used to define the superpotential W (~x) whose value on prong i is

Wi(xi) = −φ
(0)′

i (xi)

φ
(0)
i (xi)

. (23)

It is easy to check that

Vi(xi) = W 2
i (xi) −W ′

i (xi) + E0. (24)

The supersymmetric partner potential is given by

Ṽi(xi) = W 2
i (xi) +W ′

i (xi) + E0. (25)
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The potentials Vi(xi) taken together make up the full N -prong potential Ṽ (~x). From su-

persymmetric quantum mechanics, we know that the solution of the Schrödinger equation

for potential Ṽi(xi) and energy E is given by [11]

φ̃i(xi, E) = ai

(

− d

dxi
+
φ

(0)′

i (xi)

φ
(0)
i (xi)

)

φi(xi, E), (26)

where ai are constants. Since φi(xi, E) vanishes at the prong ends, so do all the φ̃i(xi, E).

At the vertex, one wants

φ̃i(0, E) = φ̃j(0, E) and
∑

i

φ̃′i(0, E) = 0. (27)

This gives an eigenvalue condition similar to Eq. (13).

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ̃1(0, E) 0 · · · 0 1

0 φ̃2(0, E) · · · 0 1

· · · · · · · · · · · · · · ·
0 0 · · · φ̃N (0, E) 1

φ̃′1(0, E) φ̃′2(0, E) · · · φ̃′N (0, E) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (28)

In general, the eigenvalues obtained from Eq. (28) will be different from those coming

from Eq. (13). However, there are two important situations where the same eigenvalues

result. This happens for the special case of two prongs (N = 2) and for the case of all

identical prongs. These results can be understood from a physical viewpoint, since N = 2

is the standard one-dimensional situation treated in supersymmetric quantum mechanics,

and furthermore, as we have seen in Sec. 3, these are the same eigenvalues for the identical

prong case. Thus we see the machinery of supersymmetric quantum mechanics can be

immediately applied to get eigenvalues and eigenfunctions of the partner potential Ṽ (~x) for

the identical prong case. The equality of eigenvalues from Eqs. (13) and (28) can also be

established from a mathematical viewpoint using Eqs. (26) and (27).

6 Perturbation Theory

Having solved a multi-prong problem, it is of interest to see the influence of a small

perturbation of the potential in one of the prongs, say, on the energy levels. Here, for

simplicity, we will only deal with an unperturbed system with three identical prongs. Con-

sider an unperturbed system with potential Vi(xi) = V0(xi) on each prong. Its completely

symmetric ground state

ψ(0)(~1, ~x) ≡ 1√
3

{

ψ(0)(x1), ψ
(0)(x2), ψ

(0)(x3)
}

, (29)
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is described in terms of ψ(0)(x); the ground state eigenfunction of a two-prong system

with the same potential V0(xi) in each prong. We have chosen ψ(0)(x) to be normalized

to unity over one prong, so that the wave function in Eq. (29) is properly normalized.

The eigenenergy of this state is also the same as the ground state energy of the two-prong

system. The first excited state for this three-prong system is doubly degenerate. We choose

the following two orthonormal states as our base states:

ψ(1)(~a1; ~x) ≡
1√
2

{

ψ(1)(x1), 0,−ψ(1)(x3)
}

, (30)

and

ψ(1)(~a2; ~x) ≡
1√
6

{

ψ(1)(x1),−2ψ(1)(x2), ψ
(1)(x3)

}

. (31)

Both of these states have exactly the same energy as the first excited state of the two-prong

system.

