
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

3-2011

RestFS: The Filesystem as a Connector Abstraction for Flexible RestFS: The Filesystem as a Connector Abstraction for Flexible

Resource and Service Composition Resource and Service Composition

Joseph P. Kaylor

Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Joseph P. Kaylor, Konstantin Läufer, and George K. Thiruvathukal. RestFS: The Filesystem as a Connector
Abstraction for Flexible Resource and Service Composition. In Cloud Computing: Methodology, System,
and Applications (edited by Lizhe Wang, Rajiv Ranjan, Jinjun Chen, Boualem Benatallah), CRC Press, Boca
Raton, Florida, USA, September 2011.

This Book Chapter is brought to you for free and open access by the Faculty Publications and Other Works by
Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications
and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2011 Joseph P. Kaylor, Konstantin Läufer, and George K. Thiruvathukal

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Author Name
Book title goes here

2

Foreward
I am delighted to introdue the �rst book on Multimedia Data Mining. WhenI ame to know about this book projet undertaken by two of the most ativeyoung researhers in the �eld, I was pleased that this book is oming in earlystage of a �eld that will need it more than most �elds do. In most emergingresearh �elds, a book an play a signi�ant role in bringing some maturity tothe �eld. Researh �elds advane through researh papers. In researh papers,however, only a limited perspetive ould be provided about the �eld, itsappliation potential, and the tehniques required and already developed inthe �eld. A book gives suh a hane. I liked the idea that there will be a bookthat will try to unify the �eld by bringing in disparate topis already availablein several papers that are not easy to �nd and understand. I was supportiveof this book projet even before I had seen any material on it. The projetwas a brilliant and a bold idea by two ative researhers. Now that I have iton my sreen, it appears to be even a better idea.Multimedia started gaining reognition in 1990s as a �eld. Proessing,storage, ommuniation, and apture and display tehnologies had advanedenough that researhers and tehnologists started building approahes to om-bine information in multiple types of signals suh as audio, images, video, andtext. Multimedia omputing and ommuniation tehniques reognize orre-lated information in multiple soures as well as insu�ieny of information inany individual soure. By properly seleting soures to provide omplemen-tary information, suh systems aspire, muh like human pereption system,to reate a holisti piture of a situation using only partial information fromseparate soures.Data mining is a diret outgrowth of progress in data storage and proess-ing speeds. When it beame possible to store large volume of data and rundi�erent statistial omputations to explore all possible and even unlikely or-relations among data, the �eld of data mining was born. Data mining allowedpeople to hypothesize relationships among data entities and explore supportfor those. This �eld has been put to appliations in many diverse domains andkeeps getting more appliations. In fat many new �elds are diret outgrowthof data mining and it is likely to beome a powerful omputational tool.

i

Contributors
Mihael AftosmisNASA Ames Researh CenterMo�ett Field, CaliforniaPratul K. AgarwalOak Ridge National LaboratoryOak Ridge, TennesseeSadaf R. AlamOak Ridge National LaboratoryOak Ridge, TennesseeGabrielle AllenLouisiana State UniversityBaton Rouge, LouisianaMartin Sandve AlnæsSimula Researh Laboratory andUniversity of Oslo, NorwayNorwaySteven F. AshbyLawrene Livermore NationalLaboratoryLivermore, CaliforniaDavid A. BaderGeorgia Institute of TehnologyAtlanta, GeorgiaBenjamin BergenLos Alamos National LaboratoryLos Alamos, New MexioJonathan W. BerrySandia National LaboratoriesAlbuquerque, New Mexio

Martin BerzinsUniversity of UtahSalt Lake City, UtahAbhinav BhateleUniversity of IllinoisUrbana-Champaign, IllinoisChristian BishofRWTH Aahen UniversityGermanyRupak BiswasNASA Ames Researh CenterMo�ett Field, CaliforniaEri BohmUniversity of IllinoisUrbana-Champaign, IllinoisJames BordnerUniversity of California, San DiegoSan Diego, CaliforniaGeorge BosilaUniversity of TennesseeKnoxville, TennesseeGreg L. BryanColumbia UniversityNew York, New YorkMarian BubakAGH University of Siene andTehnology iii

ivKraków, PolandAndrew CanningLawrene Berkeley NationalLaboratoryBerkeley, CaliforniaJonathan CarterLawrene Berkeley NationalLaboratoryBerkeley, CaliforniaZizhong ChenJaksonville State UniversityJaksonville, AlabamaJoseph R. CrobakRutgers, The State University ofNew JerseyPisataway, New JerseyRoxana E. DiaonesuYahoo! In.Burbank, CaliforniaPeter DienerLouisiana State UniversityBaton Rouge, LouisianaJak J. DongarraUniversity of Tennessee, Knoxville,Oak Ridge National Laboratory,andUniversity of ManhesterJohn B. DrakeOak Ridge National LaboratoryOak Ridge, TennesseeKelvin K. DroegemeierUniversity of OklahomaNorman, OklahomaStéphane EthierPrineton UniversityPrineton, New Jersey

Christoph FreundlFriedrih�Alexander�UniversitätErlangen, GermanyKarl FürlingerUniversity of TennesseeKnoxville, TennesseeAl GeistOak Ridge National LaboratoryOak Ridge, TennesseeMihael GerndtTehnishe Universität MünhenMunih, GermanyTom GoodaleLouisiana State UniversityBaton Rouge, LouisianaTobias GradlFriedrih�Alexander�UniversitätErlangen, GermanyWilliam D. GroppArgonne National LaboratoryArgonne, IllinoisRobert HarknessUniversity of California, San DiegoSan Diego, CaliforniaAlbert HartonoOhio State UniversityColumbus, OhioThomas C. HendersonUniversity of UtahSalt Lake City, UtahBrue A. HendriksonSandia National LaboratoriesAlbuquerque, New MexioAlfons G. HoekstraUniversity of AmsterdamAmsterdam, The Netherlands

vPhilip W. JonesLos Alamos National LaboratoryLos Alamos, New MexioLaxmikant KaléUniversity of IllinoisUrbana-Champaign, IllinoisShoaib KamilLawrene Berkeley NationalLaboratoryBerkeley, CaliforniaCetin KirisNASA Ames Researh CenterMo�ett Field, CaliforniaUwe KüsterUniversity of StuttgartStuttgart, GermanyJulien LangouUniversity of ColoradoDenver, ColoradoHans Petter LangtangenSimula Researh Laboratory andUniversity of Oslo, NorwayMihael LijewskiLawrene Berkeley NationalLaboratoryBerkeley, CaliforniaAnders LoggSimula Researh Laboratory andUniversity of Oslo, NorwayJustin LuitjensUniversity of UtahSalt Lake City, UtahKamesh MadduriGeorgia Institute of TehnologyAtlanta, GeorgiaKent-Andre MardalSimula Researh Laboratory and

University of Oslo, NorwaySatoshi MatsuokaTokyo Institute of TehnologyTokyo, JapanJohn M. MayLawrene Livermore NationalLaboratoryLivermore, CaliforniaCelso L. MendesUniversity of IllinoisUrbana-Champaign, IllinoisDieter an MeyRWTH Aahen UniversityGermanyTetsu NarumiKeio UniversityJapanMihael L. NormanUniversity of California, San DiegoSan Diego, CaliforniaBoyana NorrisArgonne National LaboratoryArgonne, IllinoisYousuke OhnoInstitute of Physial and ChemialResearh (RIKEN)Kanagawa, JapanLeonid OlikerLawrene Berkeley NationalLaboratoryBerkeley, CaliforniaBrian O'SheaLos Alamos National LaboratoryLos Alamos, New MexioChristian D. OttUniversity of ArizonaTuson, Arizona

viJames C. PhillipsUniversity of IllinoisUrbana-Champaign, IllinoisSimon Portegies ZwartUniversity of Amsterdam,Amsterdam, The NetherlandsThomas RadkeAlbert-Einstein-InstitutGolm, GermanyMihael ReshUniversity of StuttgartStuttgart, GermanyDaniel ReynoldsUniversity of California, San DiegoSan Diego, CaliforniaUlrih RüdeFriedrih�Alexander�UniversitätErlangen, GermanySamuel SarholzRWTH Aahen UniversityGermanyErik ShnetterLouisiana State UniversityBaton Rouge, LouisianaKlaus ShultenUniversity of IllinoisUrbana-Champaign, IllinoisEdward SeidelLouisiana State UniversityBaton Rouge, LouisianaJohn ShalfLawrene Berkeley NationalLaboratoryBerkeley, CaliforniaBo-Wen Shen

