
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

3-2005

Guest Editor's Introduction: Cluster Computing Guest Editor's Introduction: Cluster Computing

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
George K. Thiruvathukal, "Guest Editors' Introduction: Cluster Computing," Computing in Science and
Engineering, vol. 7, no. 2, pp. 11-13, Mar./Apr. 2005, doi:10.1109/MCSE.2005.33

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2005 George K. Thiruvathukal

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

MARCH/APRIL 2005 11

G U E S T E D I T O R ’ S
I N T R O D U C T I O N

What is cluster computing? In a
nutshell, it involves the use of a
network of computing re-
sources to provide a compara-

tively economical package with capabilities once
reserved for supercomputers.

Beowulf.org, home of the Beowulf cluster-com-
puting project, provides a more specific definition:

Cluster is a widely used term meaning indepen-
dent computers combined into a unified system
through software and networking. At the most
fundamental level, when two or more computers

are used together to solve a problem, it is con-
sidered a cluster. Clusters are typically used for
High Availability (HA) for greater reliability or
High Performance Computing (HPC) to pro-
vide greater computational power than a single
computer can provide.

As we might expect from perhaps the best-known
clustering project, the Beowulf project provides the
most specific definition for a Beowulf cluster:

Beowulf clusters are scalable performance clus-
ters based on commodity hardware, on a private
system network, with open source software
(Linux) infrastructure. The designer can improve
performance proportionally with added ma-
chines. The commodity hardware can be any of
a number of mass-market, stand-alone compute
nodes as simple as two networked computers
each running Linux and sharing a file system or

CLUSTER COMPUTING

GEORGE K. THIRUVATHUKAL

Loyola University Chicago

1521-9615/05/$20.00 © 2005 IEEE

Copublished by the IEEE CS and the AIP

12 COMPUTING IN SCIENCE & ENGINEERING

as complex as 1024 nodes with a high-speed, low-
latency network.

The Beowulf project has done much to shape the
dialog of cluster computing, and to a large extent,
it defines cluster computing as we know it today.
Most clusters have similar hardware characteristics:
an Intel-based processor (Pentium, AMD Athlon,
Itanium, or Opteron), standard storage (Enhanced
Integrated Drive Electronics [EIDE], Serial Ad-
vanced Technology Attachment [SATA], or Small
Computer Systems Interface [SCSI]), some form
of networking (Ethernet, or sometimes Myrinet),
rack-mounted or in a blade design (to enable more
dense packing), and running the Linux operating
system. For the most part, clusters use software
similar to that used in traditional supercomputing,
including Fortran, C, C++, the message-passing in-
terface (MPI), and scientific programming libraries
such as Linpack and Lapack.

The Revolution
In this issue, we look at certain applications of clus-
ter computing to problem solving. As the Beowulf
project and clustering revolution celebrate more
than 10 years in existence, it’s interesting to see
what remains the same and what has changed. Let’s
look at a few aspects of the clustering revolution in
more detail.

Commodity Hardware
The components we use to build a system are called
commodity hardware. This definition often implies
PC-compatible hardware, but it also includes Mac-
intoshes and hardware that doesn’t look much like
a PC at all (such as rack-mounted servers and
blades). The distinction between commodity and
proprietary is often blurred, but ultimately, true
commodity status refers to the ability to obtain
components (or even complete systems) on the
open market and leverage economies of scale. Sup-
pose, for example, that you want to build a cluster
of PCs. You have a choice of many vendors for
motherboards, processors, system memory, and
hard drives, but more than that, you can select an
appropriate price point for your performance needs.

Networking
For the most part, we build supercomputers from
specialized networks. The parallel computing lit-
erature is supersaturated with research on so-called
interconnection networks, which are specialized to
allow optimal (or near optimal) interprocessor
communication in large-scale parallel systems.

For clusters, commodity networking technology

such as Ethernet dominates the market. Ethernet
emerged as the unlikely hero when many of the
ideas of interconnection networks were pushed
gradually into network switches, allowing nodes
within the cluster to use the Ethernet controllers
largely as access devices only.

However, clusters aren’t limited to using Ether-
net. Other solutions such as Myrinet offer reduced
communication latency when every last drop of
network bandwidth must be utilized.

Open Software Infrastructure
Although Linux has emerged as the operating sys-
tem of choice for cluster computing, not all of the
contributors to this special issue rely on it exclu-
sively. We intentionally solicited articles from re-
searchers using other operating systems, to demon-
strate that clustering is becoming more ubiquitous
and isn’t limited to the Linux platform.

We didn’t receive any contributions from re-
searchers using Windows. However, I worked on a
Windows-based cluster computing application (in
computational finance) this past summer. Virtually
any major operating system can be used and can at-
test to its potential for cluster computing, subject
only to personal taste and software availability.

Top500 Supercomputers
To see the true impact of clustering, take a look at
the Top500 list, which lists the 500 most powerful
supercomputers. Although not all of these systems
are clusters, a quick sampling reveals that most of
them are:

• The Barcelona Supercomputer Center
(ranked fourth) is built entirely with eServer
blade systems from IBM.