Now, let us include a perturbation VI that is nonvanishing in only one prong. The

energy of the system is shifted and the degeneracy of the states of Eqs. (30) and (31) is

lifted. Interestingly, only one of the eigenvalues of the first excited state changes, while the

other one remains the same, thus causing the split. We compute here such shifts for the

ground state as well the first excited state of the system. For numerical concreteness only,

in the following example, we use the harmonic oscillator potential for V0 and αx3
1 as the

perturbation potential VI on prong 1. Thus the unperturbed potential is

V0(xi) =
1

4
ω2x2

i . (32)

Following the usual route, the shift of the ground state can be computed. The first order

shift, δE0, is given by

δE0 =

∫

dx1ψ
(0)∗
1 (x1)VIψ

(0)
1 (x1) =

4α

3
√

2πω3
. (33)

The next energy level has two fold degeneracy, and hence it is necessary to use the

formalism of degenerate perturbation theory. We compute the matrix elements of the

perturbing potential VI using ψ(1)( ~a1; ~x) and ψ(1)( ~a2; ~x) as basis vectors. For this situation,

the matrix VI is explicitly given by

VI =





γ 1√
3
γ

1√
3
γ 1

3γ



 ,

where, γ = 8α√
2πω3

. Diagonalizing the corresponding Hamiltonian, we find the eigenvalues

to be 0 and 4
3γ. Hence, at this level degeneracy is lifted and the difference in energy is 4

3γ.

The two eigenfunctions are given by

1

2
ψ(1)( ~a1; ~x) −

√
3

2
ψ(1)( ~a2; ~x) =

1√
2
{0, ψ(1)(x2),−ψ(1)(x3)} (34)
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and
1

2
ψ(1)( ~a1; ~x) +

√
3

2
ψ(1)( ~a2; ~x) =

1√
6

{

2ψ(1)(x1),−ψ(1)(x2), ψ
(1)(x3)

}

. (35)

It is interesting to note that the first state has the same energy as the unperturbed system.

Thus we see that, since the perturbation was added to just one prong, it does not break the

symmetry completely and one of the eigenenergies remains unchanged.

7 Scattering in a Multi-Prong System

The scattering of an incident plane wave off the vertex in a multi-prong system offers

scenarios that are different from the usual scattering in one-dimensional problems. As a

first example, consider a plane wave with energy E moving along Prong 1, incident upon

the vertex of an N -prong system with a constant potential V = 0 on all prongs. This is

a trivial example in the two-prong case leading to 100% transmission, and zero reflection.

For more than two prongs, it is not a priori intuitively clear whether full transmission will

occur or not. The wave function on prong 1 is given by

ψ1(x1) = exp(−ikx1) + r exp(ikx1), (36)

where k is the momentum of the incident plane wave (E = k2). The wave function on all

the other prongs (i 6= 1) only consists of outgoing waves and is given by

ψi(xi) = ti exp(ikxi). (37)

Imposition of the boundary conditions (2) and (3) on these wave functions at the vertex re-

lates the reflected amplitude r to the transmission amplitudes ti. Their explicit relationship

is given by

(1 + r) = ti (i = 2, · · · , N), r − 1 +
N
∑

i=2

ti = 0. (38)

The solution is

r =
2 −N

N
, ti =

2

N
(i = 2, · · · , N). (39)

The reflection and transmission coefficients are then given by

R =
(2 −N)2

N2
, Ti =

4

N2
(i = 2, · · · , N).

Clearly, one has R +
∑N

i=2 Ti = 1, and the probability current is conserved. For N = 2,

the reflection coefficient vanishes, as expected. However, for N > 2 there is always a finite

amount of reflection. For example, for a three-prong potential, the reflection coefficient is

R = 1
9 . In fact R increases continuously with N , and approaches unity for large number of

prongs, N . (This increase of R with N is shown in Fig. 7 by the curve labeled 1.) Thus

11



one has the curious result that an incident wave, when given a large choice of scattering

paths, in fact prefers to be reflected back on its initial prong!

Now let us consider a more general case where the incident wave is on a prong with

potential zero, whereas the remaining (N − 1) prongs are at constant potential V0. Let the

energy of the wave be E > V0. Let us define k2 = E, k′2 = E − V0 and the parameter

ζ = k′

k =
√

1 − V0

E . The wave function on prong 1 is again given by ψ1(x1) = exp(−ikx1) +

r exp(ikx1), and wave functions along remaining (N − 1) prongs are given by ψi(xi) =

ti exp(ik′xi) (i = 2, · · · , N). Boundary conditions (2) and (3) applied at the vertex yield