NASA Goddard Spae Flight CenterGreenbelt, MarylandOla SkavhaugSimula Researh Laboratory andUniversity of Oslo, NorwayPeter M.A. SlootUniversity of AmsterdamAmsterdam, The NetherlandsErih StrohmaierLawrene Berkeley NationalLaboratoryBerkeley, CaliforniaMakoto TaijiInstitute of Physial and ChemialResearh (RIKEN)Kanagawa, JapanChristian TerbovenRWTH Aahen University,GermanyMariana VertensteinNational Center for AtmospheriResearhBoulder, ColoradoRik WagnerUniversity of California, San DiegoSan Diego, CaliforniaDaniel WeberUniversity of OklahomaNorman, OklahomaJames B. White, IIIOak Ridge National LaboratoryOak Ridge, TennesseeTerry WilmarthUniversity of IllinoisUrbana-Champaign, Illinois

List of Figures
1.1 The timeline of a RestFS web servie all 101.2 The �exible internal and external omposition possible withRestFS . 111.3 A sample omposition of a blog, news soures, and Twitter . 121.4 The FlikrPhoto domain objet from FlikrFS 141.5 The FlikrUser domain objet from FlikrFS 151.6 The Portfolio lass for the stok tiker �lesystem 161.7 The Stok lass for the stok tiker �lesystem 171.8 FlikrFS with both RestFS and NOFS 181.9 A photo �lesystem omposed of multiple photo servies . . . 191.10 The Contat NOFS Domain Objet 221.11 Representation on the �lesystem of the Contat domain objet 221.12 The Category NOFS Domain Objet 231.13 The relationship between NOFS, FUSE, and the Linux kernel 241.14 The NOFS path translation algorithm 251.15 The NOFS root disovery algorithm 251.16 The ommuniation path for exeutable sripts in NOFS . . . 261.17 The NOFS argument translation algorithm 261.18 The NOFS XML serialization algorithm 271.19 The NOFS ahe and serialization relationship 271.20 An example RestFS on�guration �le for a Google Searh . . 301.21 The RestfulSetting NOFS domain objet 311.22 RestFS resoure �le triggering algorithm 311.23 An example of an OAuth on�guration in RestFS 321.24 An example OAuth on�guration �le for Twitter 321.25 An example OAuth Token �le 331.26 The RestFS authentiation proess 33

vii

viii

List of Tables

ix

x

Contents
I This is a Part 11 RestFS: The Filesystem as a Connetor Abstration for Flex-ible Resoure and Servie Composition 3Joseph Kaylor, Konstantin Läufer, and George K. Thiruvathukal1.1 Related Work . 51.1.1 Representational State Transfer (ReST) 51.1.2 Inter-Proess Communiation Through the Filesystem 51.1.3 Reent Developments in File-Based IPC 61.1.4 The Shift from Kernel Mode to User Mode FilesystemDevelopment . 71.2 Composition of Web Servies Through the Filesystem 81.2.1 Commonalities BetweenWeb Resoures and the Filesys-tem . 81.2.2 The Filesystem as a Connetor Layer 91.2.3 The Filesystem as an Appliation and Abstration . . 121.2.4 Combining the Approahes: Using the RestFS Conne-tor Layer in a NOFS Appliation Filesystem 181.3 Building Appliation Filesystems with the Naked ObjetFilesystem (NOFS) . 191.3.1 An Explanation of Naked Objets 201.3.2 The Naked Objet Filesystem (NOFS) 201.3.3 Implementing a Domain Model with NOFS 211.3.3.1 Implementing Files and Folders in NOFS . . 211.3.4 Arhiteture of NOFS 231.4 Arhiteture and Details of RestFS 281.4.1 RestFS's approah . 291.4.1.1 Con�guration Files in RestFS 291.4.1.2 Implementation of Con�guration Files inRestFS . 301.4.1.3 Resoure Files in RestFS 301.4.1.4 Authentiation in RestFS 321.4.1.5 Putting it All Together 341.5 Summary . 34Bibliography 35xi

xii

Symbol Desription
α To solve the generator main-tenane sheduling, in thepast, several mathematialtehniques have been ap-plied.
σ2 These inlude integer pro-gramming, integer linearprogramming, dynami pro-gramming, branh andbound et.∑ Several heuristi searh algo-rithms have also been devel-oped. In reent years expertsystems,
abc fuzzy approahes, simulated

annealing and geneti algo-rithms have also been tested.
θ
√

abc This paper presents a surveyof the literature
ζ over the past �fteen years inthe generator
∂ maintenane sheduling.The objetive is tosdf present a lear piture of theavailable reent literatureewq of the problem, the on-straints and the other as-pets ofbvn the generator maintenaneshedule.

Part IThis is a Part

1

1RestFS: The Filesystem as a ConnetorAbstration for Flexible Resoure and ServieCompositionJoseph KaylorDepartment of Computer Siene, Loyola University ChiagoKonstantin LäuferDepartment of Computer Siene, Loyola University ChiagoGeorge K. ThiruvathukalDepartment of Computer Siene, Loyola University ChiagoCONTENTS1.1 Related Work . 41.1.1 Representational State Transfer (ReST) . 51.1.2 Inter-Proess Communiation Through the Filesystem 51.1.3 Reent Developments in File-Based IPC . 61.1.4 The Shift from Kernel Mode to User Mode Filesystem Develop-ment . 61.2 Composition of Web Servies Through the Filesystem 81.2.1 Commonalities Between Web Resoures and the Filesystem 81.2.2 The Filesystem as a Connetor Layer . 91.2.3 The Filesystem as an Appliation and Abstration 121.2.4 Combining the Approahes: Using the RestFS Connetor Layer ina NOFS Appliation Filesystem . 131.3 Building Appliation Filesystems with the Naked Objet Filesystem(NOFS) . 191.3.1 An Explanation of Naked Objets . 201.3.2 The Naked Objet Filesystem (NOFS) . 201.3.3 Implementing a Domain Model with NOFS . 211.3.3.1 Implementing Files and Folders in NOFS 211.3.4 Arhiteture of NOFS . 231.4 Arhiteture and Details of RestFS . 281.4.1 RestFS's approah . 291.4.1.1 Con�guration Files in RestFS . 291.4.1.2 Implementation of Con�guration Files in RestFS 301.4.1.3 Resoure Files in RestFS . 301.4.1.4 Authentiation in RestFS . 321.4.1.5 Putting it All Together . 331.5 Summary . 343

4 Book title goes hereThe broader ontext for this hapter omprises business senarios requiringresoure and/or servie omposition, suh as (intra-ompany) enterprise ap-pliation integration (EAI) and (inter-ompany) web servie orhestration.The resoures and servies involved vary widely in terms of the protools theysupport, whih typially fall into remote proedure all (RPC) [1℄, resoure-oriented (HTTP [6℄ and WEBDAV [22℄) and message-oriented protools.By reognizing the similarity between web-based resoures and the kindof resoures exposed in the form of �lesystems in operating systems, we havefound it feasible to map the former to the latter using a uniform, on�gurableonnetor layer. One a remote resoure has been exposed in the form of a loal�lesystem, one an aess the resoure programmatially using the operatingsystem's standard �lesystem appliation programming interfae (API). Takingthis idea one step further, one an then aggregate or otherwise orhestrate twoor more remote resoures using the same standard API. Filesystem APIs areavailable in all major operating systems. Some of those, most notably, all�avors of UNIX inluding GNU/Linux, have a rih olletion of small, �exibleommand-line utilities, as well as various inter-proess ommuniation (IPC)mehanisms. These tools an be used in sripts and programs that omposethe various underlying resoures in powerful ways.Further explorations of the role of a �lesystem-based onnetor layer in theenterprise appliation arhiteture have lead us to the question whether onean ahieve a fully ompositional, arbitrarily deep hierarhial arhiteture byre-exposing the aggregated resoures as a single, omposite resoure that, inturn, an be aessed in the same form as the original resoures. This is indeedpossible in two �avors: 1) the omposite resoure an be exposed internally asa �lesystem for further loal omposition; 2) the omposite resoure is exposedexternally as a restful resoure for further external omposition. We expetthe ability hierarhially to ompose resoures to failitate the onstrution ofomplex, robust resoure- and servie-oriented software systems, and we hopethat onrete ase studies will further substantiate our position.Leveraging our prior work on the Naked Objets Filesystem (NOFS) [12℄,whih exposes objet-oriented domain model funtionality as a Linux �lesys-tem in user spae (FUSE) [20℄, we have implemented RestFS [11℄, a (dynam-ially re)on�gurable mehanism for exposing remote restful resoures and asloal �lesystems. Several sample adapters spei� to well-known servies suhas Yahoo! Plae�nder and Twitter are already available. Authentiation posesa hallenge in that it annot always be automated; in pratie, when systemssuh as OAuth are used, it is often only the initial granting of authentia-tion that must be manual, and the resulting authentiation token an then beinluded in the onnetor on�guration. As future work, we plan to developplugins to support resoures aross a broader range of protools, suh as FTP,SFTP, or SMTP.