• Lawrence Livermore ranks fifth with its Ita-
nium2 cluster.

• The Virginia Tech cluster (ranked seventh)
runs Apple XServe systems and Gbit Ethernet.

Ranking at the top is IBM’s Blue Gene, which
uses many of clustering’s ideas, but is, in fact, a hy-
brid of a cluster and a pure supercomputer. As IBM
describes it at www.research.ibm.com/bluegene/,

Blue Gene is an IBM supercomputing project
dedicated to building a new family of supercom-
puters optimized for bandwidth, scalability, and
the ability to handle large amounts of data while
consuming a fraction of the power and floor
space required by today’s fastest systems.

It goes without saying that getting on this list will

MARCH/APRIL 2005 13

not be cheap. Although most of these systems use
commodity components, some cost more than oth-
ers. Choosing the latest and greatest processor, for
example, will always run up the tab. If you’re build-
ing a system with 1,024 processors, a US$100 price
difference on the CPU alone increases the overall
cost by $10,240.

Ten Years Running
With the Beowulf project recently celebrating its
10th anniversary, it’s appropriate to look at the state
of cluster-computing research. Cluster computing
is an expansive field, and it would take multiple spe-
cial issues to cover it completely. Rather than at-
tempting to do that here, we opted to look at clus-
tering via representative research projects that are
aimed at scientific application development.

About the Contributions
In this issue, I solicited articles with the intention
of addressing two distinct goals:

1. how to get started with cluster computing,
especially for those who have never done it
before, and

2. how to get the most out of cluster comput-
ing and address serious application devel-
opment that scales well.

In some cases, an article addresses both of these
goals. The first two articles are focused on “getting
started,” whereas the last two are focused on “get-
ting the most out of cluster computing.” Without
further ado, here’s a summary of the contributions.

Matthias K. Gobbert takes us back to where it all
started by describing how to build a 64-processor
Beowulf cluster with a high-performance intercon-
nect and later extend it with a storage solution from
IBM. He demonstrates each system component’s
role via a prototype problem from the numerical so-
lution of transient partial differential equations. The
problem shows how the judicious combination of a
numerical algorithm, its efficient implementation,
and the right hardware can achieve the two funda-
mental goals of parallel computing: solving large
problems faster and solving larger problems than
can be solved on serial computers.

Dean E. Dauger and Viktor K. Decyk describe
cluster computing as practiced in the Plasma
Physics Group at the University of California, Los
Angeles. They discuss plug-and-play computing,
focusing on the Macintosh platform running OS X.
Motivated by a desire to avoid system administra-
tion, they chose the Macintosh for its ease of use
and straightforward system administration. This ar-

ticle is a must-read for anyone who wants to apply
clustering in an open-source environment, but faces
limited resources for actually managing the cluster.

Phil Hatcher, Matthew Reno, Gabriel Antoniu,
and Luc Bougé describe their research on using Java
for cluster computing, presenting two approaches for
making it work. The first views the cluster as a single
computer running a single Java virtual machine
(JVM) that can implicitly spread Java threads (light-
weight processes or tasks) among the cluster’s nodes.
The second approach uses the mpiJava framework to
run a JVM on every node in the cluster. The results
show that good-to-excellent performance can be
achieved in an environment that isn’t typically asso-
ciated with high-performance computing.

James D. Terseco, Jamal Faik, and Joseph E. Fla-
herty describe resource-aware cluster computing, in-
cluding the challenges many smaller institutions face.
If someone develops an application on a local cluster,
for example, possibly comprising a relatively small
number of nodes, and then migrates it to a large-scale
cluster at a national laboratory, the authors’ software
techniques could prove useful for making the appli-
cation aware of the change in computing resources
and adapting to the new environment.

I hope to organize another issue (or annual is-
sue) on this topic, simply because it can’t be
covered in only four articles; please contact
me if you’d like to contribute. Cluster com-

puting is in a continued state of evolution: a good
thing that just keeps getting better! The articles
included here provide tremendous insight into the
general issues of clustering and what it takes to get
supercomputer-class results.

Acknowledgments
I thank Norman Chonacky and Denis Donnelly for their
help in attracting articles for this issue, and the reviewers,
Steve Chiu (Benedict College), Wei-Keng Liao (North-
western University), and Nick Karonis (Northern Illinois
University) for their assistance.

George K. Thiruvathukal is an associate professor and
graduate program director in the Department of Com-
puter Science at Loyola University Chicago, and presi-
dent/CEO of Nimkathana Corporation, a small-busi-
ness concern based in Chicago. He has worked
extensively on cluster and Grid computing and oper-
ates two Linux clusters running the Gentoo Linux op-
erating system. He has a PhD in computer science from
the Illinois Institute of Technology. Contact him at
gthiruv@luc.edu or gkt@nimkathana.com; www.
thiruvathukal.com.

	Guest Editor's Introduction: Cluster Computing
	Recommended Citation

	tmp.1322168114.pdf.kkuxW