(1 + r) = t2 = t3 = · · · = tN ≡ t , − 1 + r + (N − 1)ζ = 0. (40)

Solving these equations, we find r = 1−ζ(N−1)
1+ζ(N−1) and t = 2

1+ζ(N−1) . One can show that r

and t obey 1 = r2 + ζ(N − 1)t2, as required by conservation of probability. The reflection

coefficient R, which is now given by

R =

[

1 − ζ(N − 1)

1 + ζ(N − 1)

]2

,

has a rather interesting behavior as a function of ζ and N . In Fig. 7, we have plotted R
as a function of N for several values of ζ. R vanishes for ζ = 1

(N−1) . Thus for some special

values of V0

E , we have complete transmission through the vertex. As N increases, R slowly

approaches unity for all ζ.

As yet another interesting example we consider scattering from a T-stub with N open

ended prongs and one prong of finite length l (the stub). We consider a case where potentials

along all the prongs are zero. A plane wave of momentum k (energy E = k2) incident upon

the vertex from prong 1, sets up stationary waves in the stub, and outgoing plane waves

in the remaining N − 1 prongs. The wave function on prong 1 is given by exp(−ikx1) +

r exp(ikx1). Along the stub, the wave function is given by A sin k(l − xs), where xs is the

coordinate along the stub and A is a constant. Wave functions along all other prongs are

given by t exp(ikxj), (j = 2, · · · , N). From boundary conditions (2) and (3), we get:

1 + r = A sin kl = t ; ik(r − 1) + ik(N − 1)t−Ak cos kl = 0.

Solving them, we get

r =
−(N − 2) − cot kl

N + i cot kl
, t =

2

N + i cot kl
. (41)

The reflection coefficient is given by R ≡ |r|2 = cot 2kl+(N−2)2

cot 2kl+N2 . Clearly, from the above

expression, one gets |r|2 + (N − 1)|t|2 = 1. Interestingly, we find that for kl = nπ, i.e.

energy E = n2π2

l2 , the reflection coefficient R → 1. At these energies, a standing wave is set

up jointly in the stub and in prong 1, and the particle never enters the other prongs.

12



Let us generalize the discussion of scattering to an N -prong vertex with identical po-

tentials V (xi) on all prongs. Define two linearly independent solutions f(xi) and g(xi) of

the Schrödinger equation using asymptotic boundary conditions as xi → ∞:

f(xi) → exp(−ikxi), g(xi) → exp(ikxi). (42)

The vertex conditions are f(0) + r g(0) = t g(0), and f ′(0) + r g′(0) + (N − 1) t g′(0) = 0.

The solution is

r = − 1

N

f ′(0)

g′(0)
− (N − 1)

N

f(0)

g(0)
, t = − 1

N

f ′(0)

g′(0)
+

1

N

f(0)

g(0)
. (43)

Conservation of probability requires |r|2 + (N − 1)|t|2 = 1 for all values of N . This

is satisfied provided
∣

∣

∣

f(0)
g(0)

∣

∣

∣ =
∣

∣

∣

f ′(0)
g′(0)

∣

∣

∣ = 1. Here again, we see that as the number of prongs

N → ∞, the reflection coefficient R = |r|2 approaches unity.

Having analyzed scattering on a general identical N -prong domain, we now investigate

whether we can extract any further information using supersymmetry. In one dimensional

quantum mechanics, supersymmetry relates reflection and transmission coefficients of one

potential with those of its supersymmetric partner potential[12]. We find that this relation-

ship holds also for the case of N identical prongs.

We have just seen that for the potential V (xi) on all prongs, the scattering is described

by Eq. (43). The partner potential is given by Eq. (25). Let f̃ and g̃ be the solutions of the

partner potential which behave like f̃(xi) → exp(−ikxi), g̃(xi) → exp(ikxi), as xi → ∞.