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 51.1 Related WorkThere are various lines of related work, whih we will disuss in this setion.1.1.1 Representational State Transfer (ReST)Partly in response to the omplexity of the W3C's WS-* web servie spei-�ations [3℄, resoure-oriented approahes suh as the representational statetransfer (ReST) arhitetural style [7℄ have reeived growing attention dur-ing the seond half of this deade. In ReST, addressable, interonneted re-soures, eah with one or more possible representations, are usually exposedthrough the HTTP protool, whih is itself stateless, so that all state is loatedwithin the resoures themselves. These resoures share a uniform interfae,where resoure-spei� funtionality is mapped to the standard HTTP requestmethods GET, PUT, POST, DELETE, and several others. Clients of theseresoures an aess them diretly through HTTP, use a language-spei�framework with ReST lient support, or rely on resoure- and language-spei�lient-side bindings.1.1.2 Inter-Proess Communiation Through the FilesystemMost methods of IPC an be represented in the �lesystem namespae in manyoperating systems. Pipes, domain sokets and memory-mapped �les an existin the �lesystem in UNIX [13℄. While pipes are uni-diretional, allowing oneprogram to onnet at eah end point, other IPC methods suh as UNIXdomain sokets allow for multiple lient onnetions and permit data to bewritten in both diretions. With this apability, it is possible for output fromseveral programs to be aggregated by one program instead of a 1:1 model as isallowed by pipes. Other methods of IPC, suh as memory-mapped and regular�les, allow several programs to ollaborate through a ommon, named storeof data.Composition of the �les in �lesystems is also possible through layered orstakable �lesystems. Mehanisms for this di�er amongst operating systems.In 4.4BSD-Lite, Union Mounts [17℄ allowed for �lesystems to be mounted ina linear hierarhy. Changes to �les lower in the hierarhy would override �lesin the higher part of the hierarhy. The Plan 9 distributed operating systemallowed for the �lesystem namespae to be manipulated through the mount,unmount, and bind system alls [18, 19℄. In our own researh, we have imple-mented a layered �lesystem, OLFS, whih allowed for a �exible layering andinheritane sheme through folder manipulation [10℄. Eah of these approahesmanipulates the �lesystem namespae and onsequently allows for hanges inon�guration and how IPC resoures are loated. This apability an helpprovide for new and interesting ways to share data between programs.

6 Book title goes hereAlthough not as widespread, some operating systems implement more ad-vaned IPC suh as network onnetions, spei� protools suh as HTTP orFTP, and other servies through the �lesystem namespae. An exellent ex-ample of this is the Plan9 operating system. Plan9's �lesystem layer, the 9Pprotool, is used to represent user interfae windows, proesses, storage �les,and network onnetions. In Plan9, it is possible through �lesystem alls toengage in IPC in a more uniform way on a loal mahine and aross separatemahines.In terms of inter-mahine �le-based IPC, it has been possible for manyyears to oordinate and share data among proesses by writing to �les onnetwork �lesystems. As long as the network �lesystem has adequate lokingmehanisms and an adequate solution to the ahe ohereny problem, itis possible to perform IPC through �le-based system alls over a network�lesystem.Other than oordination through network �lesystems or speialized oper-ating system mehanisms like 9P, muh inter-mahine IPC has been throughabstrations on top of the network soket. Remote proedure all approahessuh as RPC or RMI have provided a standard way for proesses to share dataand oordinate with eah other. Other soket-based approahes inlude theHTTP protool and abstrations on top of HTTP, suh as SOAP and REST.1.1.3 Reent Developments in File-Based IPCSome more reent advanes have been made in terms of inter-mahine IPCover the �lesystem. Appliation �lesystems are being built on top of FUSE toat as lients for web servies suh as Flikr, IMAP email servies, AmazonS3, and others. Instead of using the soket as the basis for IPC with theseservies, it has beome possible to be able to interat with them through�lesystem alls.IPC through the �lesystem o�ers some advantages. Although in UNIX-like operating systems, it is possible to rediret output to a soket through aprogram like soat, netat, or n, there are many network options and issueslike datagram versus streaming to onsider. File-based IPC often presents asimpler interfae to work with and leaves many of the networking and protoolquestions to the implementing �lesystem. Another important advantage thatit o�ers is that proesses that interat with these appliation �lesystems istranspareny. The proesses that interat with these appliation �lesystemsdo not need to be aware of whih servie they are interating with, whih URLit is loated at or what types of SOAP messages it requires to ommuniatewith. With a Flikr �lesystem, it is possible to use programs that simplyinterat with images aside from a web browser to interat with the Flikrphoto servie.

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 71.1.4 The Shift from Kernel Mode to User Mode FilesystemDevelopmentIn very early systems, development of new �lesystem ode was a hallengebeause of high oupling with storage devie arhiteture and kernel ode.In the 1970s, with the introdution of MULTICS, UNIX, and other systemsof the time, more strutured systems with separated layers beame more om-mon. UNIX used a onept of i-nodes, whih were a ommon data struturethat desribed strutures on the �lesystem [21℄. Di�erent �lesystem imple-mentations within the same operating system kernel ould share the i-nodestruture; this inluded on-disk and network �lesystems. Early UNIX operat-ing systems shared a ommon dis and �lesystem ahe and other struturesrelated to making alls to the I/O layer that managed the diss and networkinterfaes.Newer UNIX-like systems suh as 4.2 BSD and SunOS inluded an up-dated arhiteture alled v-nodes [15℄. The goal was to split the �lesystem'simplementation-independent funtionality in the kernel form the �lesystem'simplementation-dependent funtionality. Mehanisms like path parsing, bu�erahe, i-node tables, and other strutures beame more shareable. Also, op-erations based on v-nodes beame reentrant, thereby allowing new behaviorto be staked on top of other �lesystem ode or to modify existing behav-ior. V-nodes also helped to simplify systems design and to make �lesystemsimplementations more portable to other UNIX-like systems. Many modernUNIX-like systems have a v-nodes-like layer in their �lesystems ode.With the advent of miro-kernel arhitetures, �lesystems being built asuser-mode appliations beame more ommon and popular even in operatingsystems with monolithi kernel arhitetures. Several systems with di�erentdesign philosophies have been built. We desribe three of these systems thatare most losely related to NOFS: FUSE [20℄, ELFS [9℄, and Frigate [14℄.The Extensible File System (ELFS hereafter) is an objet-oriented frame-work built on top of the �lesystem that is used to simplify and enhane theperformane of the interation between appliations and the �lesystem. ELFSuses lass de�nitions to generate ode that takes advantage of pre-fething andahing tehniques.ELFS also allows developers to automatially take advan-tage of parallel storage systems by using multiple worker threads to performreads and writes. Also, sine ELFS has the de�nition of the data strutures,it an build e�ient read and write plans. The novelty of ELFS is that thedeveloper an use an objet-oriented arhiteture and allow ELFS to take areof the details.Frigate is a framework that allows developers to injet behavioral hangesinto the �lesystem ode of an operating system. Modules built in Frigateare run as user-mode servers that are alled to by a module that exists in theoperating system's kernel. Frigate takes advantage of the reentrant struture ofvnodes in UNIX-like operating systems to allow the Frigate module developerto layer behavior on top of existing �lesystem ode. Frigate also allows the

8 Book title goes heredeveloper to tag ertain �les with additional metadata so that di�erent Frigatemodules an automatially work with di�erent types of �les. The noveltyof Frigate is that developers do not need to understand operating-systemsdevelopment to modify the apabilities of �lesystem ode, and they an testand debug their modules as user-mode appliations. But they still need to beaware of the UNIX �lesystem strutures and funtions.File Systems in Userspae (FUSE hereafter) is a user mode �lesystemsframework. FUSE is supported by many UNIX-like operating systems suhas Linux, FreeBSD, NetBSD, OpenSolaris, and Ma OSX. The interfae sup-ported by FUSE is very similar to the set of UNIX system alls that areavailable for �le and folder operations. Aside from the ability to make allsinto the host operating system, there is less sharing with the operating systemthan with v-nodes suh as path parsing. FUSE has helped many �lesystemimplementations suh as NTFS and ZFS to be portable to many operatingsystems. Sine FUSE �lesystems are built as user-land programs, they anbe easier to develop in languages other than C or C++, easier to unit test,and easier to debug. Aordingly, FUSE has beome a popular platform forimplementing appliation-spei� �lesystems.
1.2 Composition of Web Servies Through the Filesys-temFilesystems an play di�erent roles in the omposition of web-based resouresand servies. We will now study these in more detail.1.2.1 Commonalities Between Web Resoures and theFilesystemWe believe that there are lear ommonalities between web servies and the�lesystem. Both systems have a onept of a URI. In web servies, this anbe an HTTP URL. In the �lesystem this an be a �le or folder path. In bothsystems there are protool ations that an be used to send and retrieve data.In web servies this an be aomplished through HTTP GET and POST.In �lesystems, this an be aomplished through read() and write() systemalls. In both systems it is possible to invoke exeutable elements. In webservies this an be performed with GET and POST alls and the use of SOAPmessages to web servie URLs. On a loal �lesystem, exeutable servies anbe invoked by loading and exeuting programs from the loal �lesystem.In our exploration we believe that there are three andidates for how tobuild the �lesystem layer to expose resoures from the web. The �rst wayis through appliation �lesystems built with the Naked Objet Filesystem(NOFS) framework. The seond way is to use the �lesystem as a onnetor