Functions f̃ and g̃ are given by

f̃(xi) =
1

W∞ + ik

{−d
dxi

+W (xi)

}

f(xi), g̃(xi) =
1

W∞ − ik

{−d
dxi

+W (xi)

}

g(xi), (44)

where W∞ is the value of the superpotential at infinity. From these expressions, we can

show that f̃(0)
g̃(0) =

(

W∞−ik
W∞+ik

)

f ′(0)
g′(0) , and f̃ ′(0)

g̃′(0) =
(

W∞−ik
W∞+ik

)

f(0)
g(0) . The reflection and transmission

amplitudes for the potential Ṽ (xi) are given by

r̃ =

(

W∞ − ik

W∞ + ik

)(

− 1

N

f(0)

g(0)
− (N − 1)

N

f ′(0)

g′(0)

)

, t̃ =

(

W∞ − ik

W∞ + ik

)(

− 1

N

f(0)

g(0)
+

1

N

f ′(0)

g′(0)

)

.

Note, for the special case of two-prongs, these equations agree with reference [12]. We

find the following relationship among r, t and their partners r̃ and t̃:

r̃ =

(

W∞ − ik

W∞ + ik

)

r, t̃ = −
(

W∞ − ik

W∞ + ik

)

t.

Note that |r̃|2 = |r|2, which implies that for the identical prong case, the reflection coeffi-

cients are the same for any potential and its supersymmetric partner.

Now, using an explicit example, we provide a concrete demonstration of the usefulness

of the machinery that we just developed. For the sake of simplicity, we shall work with
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the example of a free particle in an N -prong system for which reflection and transmission

coefficients are given by Eq. (39). The superpotential for this problem is given by W (x) =

tanhx. This superpotential generates two distinct potentials related by supersymmetry.

They are V (x) ≡W 2(x)−W ′(x) = 1− 2 sech2x and Ṽ (x) ≡W 2(x) +W ′(x) = 1. The first

potential holds one bound state at energy E = 0.

Amplitudes r̃ and t̃ for the free particle system are 2−N
N and 2

N , respectively. Amplitudes

r and t for the potential V (x) = 1 − 2 sech2x, are then given by

r =

(

1 + ik

1 − ik

)

[

− 1

N

f̃(0)

g̃(0)
− N − 1

N

f̃ ′(0)

g̃′(0)

]

=

(

1 + ik

1 − ik

)(

N − 2

N

)

, t = −
(

1 + ik

1 − ik

)(

2

N

)

.

Thus, knowing the reflection and transmission amplitudes r̃ and t̃ for the free particle

system, supersymmetry allows us to determine amplitudes r and t for the rather non-trivial

potential V (x) = 1 − 2 sech2x. Note that coefficients R̃ = |r̃|2 and T̃ = |t̃|2 are equal to

coefficients for the partner potential, R = |r|2 and T = |t|2 respectively.

8 Tunneling in a Multi-Prong System

Tunneling is another sector of great interest that shows a marked difference from the

two-prong case. Consider a system with N identical prongs, each one having one minimum

(well-like structure, similar to the two-prong case shown in Fig. 2). In this section, we look

at the tunneling of a localized wave packet from one prong to the others. For simplicity,

we start with a three-prong system. The generalization to higher number of prongs is then

straightforward. Let Φi(~x) denote a wave packet localized in the i-th prong. Such a packet

can be approximated by the following linear combination of eigenstates of the system:

Φi(~x) =
1

3

(

ψ(0)(~1, ~x) + ψ(1)(~ai, ~x)
)

, (45)

where ~1 ≡ (1, 1, 1) and ~ai denotes a three-tuple that has a 2 in the i-th position and −1 in

the rest. For example, ~a1 is given by the three-tuple (2,−1,−1).