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 9layer to abstrat and re-expose web resoures to the loal system. The thirdway is to use a ombination of the �lesystem as a onnetor layer and the�lesystem as an appliation. We have explored this seond route with RestFS,whih has been implemented using the NOFS framework. In eah of thesemethodologies we demonstrate how to map onepts from web servies ontothe �lesystem. We will also explain the advantages and disadvantages to eahapproah.1.2.2 The Filesystem as a Connetor LayerIn our exploration of �lesystems, we questioned whether a �lesystem ouldbe used as a onnetor layer for web servies. We also questioned whetherthat onnetor layer ould be used to ompose web servies with loal andother web servies and then expose those web servies externally as a newweb servie. RestFS is our attempt to implement suh a �lesystem.RestFS is an appliation �lesystem implemented with the NOFS frame-work. RestFS uses �les to model interation with web servies. When a �leis reated in RestFS, two �les are reated: a on�guration �le and a resoure�le. The on�guration �le ontains an XML doument that an be updatedto ontain a web servie URI, web method, authentiation information, and atriggering �lesystem method. One on�gured, the resoure �le an be inter-ated with on the loal mahine to interat with a web servie.One example of the usage of RestFS is to reate a �le that an perform aGoogle Searh. In this example, the �le is on�gured with the Google APIsserver and the web searh servie. Web requests are sent with the GET HTTPmethod and are triggered by the utime �lesystem all. When a user of the�lesystem issues a `touh' ommand on the resoure �le, a GET request isissued by RestFS to the Google API server and the response from that serveris written bak to the resoure �le, whih will be available for subsequentreads. In this example, the task of on�guring the resoure, triggering therequest, and parsing the results are left to a Bash shell sript.Another example usage of RestFS is with the Yahoo! PlaeFinder servie.This example is similar to the Google searh example. The on�guration �leis setup with the URI for the web servie, and the utime system all is usedto trigger the web request. Also, in this example, a shell sript is used toon�gure the RestFS �le, trigger the web servie all, and to parse the results.With our implementation of resoure �les in RestFS, remote web resouresan be interated with in a similar way as other loal �le based IPC. The loalnature of the resoure �les allows for programs that read from and write to theresoure �les to be unaware of the web servie that RestFS is ommuniatingwith. For example, it is possible to use programs suh as grep, sed, or perlto searh, transform, and manipulate the data in the resoure �le. In eah ofthese ases, these programs do not need to be aware that the data they areworking with has been transparently read from or written to a remote webservie.

10 Book title goes here

FIGURE 1.1The timeline of a RestFS web servie allBeause RestFS ats as only a onnetor layer and provides no additionalinterpretation or �ltering of requests or responses, external programs are re-quired to read and write the strutured data that is neessary for interatwith on�gured web servies. In the Google Searh and Yahoo! PlaeFinderexamples, the task of writing a strutured request and parsing the responsewas left to a shell sript that took advantage of UNIX ommand line tools likesed, grep, and others. These sripts had to be aware of the struture of boththe requests and response needed by the web servie. It is possible to �lter,translate, and load data from the resoure �les with any loal program thatan aept data from a �le or a UNIX pipe. As a onsequene, it is possibleto augment the value added of the web servie with loal programs in severalpossible ombinations.The onnetor model presented by RestFS in ombination with other IPCmehanisms on the loal operating system makes it possible to ompose thedata from several web servies with eah other in a �exible and reon�gurableway. One possible example of this would be to setup several resoure �lesfor RSS news feeds aross the internet. A sript ould be implemented toparse eah of those news soures for spei� topis, aggregate them, and thenwrite them to another resoure �le that ould represent a submission formand servie for reating artiles on a blog. The same system then ould haveseveral resoure �les setup to wath Twitter aounts for omments on theartile and post responses on Twitter to the blog site. If new news soures

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 11

FIGURE 1.2The �exible internal and external omposition possible with RestFSbeome important or new Twitter aounts are neessary, new resoure �lesand alterations to sripts an be made to expand and reon�gure the system.It is possible to do all of this with a series of sripts and small programs on aUNIX operating system that use RestFS as a onnetor layer.There are some instanes where the onnetion layer onept has somedi�ulties in our exploration. When trying to ompose some web serviesthat are built around human interation through rih user interfaes, it anbe di�ult to reate a program that an interat with these servies in asimple way.One example of this is the CAPTCHA human test. To redue �spam� inthe form of email and as entries on blogs, many websites inorporate a formthat requests the user perform a small test suh as reognizing a sound orinterpreting letters on an image to prove to the system that the user of theweb servie is in fat a human. Often, after these initial interations, it ispossible for simple interation with RestFS, but beause of them it is notalways straightforward to automate the entire interation with a web servie.Other forms of non mahine readable interations suh as the use of images,sounds, or video an present ompliations for omposing web servies withRestFS.Another example would be web servies that make use of the user interfaefor omplex validation or additional business rules. While not an ideal design,suh web servies still exist on the internet. Beause loal programs will in-

12 Book title goes here

FIGURE 1.3A sample omposition of a blog, news soures, and Twitterterat with the appliation tier and not the presentation tier of a web servie,any logi that exists in that presentation tier that is neessary for properommuniation with the appliation tier must be dupliated in whatever loalomposition is made of the web servie.1.2.3 The Filesystem as an Appliation and AbstrationWhile exploring the possibilities for using �lesystems to interat with web ser-vies, we observed the emergene of appliation oriented �lesystems suh asWikipediaFS, IMAPFS, and FlikrFS. Eah of these �lesystems demonstratedi�erent web servies represented as di�erent omponents on �lesystems. Inseveral email oriented �lesystems, folders available in IMAP aounts are rep-resented as folders on the loal �lesystem and individual email messages as�les. In photo-sharing-oriented �lesystems suh as FlikrFS, photos are at-egorized into folders and exposed as standard image �les. In eah of theseappliation �lesystems, normal �le operations work as expeted. Copying anddeleting �les in FlikrFS ompletes the expeted operation of downloadingand uploading photos with a user's Flikr aount.After our own experienes with implementing storage oriented �lesystemsin FUSE, we felt that appliation �lesystems would bene�t from a di�erentabstration than what is presented by FUSE. To that end, we implementedthe Naked Objets Filesystem (NOFS). NOFS allows a developer to imple-ment an appliation �lesystem by annotating Java lasses in an appliation

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 13domain model. Through inspetion of these domain objets and assoiatedannotations, NOFS presents a �lesystem omposed of �les, folders, and exe-utable sripts to the user through FUSE to interat with the domain model.We will explore in detail the arhiteture and internal workings of NOFS in alater setion.With the NOFS framework, we were able to implement appliation �lesys-tems in a more rapid fashion with less �lesystem glue ode needed. This helpedredue the neessary omponents to expose a web servie suh as the Flikrphoto servie as a �lesystem (Figures 1.4, 1.5) to the interation with theREST-ful web servie and the onstrution of an adequate domain model torepresent the struture of the servie and �lesystem. Our implementation ofa simple Flikr �lesystem took 484 lines of Java ode. An existing Pythonimplementation of the Flikr �lesystem that uses FUSE diretly took 2144lines of ode. About half of the Python implementation was ode used to glueFUSE to the Flikr photo servie. The remainder of the ode was related tohandling the Flikr photo servie.Another example of an appliation �lesystem built with NOFS is the Ya-hoo! Finane stok tiker �lesystem. We were able to implement the entire�lesystem with just 155 lines of ode in two Java lasses (see Figures 1.6, 1.7)Appliation �lesystems like those that an be built with NOFS are veryuseful for user interation. Ations that make sense in a photo library serviehave exellent mappings to �lesystem ations. The fundamental unit in theservie, the photo, maps well to a �le. Colletions and ategories of photosmap well to folder strutures. In this partiular ase, for the sake of userinteration, the struture of the web servie alls and their mapping intoa onnetor layer like RestFS would not be a onvenient struture for userinteration. The appliation �lesystem allows for a better mapping of thebusiness unit / domain model that is presented by the web servie.Appliation �lesystems built through NOFS also are able to handle ationvalidation and interation in a simpler way than is possible with RestFS likesystems. If an ation on the domain model for an NOFS �lesystem is in someway invalid, an exeption an be raised so that the �lesystem all that triggeredthe ation an return an error ode. In this way, NOFS domain models anrestrit opy, delete, read, write or other �lesystem operations to those thatare onsidered valid by the domain model. Resoure �les in RestFS expetthat data written to and read from the resoure �les is in a valid format.Appliation �lesystems are not as well suited for simple re-on�guration orhanges in omposition as RestFS is. To introdue hanges in an appliation�lesystem, either failities for dynamially adding plugins must be introdued,or the system must be unmounted, modi�ed and mounted as a �lesystemagain.

14 Book title goes here
�DomainObjet(CanWrite=false)publi lass FlikrPhoto implements IProvidesUnstruturedData {private byte[℄ _data;publi void setData(byte[℄ data) {_data = data;}publi FlikrPhoto() {}private String _name;�ProvidesNamepubli String getName() { return _name; }�ProvidesNamepubli void setName(String name) { _name = name; }publi boolean Caheable() { return false; }publi long DataSize() { return _data.length; }publi void Read(ByteBuffer buffer, long offset, long length) {for(long i = offset; i < offset + length && i < _data.length;i++) {buffer.put(_data[(int)i℄);}}publi void Trunate(long length) { }publi void Write(ByteBuffer buffer, long offset,long length) { }}FIGURE 1.4The FlikrPhoto domain objet from FlikrFS

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 15�FolderObjet(CanAdd=false, CanRemove=false)�DomainObjetpubli lass FlikrUser {private List<FlikrPhoto> _photos =new LinkedList<FlikrPhoto>();publi FlikrUser() {}private String _name;�ProvidesNamepubli String getName() { return _name; }�ProvidesNamepubli void setName(String name) { _name = name; }private IDomainObjetContainerManager _manager;�NeedsContainerManagerpubli void setContainerManager(IDomainObjetContainerManagermanager) {_manager = manager;}private long _lastGet = 0;�FolderObjet(CanAdd=false, CanRemove=false)publi List<FlikrPhoto> getPhotos() throws Exeption {if(_lastGet == 0 || System.urrentTimeMillis() - 10000 >_lastGet) {UpdatePhotos();_lastGet = System.urrentTimeMillis();}return _photos;}private void UpdatePhotos() throws Exeption {_photos = new LinkedList<FlikrPhoto>();FlikrFaade faade = new FlikrFaade();for(PhotoSet set : faade.getPhotoSets(_name)) {for(Photo photo : faade.getPhotosInASet(set, 100)) {FlikrPhoto newPhoto = _manager.GetContainer(FlikrPhoto.lass).NewPersistentInstane();newPhoto.setName(photo.getTitle() +".jpg");newPhoto.setData(faade.getDataForPhoto(photo));_photos.add(newPhoto);_manager.GetContainer(FlikrPhoto.lass).ObjetChanged(newPhoto);}}_manager.GetContainer(FlikrUser.lass).ObjetChanged(this);}}FIGURE 1.5The FlikrUser domain objet from FlikrFS

16 Book title goes here�RootFolderObjet�DomainObjet�FolderObjet(CanAdd=false, CanRemove=false)publi lass Portfolio {private IDomainObjetContainerManager _manager;private List<Stok> _stoks = new LinkedList<Stok>();�NeedsContainerManagerpubli void setContainerManager(IDomainObjetContainerManagermanager) {_manager = manager;}�FolderObjet(CanAdd=true, CanRemove=true)publi List<Stok> getStoks() throws Exeption {UpdateStokData();return _stoks;}private void UpdateStokData() throws Exeption {String url = BuildURL();List<String> dataLines = getDataFromURL(url);for(Stok stok : _stoks) {String dataLine = null;for(String line : dataLines) {if(line.startsWith("\"" + stok.getTiker())) {dataLine = line;break;}}if(dataLine != null) {stok.UpdateData(dataLine);}}}private String BuildURL() { }private List<String> getDataFromURL(String url) { }�Exeutablepubli void AddAStok(String tiker) throws Exeption {Stok stok = _manager.GetContainer(Stok.lass).NewPersistentInstane();stok.setTiker(toker);_stoks.add(stok);_manager.GetContainer(Stok.lass).ObjetChanged(stok);_manager.GetContainer(Portfolio.lass).ObjetChanged(this);}}FIGURE 1.6The Portfolio lass for the stok tiker �lesystem

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 17
�DomainObjet(CanWrite=false)publi lass Stok {private String _tiker;private string _data;publi Stok(String tiker) {_tiker = tiker;}�ProvidesNamepubli String getTiker() { return _tiker; }publi void UpdateData(String data) { _data = data; }publi String getPrie() {return _data.split(",")[1℄;}publi String getDate() {return _data.split(",")[2℄;}publi String getTime() {return _data.split(",")[3℄;}}FIGURE 1.7The Stok lass for the stok tiker �lesystem

18 Book title goes here

FIGURE 1.8FlikrFS with both RestFS and NOFS1.2.4 Combining the Approahes: Using the RestFS Conne-tor Layer in a NOFS Appliation FilesystemIt is also possible to use the �lesystem as an appliation and the �lesystem asa onnetor layer to form servie ompositions. The positive aspets of bothapproahes an be ombined to derive the advantages of eah system.One of the important disadvantages of a �lesystem as an appliation is thatextra ode must be added to the implementation to aommodate hangingon�gurations and ompositions of external resoures. If this extra ode is notpresent, then to realize hanges, a �lesystem must be unmounted, modi�edand then mounted again. With the �lesystem as a onnetor layer, addingomplex validation and advaned user interation semantis is di�ult. Whenboth approahes are ombined, these disadvantages are no longer present.To demonstrate a possible use of both tehnologies, onsider a photo ser-vie suh as Flikr that you wish to represent as a �lesystem. One possible wayto onstrut a �lesystem is to use both RestFS and an appliation �lesystembuilt with NOFS. A domain model similar to the one in the FlikrFS exampledisussed earlier an be onstruted. In this ase, instead of using a library tointerat with Flikr in the appliation �lesystem, the appliation �lesystemould use a RestFS resoure �le and a small sript that translates requestsand replies from the Flikr photo servie into representations that onform tothe domain model of the appliation �lesystem.This omposition is more �exible to hange than it would be implementedonly as an appliation �lesystem. For example, if an additional photo servie

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 19

FIGURE 1.9A photo �lesystem omposed of multiple photo servieswere added, it would involve reating a seond resoure �le in RestFS that theNOFS appliation �lesystem would interat with. All that would be neededis to implement a small sript that ould translate requests and replies fromthe new web servie into a form that ould be onsumed by the appliation�lesystem's domain model.
1.3 Building Appliation Filesystems with the NakedObjet Filesystem (NOFS)The apabilities, role and development proess of the �lesystem have evolvedthroughout the years. Early on, �lesystems were developed as tightly inte-grated operating system kernel omponents. Kernel mode �lesystems requirea omplex understanding of systems programming, systems programming lan-guages, and the underlying operating system. There are fewer people who havethis skill set as objet-oriented frameworks and languages are beoming moreand more popular. As user mode programs are more suited for loading andlaunhing programs dynamially, a kernel mode omponent often has to takeadditional steps to support being unloadable or on�gurable at run time.Also beause operating system kernels annot easily depend upon user modelibraries, it is di�ult to reuse software omponents within the operating sys-tem and by extension in �lesystem implementations. Beause of this, there is

20 Book title goes heremuh ode that has already been developed using the patterns available andommon to enterprise appliation frameworks that either annot be used orare di�ult to reuse in systems development. Two important advanementsneeded over kernel mode �lesystems development are the ability to implement�lesystems as user-mode programs and frameworks that allow enterprise de-velopment tehniques and patterns to be applied to �lesystems development.The answer to the user mode problem has been user-mode �lesystem frame-works suh as FUSE for UNIX-like operating systems and Dokan for the Win-dows operating systems. Our answer to provide an enterprise-patterns-friendlyframework is the NOFS framework.1.3.1 An Explanation of Naked ObjetsNaked Objets [16℄ is the term used to desribe the design philosophy of usingplain objet-oriented domain models to build entire appliations. In the realmof desktop appliations, Naked Objet frameworks remove the onern of thedeveloper in implementing user interfaes, model-view-ontroller patterns, andpersistene layers. These omponents are generated for the domain modelby the Naked Objets framework automatially either through the use ofre�etion or through additional metadata supplied with the domain model.A harateristi feature of Naked Objet frameworks is that they presentan objet-oriented user interfae. Appliations where the user is treated moreas a problem solver than as a proess follower bene�t from an objet orienteduser interfae [16, p41℄. For many appliations, proesses are very importantand an objet-oriented user interfae is not the best �t. We believe that theinterfae presented to the programmer and to the user of a �lesystem is alsoobjet-oriented. In a �lesystem, the omponents are not exposed to the userto failitate the moving, reading, writing, reation, or deletion of �les andfolders. These ations are aomplished with external programs and referenesto the atual objets as ommand line parameters. The user interation with�lesystems is a noun-verb style of interation and not a verb-noun interation,whih is more ommon with typial desktop appliations. Like the NakedObjet user interfaes, �lesystems �provide the user with a set of tools whihto operate and does not ditate . . . the users sequene of ations� [16, p41℄.1.3.2 The Naked Objet Filesystem (NOFS)There are three important ontributions made by the NOFS framework. The�rst is that NOFS demonstrates the �lesystem an be used as an objet-oriented user interfae in a Naked Objets framework and that the NakedObjets design priniple an be applied suessfully to �lesystems develop-ment. The seond ontribution is that NOFS inverts and simpli�es the nor-mal �lesystem development ontrat. In FUSE and operating system kernels,there are a series of funtions to implement and data strutures to work with.With the NOFS framework, a domain model is inspeted to produe a �lesys-