The amplitude for the localized state Φi(~x) to tunnel out of the prong 1 is given by:

A(t) = 〈ψf | exp(−iHt) |ψi〉 (46)

where

ψi = Φ1(~x) and ψf =
1

√

α2
2 + α2

3

(α2Φ2(~x) + α3Φ3(~x)) ;

α2 + α3 = 1. Substituting explicit expressions for ψf and ψi in Eq. (46), we get

Aα2 α3
=

1

3
√

α2
2 + α2

3

∫

d~x [α2Φ2(~x) + α3Φ3(~x)]
[

e−iE0 tψ(0)(~1, ~x) + e−iE1 tψ(1)( ~a1, ~x)
]
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=
1

9
√

α2
2 + α2

3

∫

d~x
[

α2ψ
(1)( ~a2, ~x) + α3ψ

(1)( ~a3, ~x) + ψ(0)(~1, ~x)
]

×
[

e−iE0 tψ(0)(~1, ~x) + e−iE1 tψ(1)( ~a1, ~x)
]

=
e−iE1 t

9
√

α2
2 + α2

3

[

α2 ~a1 · ~a2 + α3 ~a1 · ~a3 + 3 eiδE t
]

, δE ≡ E1 − E0 ,

where we have used
∫

d~xψ(1)( ~a1, ~x)ψ
(1)( ~a2, ~x) = ~a1 · ~a2 =

∑

i( ~a1)i( ~a2)i. Substituting ~a1 · ~a3 =

~a1 · ~a2 = −3, we get

Aα2 α3
=

e−iE1 t

3
√

α2
2 + α2

3

[

−1 + eiδE t
]

.

The probability of tunneling is then given by

Pα2 α3
= |Aα2 α3

|2 =
4

9(α2
2 + α2

3)
sin2

(

δE t

2

)

;

The maximum value for this tunneling probability is 8
9 , and that occurs when α2 = α3 = 1

2 .

It is worth noting here that unlike the two-prong case, the wave packet never completely

goes out of the prong 1.

When we generalize this situation to N -prong case, we find that the probability ampli-

tude for a wave packet Φ1(~x) of tunneling out of prong 1 is given by

A~α =
2ie−i(E0+δE/2)sin(δEt/2)

N
(

∑N
j=2 α

2
j

)1/2
,

where ~α ≡ {α2, α3, · · · , αN} with αi
(

∑N

j=2
α2

j

) giving the amplitude for finding the packet in

the i-th prong





∑

i
αiΦi(~x)

(

∑N

j=2
α2

j

)



. This amplitude is maximum for the symmetric case for which

all αi are equal. In this case the probability of tunneling is given by

P =
4(N − 1)

N2
sin2

(

δE t

2

)

.

Thus the probability of tunneling decreases when more alternatives are available, and goes

to zero as the number of prongs becomes very large. This is similar to the scattering

situation discussed in Sec. 7.
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Figure Captions

Figure 1: Schematic diagram of an N -prong potential. The position on any prong i is

specified by the positive coordinate xi, with xi = 0 being the vertex. The angles between

prongs play no role in any computations.

Figure 2: Example of a potential with two identical prongs. The positive variables x1, x2

together span the real x-axis (−∞ < x <∞).

Figure 3: The three lowest eigenfunctions [Eqs. (8), (9) and (10)] for a three-prong

harmonic oscillator potential V (xi) = 1
2mω

2x2
i . The ground state ψ(0) is non-degenerate,

whereas the first excited state ψ(1) is doubly degenerate.

Figure 4: The three lowest energy eigenstates (un-normalized) for a three-prong free par-

ticle potential. The solid lines correspond to l1 = l3 = 1, l2 = 0.8 . The dashed lines

correspond to the identical prong case l1 = l2 = l3 = 1 .

Figure 5: The eigenvalues k (energy E = k2) for a three-prong free particle potential as

a function of l2, the length of prong 2. The lengths of the other two prongs are kept fixed

and equal l1 = l3 = 1 . Note the pattern of degeneracy and level crossings. The curves are

labeled by the number of nodes in the wave function (in all prongs).

Figure 6: The eigenvalues k (energy E = k2) for a three-prong free particle potential as

a function of l2, the length of prong 2. The lengths of the other two prongs are kept fixed

and unequal l1 = 1 , l3 =
√

2. There is now no degeneracy. The curves are labeled by the

number of nodes in the wave function (in all prongs).

Figure 7: A plot of the reflection coefficient R versus the number of prongs N . The

incident wave with energy E is on prong 1 with zero potential. All other prongs are taken

to be at a constant potential V0. The curves are labeled by the parameter ζ ≡
√

1 − V0

E .
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