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 21tem user interfae. Domain models for NOFS do not implement �lesystemontrats or work with �lesystem strutures. Instead, they are desribed withmetadata that is used by NOFS to allow the domain model to interat withthe FUSE �lesystem framework. In this way, NOFS follows the dependenyinversion priniple in that the higher level domain model does not dependupon the lower level �le system model. The third ontribution made by theNOFS framework is that by providing an objet-oriented framework to de-velop �lesystems, we allow developers who are unfamiliar with systems orUNIX programming to more easily and rapidly implement experimental orlightweight �lesystems. With this objet-oriented framework, it beomes eas-ier to unit test a �lesystem implementation beause details of the operatingsystem do not need to be stubbed or moked out; only the domain modelneeds to be veri�ed.1.3.3 Implementing a Domain Model with NOFSHere we will explore developing a domain model with NOFS. We will explorethree domain models: an address book domain model that was developed forpresentation purposes, a Flikr domain model for manipulating photos on theFlikr photo servie, and a stok tiker traking �lesystem for Yahoo! Finane.1.3.3.1 Implementing Files and Folders in NOFSIn NOFS, �les are modeled as plain lasses that are desribed with metadata.The methods on the lass are not onstrained to any spei� interfae butare used to model the struture of the data in a �le. There are two ways forlasses to expose their data: through translation of the return values of publimethods to strutured XML �les or by de�ning the struture of these �les byimplementing an interfae with read and write methods.In the example in Figure 1.10, the lass Contat marks itself as a �leobjet by using the �DomainObjet Java annotation. The lass also tellsNOFS that it manages its own �le name with the �ProvidesName annotationon the getName aessor and the setName mutator methods. The persistenemehanism of NOS is injeted upon onstrution of the Contat lass throughthe setContainer method, whih is marked by the �NeedsContainer method.An example representation of the Contat lass as a �le in the NOFS �lesystemis as follows in Figure 1.11.In this example the lass FlikrPhoto (Figure 1.4) marks itself as a �leobjet by using the �DomainObjet Java annotation. It tells NOFS that it isimmutable by setting the CanWrite member of the DomainObjet annotationto false. IFlikrPhoto's responsibility is to model a graphial image from theFlikr photo sharing website. Sine it is onvenient to expose to the �lesystemthese photos as an image �le and not as an XML �le, FlikrPhoto providesread and write methods as de�ned by the IProvidesUnstruturedData NOFSinterfae.

22 Book title goes here�DomainObjetpubli lass Contat {private String _name;private String _phoneNumber;private IDomainObjetContainer<Contat> _ontainer;�ProvidesNamepubli String getName() { return _name; }�ProvidesNamepubli void setName(String name) { _name = name; }publi String getPhoneNumber() { return _phoneNumber; }publi void setPhoneNumber(String value) {_phoneNumber = value;}�NeedsContainerpubli void setContainer(IDomainObjetContainer<Contat>ontainer) {_ontainer = ontainer;}}FIGURE 1.10The Contat NOFS Domain Objet
<?xml version="1.0"?><Contat><PhoneNumber>555-5555</PhoneNumber><Contat>FIGURE 1.11Representation on the �lesystem of the Contat domain objet

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 23�DomainObjet�FolderObjet(CanAdd=true, CanRemove=true)publi lass Category extends LinkedList<Contat> {private String _name;�ProvidesNamepubli void setName(String name) { _name = name; }�ProvidesNamepubli String getName() { return _name; }}FIGURE 1.12The Category NOFS Domain ObjetIn the example in Figure 1.6, the lass Portfolio marks itself as a folderobjet by using the �DomainObjet and the �FolderObjet Java annota-tions. The FolderObjet annotation sets CanAdd and CanRemove to false totell NOFS that the user of the �lesystem annot add or remove �les from thefolder. The Portfolio lass exposes two objets to NOFS, a folder alled Stoksthrough the getStoks() method and an exeutable sript through the AddA-Stok method. NOFS an tell that getStoks() is a folder beause its returntype is a olletion and beause of the FolderObjet annotation on the methoddelaration. NOFS an tell that the AddAStok method is to be exposed asan exeutable sript beause of the Exeutable annotation on the method de-laration. The sript that will appear in the Portfolio objet's folder will be anautomatially generated Perl sript that will aept one argument and pass itbak to NOFS, whih will in turn pass it to the orret domain objet instanebased upon path. In this way, NOFS domain objets an expose additionalexeutable behavior to the �lesystem interfae.Another way to implement a folder is through extending a olletion typesuh as LinkedList. The Category lass in Figure 1.12, whih is a part of theaddress-book �lesystem, takes advantage of this approah. Instead of statiallyde�ning the omponents of a folder as was done in the Portfolio example,the Category folder's omponents will be de�ned by what is present in theolletion.1.3.4 Arhiteture of NOFSThere are two important aspets to the arhiteture of NOFS. The �rst is itsplae and role in the �lesystem arhiteture and the seond is how domainobjets are mapped to FUSE alls. Firstly, the overall arhiteture of FUSEis not hanged by NOFS. NOFS exists as an additional layer on top of FUSE.A diagram of this relationship is available in Figure 1.13.The existing ontext swithes between user-mode programs with the kernel

24 Book title goes here

FIGURE 1.13The relationship between NOFS, FUSE, and the Linux kerneland between �lesystem implementations with FUSE still exist with NOFS.No new ontext swithes are reated by the NOFS framework. The readeris enouraged to onsult literature and doumentation on FUSE to exploreadditional details of FUSE and its implementations (see also 1.1.4 above).The way domain models are mapped to fuse alls an be split into twoimportant parts: how paths are translated to domain objets and how domainobjets are translated to di�erent �le objet types.Domain objets are translated to �les, folders, root-folders, and exeutablesripts through the use of Java annotations. Depending upon the annotation,lasses or methods are sanned to see if there are mathing annotations. Ifa lass or method is marked as a �le, then that lass instane or the returnvalue of that method is exposed as a �le on the �lesystem. The same is trueof folders. If a lass is marked as a folder and if it is also a list, then the lassis exposed as a folder and the ontained objets in the list are exposed ashildren of that folder. If the lass is marked as a folder and is not also a list,then the member methods of the lass are exposed as hildren of the folder. If apartiular method is enountered and marked as exeutable, NOFS generatesa Perl sript that aepts as arguments a list mathing the parameters of themethod. Exeutable methods will be explored in more detail soon.Paths are translated with the algorithms in Figures 1.14 and 1.15. Thealgorithm basially �nds the root of the �lesystem by searhing for an objetinstane of type root and then traverses the path from that instane untilit enounters a mismath or runs out of segments in the path and returns amathing objet.Additional path and type translation is involved in methods that are ex-posed as exeutable sripts in NOFS. If an method has as parameters just

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 25translate_path(path) {urrent = find_root();for-eah(segment in path) {if(urrent IsA folder) {if(urrent IsA list) {urrent = urrent[segment℄;} else if(urrent HasA member whose name mathessegment) {urrent = urrent.members[segment℄;} else {raise exeption "invalid path";}} else {raise exeption "invalid path";}}return urrent;}FIGURE 1.14The NOFS path translation algorithm
find_root() {List roots = new List();for-eah(instane in all_instanes) {if(instane IsA root-folder) {roots.add(instane);}}if(roots.ount() == 0) {raise exeption "no roots found";} else if(roots.ount() > 1) {raise exeption "more than one root found";}return roots[0℄;}FIGURE 1.15The NOFS root disovery algorithm

26 Book title goes here
FIGURE 1.16The ommuniation path for exeutable sripts in NOFStranslate_arguments(arg_list, method) {for(int i = 0; i < arg_list.length; i++) {if(method.parameters[i℄ IsA NOFS-domain-objet) {args_list[i℄ = translate_path(arg_list[i℄);}}}FIGURE 1.17The NOFS argument translation algorithmprimitive or string types, then NOFS has no additional translation work toperform and just passes values as they are to a method from the sript. Ifa method parameter is of one of the domain model's types, then the sriptwill aept a path as a valid argument and NOFS will translate the path toan objet referene that is then passed to the method (see Figure 1.17). Inthis way, it is possible to pass by value or by referene to methods on NOFSdomain lasses.With path to objet translation, �lesystem alls like getdir(), mkdir(),mknod(), unlink() and similar alls map pretty well into path translation andobjet reation and deletion ations. Next, we will disuss how alls suh asread(), write(), open(), and lose() work.In NOFS, there are three ways that a �le objet's data is managed. The�rst way is if the �le happens to be an exeutable sript. If a method isdetermined to be an exeutable sript, NOFS will generate Perl ode to wrapa all bak into NOFS and make �le that the Perl ode is plaed in read-only.The seond way data is managed is through the IProvidesUnstruturedDatainterfae. This interfae was mentioned earlier in the FlikrPhoto example. IfNOFS enounters a �le objet that implements this interfae, it will pass readand write alls diretly to the objet. The �nal way data is managed is if thedomain objet exposes publi members. In this ase, NOFS will examine themembers and translate all primitive members into XML elements. If a non

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 27represent_as_xml(objet) {for-eah(member in objet.lass_definition) {if(member IsA primitive) {emit element with value of primitive;} else {represent_as_xml(member);}}}FIGURE 1.18The NOFS XML serialization algorithm

FIGURE 1.19The NOFS ahe and serialization relationshipprimitive type is enountered an element will be emitted and it will also beserialized into XML. The algorithm is available in Figure 1.18.In the ase of XML �les being written bak to, all writes are ahed byNOFS until the �le handle is losed. When the �le handle is losed, NOFSwill perform a similar algorithm as represent_as_xml exept to deserializethe XML bak into the domain objet. If there is a mismath in the XMLstruture with respet to the domain objet or if the deserialization proessauses the domain objet to throw an exeption, the hange to the domain isrolled bak entirely and the ontents of the XML �le are reverted to their statebefore any write ourred. The ahe management algorithm an be found inFigure 1.19.

28 Book title goes hereThe �nal set of alls mapped to FUSE by NOFS are metadata alls suh asgetxattr, getattr, hown, hmod, and other related alls. There are two waysthat these are managed. The �rst way is if a method has any of the Provides-GID, ProvidesUID, ProvidesMode, ProvidesLastAessTime, ProvidesLast-Modi�edTime, or ProvidesCreateTime annotations. For any lass that hasmethods with these annotation, NOFS assumes that the domain objet main-tains this metadata. For eah ase where one of these annotations is not en-ountered, NOFS will provide a default implementation and store appropriatemetadata in a small db4o database for eah instane of a domain objet.It is sometimes useful for domain models to manage this additional meta-data in a non-default way. One important reason is if the data is a legitimatepart of the domain model. One good example would be a web servie thatprovides online doument editing. The domain objet that models a dou-ment should also retrieve attributes like reation, modi�ation, and aesstimes from the server. For other domain models, suh as the stok tiker do-main model presented earlier, this information is less important to the domainmodel and an be adequately handled by the NOFS default implementation.These two possibilities allow the reator of the domain model to model onlyattributes that they are onerned with and nothing more.The domain objet persistene mehanism used in NOFS is straightforwardand natural in the way it maps annotated lass de�nitions to XML elementsat run time. A thorough evaluation of this approah and its alternatives isstill needed. One alternative is our earlier work on simple XML data bindingsand linearized external representations of XML data [2℄. Other hoies inludemore omplex, shema-based XML data binding frameworks suh as JAXB [5℄and XStream [23℄, as well as non-XML formats suh as JSON [4℄. In addition,we plan to allow domain lasses in future versions of NOFS to hoose alternaterepresentations through their own serializers or XSLT transformations.
1.4 Arhiteture and Details of RestFSOur work on RestFS was inspired by two other bodies of work: Plan 9's9P protool and netfs [18℄, and Representational State Transfer or REST [7℄.While exploring REST, we realized that the GET, PUT, POST, and DELETEHTTP methods mapped well into �lesystem operations and that there were afew ways that we might map REST-ful servies onto the �lesystem. Anotherimportant observation that we made at the time is how other forms of interpro-ess ommuniation and espeially sokets have been the basis for omposingprograms and servies. We felt after our exploration of layered �lesystemsresearh with the OLFS �lesystem that the �lesystem held the possibility tomediate the omposition of web servies. With these observations in hand and

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 29with the NOFS �lesystem framework we set about developing a �lesystem tosupport ommuniation with and omposition of web servies.In Plan9, network ommuniation is not performed through the use of sys-tem alls like aept, onnet, listen, send or rev. Network ommuniationsare performed through �le operations in netfs under a speial folder `/net'in the Plan 9 �lesystem. In addition to folders separating types of networkonnetions into UDP and TCP, there are two types of folders in netfs: on-netion / on�guration �les and stream �les. Connetion / on�guration �lesontained details about IP addresses, port numbers, and soket options. Onefully on�gured it is possible to read from and write to the speial stream �lesin netfs to send and reeive data from a remote omputer.1.4.1 RestFS's approahThe use of �les for networking and the separation of �les into on�gurationand streams o�er very important advantages over the family of alls used inUNIX and other operating systems for networking. The �rst advantage is thatno additional system alls other than the ones neessary for �lesystem inter-ation are needed to work with the network. Calls like onnet, listen, send,rev, aept, and others are not neessary when the network an be managedthrough the �lesystem. The other important advantage is in the separationof responsibility between the �les. With the separation, it is possible for oneproess to manage on�guration of the network onnetion while another pro-ess is responsible for reading and writing to the onnetion as if it were anormal �le. In this way, software that is apable of working with just �le I/Oalls does not need to be extended to support networking ode; it need onlybe supplemented with some prior on�guration. Another important advantageof using the �lesystem for network ommuniation is that it allows for net-work onnetions to be named in a namespae that has a longer lifetime thanprograms that may take advantage of a network onnetion. For example, aprogram may read from and write to a network �le and work orretly forsome time. If that program rashes, it an be re-launhed and resume work-ing with the network �le without having to re-establish any onnetions. Thisapability also allows the programs on either end point of the onnetion tohange over time without resetting the onnetion.1.4.1.1 Con�guration Files in RestFSIn RestFS, when a �le is reated, it is reated as a pair onsisting of a resoureand a on�guration �le that are bound to eah other. For example, if a �lealled �GoogleSearh� is reated, then a ompanion on�guration �le alled�.GoogleSearh� will also be reated in skeleton form.Next, this skeleton is populated manually to ontat a spei� web servie.In the example shown in 1.20, the resoure �le has been on�gured to ontatthe Google searh servie and perform a GET HTTP request when the utime

30 Book title goes here<?xml version="1.0" enoding="UTF-8"?><RestfulSetting><FsMethod>utime</FsMethod><WebMethod>get</WebMethod><FormName></FormName><Resoure>ajax/servies/searh/web?v=1.0&q=Brett%Favre</Resoure><Host>ajax.googleapis.om</Host><Port>80</Port><OAuthTokenPath></OAuthTokenPath></RestfulSetting>FIGURE 1.20An example RestFS on�guration �le for a Google Searh�lesystem all is performed on the GoogleSearh �le. When this ours, RestFSwill make a all to the web servie and plae the results in the resoure �le.The Web Appliation Desription Language (WADL) [8℄ has been pro-posed as a REST-ful ounterpart to the Web Servie De�nition Language(WSDL) [3℄. We are urrently investigating ways to use WADL in onjun-tion with RestFS, in partiular, to populate RestFS on�guration �les fromWADL servie desriptions.1.4.1.2 Implementation of Con�guration Files in RestFSSine RestFS is implemented as a NOFS appliation �lesystem, implementing�les that are represented as XML is straightforward. The individual elementsare implemented as aessors and mutators in a Java lass alled RestfulSet-ting in Figure 1.21. These settings objets are managed by the resoure �lesthat we will disuss shortly.1.4.1.3 Resoure Files in RestFSAs stated before, resoure �les in RestFS ontain the state of a urrent requestor response with a web servie. Resoure �les an be on�gured to be triggeredto respond to web servie alls upon being opened, before deletion, when theresoure �le's timestamp is updated, before the resoure �le is read from, andafter the resoure �le has been written to. This triggering apability is aom-plished through the implementation of the NOFS IListensToEvents interfae.With this interfae, the RestFS resoure �le is noti�ed by NOFS when a-tual alls to FUSE are enountered. One a triggering all is enountered, thealgorithm in Figure 1.22 is run.When the triggering all is made on the resoure �le, RestFS willhek the urrent ontents of the �le. If the �le ontains a JSONobjet, the objet will be parsed and passed as arguments to theweb servie all. For example, the JSON objet {"desription" : "stu-

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 31�DomainObjetpubli lass RestfulSetting extends BaseFileObjet {private String _method;publi String getMethod() { return _method; }publi void setMethod(String value) { _method = value; }private String _formName;publi String getFormName() { return _formName; }publi void setFormName(String value) { _formName = value; }private String _port = "";publi String getPort() { return _port; }publi void setPort(String value) { _port = value; }private String _host = "";publi String getHost() { return _host; }publi void setHost(String value) { _host = value; }private String _resoure = "";publi String getResoure() { return _resoure; }publi void setResoure(String value) { _resoure = value; }private String _oauthTokenPath = "";publi String getOAuthTokenPath() { return _oauthTokenPath; }publi void setOAuthTokenPath(String value) {_oauthTokenPath = value;}}FIGURE 1.21The RestfulSetting NOFS domain objetRespondToEvent(event_type, settings, urrent_file_data) {if(settings.triggering_all == event_type) {response = IssueWebRequest(settings.URI,settings.WebMethod, urrent_file_data);SetCurrentFileData(response);}}FIGURE 1.22RestFS resoure �le triggering algorithm

32 Book title goes here
/

auth

twi t ter

config

status

verif ier

tokenFIGURE 1.23An example of an OAuth on�guration in RestFS<?xml version="1.0" enoding="UTF-8"?><OAuthConfigFile><Key>asdf3244dsf</Key><AessTokenURL>https://api.twitter.om/oauth/aess_token</AessTokenURL><UserAuthURL>https://api.twitter.om/auth/authorize</UserAuthURL><RequestTokenURL>https://api.twitter.om/oauth/request_token</RequestTokenURL><Seret>147sdfkek</Seret></OAuthConfigFile>FIGURE 1.24An example OAuth on�guration �le for Twitterdent", "name": "Joe"} would translate to the URI http://host/servie?desription=student&name=joe.1.4.1.4 Authentiation in RestFSAs many REST-ful web servies support the OAuth authentiation model, wedeided to add speial OAuth �le and folder types to assist in establishingauthorization for web servies. In RestFS, there is one speial folder `/auth'in the root of every mounted RestFS �lesystem. When a folder is reated inthe `/auth' folder, a on�g, status, veri�er, and token �le are reated. Theon�g �le takes the OAuth API-Key, seret, and set of URLs to ommuniatewith to establish an authorization token. These �elds are typially providedby the servie provider for a REST-ful web servie.

RestFS: The Filesystem as a Connetor Abstration for Flexible Resoure and Servie Composition 33<OAuthTokenFile><AessToken>2534534asdf2348</AessToken><RequestToken>aql2343</RequestToken><TokenSeret>adfjdsl24522</TokenSeret></OAuthTokenFile>FIGURE 1.25An example OAuth Token �le

FIGURE 1.26The RestFS authentiation proessOne all of the appropriate �elds are written to the on�guration �le,RestFS will ontat the web servie to obtain authorization. Depending uponthe implementation there are a few possibilities. If the servie requires humaninteration to aept a PIN or pass a CAPTCHA test, the URL for that stepwill be written to the `status' �le. If the servie provides a PIN, it should bewritten to the `veri�er' �le. One this proess is omplete, the `token' �le willbe populated with the OAuth aess and request tokens for use in furtherommuniations. An example of this token �le an be seen in Figure 1.25.One authorization is suessful, the token �le an be referred to in anyon�guration �le by path referene in the OAuthTokenPath element. If theon�guration �le ontains a valid token �le, RestFS will handle any all to theresoure �le using the appropriate OAuth token. The user of the resoure �lethen, does not need to worry about authentiation any further. This proessis summarized by �gure 1.26.

34 Book title goes here1.4.1.5 Putting it All TogetherWith these three types of �les: authentiation, on�guration, and resoure, itis possible to onnet to and work with a web servie through �lesystem alls.If several resoure �les are reated, it is possible to work with several webservies and to send multiple requests and ompose multiple responses loallyusing UNIX ommand line tools or through small programs.
1.5 SummaryWith RestFS and NOFS, we have demonstrated how web servies an beabstrated and omposed in an arbitrarily deep hierarhy through the imple-mentation and use of �lesystems. We have shown how the �lesystem an beused as a onnetor layer to translate �lesystem alls into web servie alls andhow this an allow for loal and external omposition of web servies. We havealso shown how appliation �lesystems an be used to provide a user-friendlyinterfae for web servies to provide validation and more omplex struture.Finally, we have shown how the two approahes an be ombined to providee�etive representations of web servies through the �lesystem interfae.In our deeper exploration of NOFS, we disussed how the Naked Objetsdesign priniples an be used to build �lesystems and how the dependenyinversion approah simpli�es �lesystem design. We also explored several ex-ample �lesystems and explained how NOFS handles translating requests fromFUSE to operations on a domain model.While exploring RestFS, we disussed the hallenges of translating webservie authentiation to the �lesystem interfae, how on�guration and re-soure �les are separated, and how best to use RestFS to expose web serviesthrough external programs or sripts.

Bibliography
[1℄ Andrew D. Birrell and Brue Jay Nelson. Implementing remote proedurealls. ACM Transations on Computer Systems, 2:39�59, 1984.[2℄ Matt Bone, Peter F. Nabiht, Konstantin Läufer, and George K. Thiru-vathukal. Taming XML: Objets �rst, then markup. In Pro. IEEE Intl.Conf. on Eletro/Information Tehnology (EIT), May 2008.[3℄ R Chinnii, J-J Moreau, A Ryman, and S Weerawarana. Webservies desription language (WSDL) version 2.0 part 1: Corelanguage. W3C Reommendation, June 2007. Available fromhttp://www.w3.org/TR/wsdl20.[4℄ D. Crokford. The appliation/json Media Type for JavaSript ObjetNotation (JSON). RFC 4627 (Informational), July 2006.[5℄ Joe Fialli and Sekhar Vajjhala. Java arhiteture for XML binding(JAXB) 2.0. Java Spei�ation Request (JSR) 222, Otober 2005.[6℄ R. Fielding, H. Frystyk, Tim Berners-Lee, J. Gettys, and J. C. Mogul.Hypertext transfer protool - HTTP/1.1, 1996.[7℄ Roy T. Fielding. Arhitetural Styles and the Design of Network-basedSoftware Arhitetures. PhD thesis, University of California, Irvine, 2000.[8℄ Mar J. Hadley. Web appliation desription language (WADL). Teh-nial report, Sun Mirosystems, In., Mountain View, CA, USA, 2006.[9℄ John F. Karpovih, Andrew S. Grimshaw, and James C. Frenh. Extensi-ble �le system (ELFS): an objet-oriented approah to high performane�le I/O. In OOPSLA '94: Proeedings of the ninth annual onferene onObjet-oriented programming systems, language, and appliations, pages191�204, New York, NY, USA, 1994. ACM.[10℄ Joe Kaylor, Konstantin Läufer, and George K. Thiruvathukal. Onlinelayered �le system (OLFS): A layered and versioned �lesystem and per-formane analysis. In Pro. IEEE Intl. Conf. on Eletro/InformationTehnology (EIT), May 2010.[11℄ Joe Kaylor, Konstantin Läufer, and George K. Thiruvathukal.RestFS: A FUSE �lesystem to expose REST-ful servies.http://restfs.googleode.om/, 2010�2011. 35

36 Book title goes here[12℄ Joe Kaylor, George K. Thiruvathukal, and Konstantin Läufer. Naked ob-jet �le system (NOFS): A framework to expose an objet-oriented do-main model as a �lesystem. Tehnial report, Loyola University Chiago,May 2010.[13℄ Brian W. Kernighan and Rob Pike. The UNIX Programming Environ-ment. Prentie Hall Professional Tehnial Referene, 1983.[14℄ Ted H. Kim and Gerald J. Popek. Frigate: an objet-oriented �le systemfor ordinary users. In COOTS'97: Proeedings of the 3rd onferene onUSENIX Conferene on Objet-Oriented Tehnologies (COOTS), pages9�9, Berkeley, CA, USA, 1997. USENIX Assoiation.[15℄ S. R. Kleiman. Vnodes: An arhiteture for multiple �le system types inSun UNIX. In Pro. Summer USENIX Tehnial Conf., pages 238�247,1986.[16℄ R. Pawson. Naked Objets. PhD thesis, Trinity College, Dublin, Ireland,2004.[17℄ Jan-Simon Pendry and Marshall Kirk MKusik. Union mounts in4.4BSD-lite. In TCON'95: Pro. of the USENIX 1995 Tehnial Conf.,pages 3�3, Berkeley, CA, USA, 1995. USENIX Assoiation.[18℄ Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thomp-son, Howard Trikey, and Phil Winterbottom. Plan 9 from Bell Labs.Computing Systems, 8(3):221�254, Summer 1995.[19℄ Rob Pike, Dave Presotto, Ken Thompson, Howard Trikey, and Phil Win-terbottom. The use of name spaes in Plan 9. SIGOPS Oper. Syst. Rev.,27(2):72�76, 1993.[20℄ M. Szeredi. Filesystem in userspae. http://fuse.soureforge.net, Febru-ary 2005.[21℄ K Thompson. UNIX implementation, pages 26�41. Prentie-Hall, In.,Upper Saddle River, NJ, USA, 1986.[22℄ J. Whitehead and Y. A. Goland. WebDAV: A network protool for remoteollaborative authoring on the web. In ECSCW 1999, 1999.[23℄ Eugene Y. C. Wong, Alvin T. S. Chan, and Hong Va Leong. Xstream:A middleware for streaming XML ontents over wireless environments.IEEE Trans. Softw. Eng., 30:918�935, Deember 2004.

	RestFS: The Filesystem as a Connector Abstraction for Flexible Resource and Service Composition
	Recommended Citation

	tmp.1322166644.pdf.IEmLp

