
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

2000

A Java graphical user interface for large-scale
scientific computations in distributed systems
X Shen

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Wei-keng Liao

Alok Choudhary

A Singh

This Conference Proceeding is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for
inclusion in Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information,
please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2000 X. Shen, George K. Thiruvathukal, Wei-Keng Liao, Alok Choudhary, A. Singh

Recommended Citation
X. Shen, G. Thiruvathukal, W. Liao, A. Choudhary, A. Singh, A Java graphical user interface for large-scale scientific computations in
distributed systems, In proceedings of the Fourth International Conference on High-Performance Computing in the Asia-Pacific
Region-Volume 1, 2000.

http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

A Java Graphical User Interface for Large-Scale Scientific Computations in
Distributed Systems

X. Shen, G. Thiruvathukal�, W. Liao, A. Choudhary, and A. Singh�

Center for Parallel and Distributed Computing
Department of Electrical and Computer Engineering

Northwestern University
Evanston, IL 60208

fxhshen,wkliao,choudharg@ece.nwu.edu

Abstract

Large-scale scientific applications present great chal-
lenges to computational scientists in terms of obtaining high
performance and in managing large datasets. These appli-
cations (most of which are simulations) may employ mul-
tiple techniques and resources in a heterogeneously dis-
tributed environment. To work effectively in such an envi-
ronment is crucial for modern large-scale simulations. In
this paper, we present an integrated Java graphical user in-
terface (IJ-GUI) that provides a control platform for man-
aging complex programs and their large datasets easily. As
far as performance is concerned, we present and evalu-
ate our initial implementation of two optimization schemes:
data replica and data prediction. Data replica can take
advantage of ‘temporal locality’ by caching the remote
datasets on local disks; Data prediction, on the other hand,
provides prefetch hints based on datasets’ past activities
that are kept in databases. We first introduce the data conti-
guity concept in such an environment that guides data pre-
diction. The relationship of the two approaches is discussed
in closing.

1 Introduction

Modern simulations generate huge amounts of data and
employ multiple techniques to subsequently process the
data. These processes include data analysis, visualization,
post-processing, etc. As the size of the datasets for these
applications is typically huge, hierarchical storage must be
utilized as the data repository. Additionally, databases can
be introduced to help users manage data at a high level and
to obtain high performance. Therefore, there are multiple
resources involved in a modern large-scale scientific envi-
ronment. As technology trends are moving towards dis-

�School of Computing, Telecommunications, and Information Sci-
ences, JHPC Laboratory, DePaul University, email: gkt@cs.depaul.edu,
arti@jhpc.cs.depaul.edu

tributed systems, all these resources may be distributed geo-
graphically, and these resources may be heterogeneous (i.e.
different architecture, operating system, etc.) Without de-
signing an efficient integrated environment, users may be
overwhelmed in this environment, where a number of diffi-
cult decisions need to be made, often involving manual in-
tervention or explicit programming. Consider the important
issue of performance. In a distributed environment, distance
between the user and the data is a major consideration for
two reasons. First, the data sets may be located elsewhere
(i.e. at another site). Second, the data sets may be on tertiary
storage. In either case, it benefits the user to have an inte-
grated environment that makes it possible for her to make
appropriate performance decisions. Furthermore, when the
user considers performance, it is not only the performance
of the application (i.e. the simulation) butthe performance
of other processes as well: visualization, data analysis, etc.

A computational scientist thus needs to fully consider the
following issues in one overall picture when she wants to
perform a high-performance simulation or other large-scale
application:

� High performance for simulations For data intensive
applications, state-of-the-art I/O optimizations such as
collective I/O, prefetch, prestage and so forth should
be employed.

� High performance for other processes If the user
only considers simulation itself, it may result in bad
performance when she comes to visualization, post-
processing and data analysis. The user should be care-
ful to arrange the layouts of her datasets properly on
storage systems.

� Easy-to-use Database techniques are employed to ful-
fill this purpose. The database can maintain meta-data
information about the applications, datasets, storage
systems and so on and it provides easy query capabili-
ties.

� Integrated graphical environment If the user works

1

Proceedings of the Fourth International Conference/Exhibition on
High Performance Computing in Asia-Pacific Region
0-7695-0589-2/00 $10.00 © 2000 IEEE

on an uniform platform rather than deal with dis-
tributed resources manually and explicitly, high effi-
ciency can be achieved. Java proves to be a powerful
language for such a task.

� Optimizations in the integrated environment Given
the fact that the speed and reliability of networks are
not met with the user’s requirements, aggressive opti-
mizations in a distributed environment are required to
hide the network latency and reduce the probability of
network failures.

A computational scientist would be overwhelmed if she
has to consider all these issues which are beyond her ex-
pertise. Although works addressing the above issues have
been done separately in literature, few of them have consid-
ered them in an overall framework. Brown et al. [3] build
a meta-data system on top of HPSS using DB2 from IBM.
The SRB [2] and MCAT [12] provide a uniform interface
for connecting to heterogeneous data resources over a net-
work. Three I/O-intensive applications from the Scalable
I/O Initiative Application Suite are studied in [8]; however,
all of these works only address one aspect of the set of is-
sues presented in the previous section. Our previous work
[6] is a first step toward considering multiple factors in an
overall picture. We have designed an active meta-data man-
agement system that take advantage of state-of-the-art I/O
optimizations as well as maintaining ease-of-use features by
employing relational database techniques. In this paper, we
present further considerations about integrated environment
and its optimizations in distributed systems based on our
previous work. We make the following contributions:

� We present the design of an integrated graphical envi-
ronment in Java (IJ-GUI) for large-scale scientific ap-
plications in distributed systems. In our unified frame-
work, users work only on their local machines and our
IJ-GUI hides all the details of distributed resources.
Users can launch the parallel application, carry out
data analysis and visualization, query databases and
browse the tables in an uniform interface.

� We present a data replica optimization scheme that
takes advantage of local disks as cache to signifi-
cantly improve visualization performance in our uni-
fied graphical environment.

� We introduce the concept of data contiguity which can
be used to characterize usr’s behavior when she carries
out visualization.

� We present a data prediction scheme that can guide the
choosing of datasets for prefetching or pretransferring
(from remote sites to the local disks)

� We propose an automatic code generator component
(ACG) to help users utilize the meta-data management
system when they are developing new applications.

The remainder of the paper is organized as follows. In
Section 2 we introduce an astrophysics application and a
parallel volume rendering application that we use in our
work. A shorthand notation is introduced for convenience.
In Section 3 we give an overview of our design of meta-data
systems (MDMS). We present our design of the integrated
Java graphical environment (IJ-GUI) for scientific simula-
tions in Section 4. The functions and the inner-mechanisms
that IJ-GUI provides are presented. In Section 5 we first
introduce the concept of data contiguity that is helpful for
optimizations. Then two optimization approaches, data
replica and data prediction, are described and evaluated.
Finally we conclude our paper in Section 6.

2 Introduction to Applications

Our first application (Astro-3D [1]) is a code for scalable
parallel architectures to solve the equations of compressible
hydrodynamics for a gas in which the thermal conductivity
changes as a function of temperature. The code has been de-
veloped to study the highly turbulent convective envelopes
of stars like the sun, but simple modifications make it suit-
able for a much wider class of problems in astrophysical
fluid dynamics. From a computer scientist’s point of view,
the application is just generating a sequence of data and
dumping them on storages. Later on, the user may visu-
alize the datasets in which she may be interested. In Astro-
3D example, it generates six datasets such as temperature,
pressure, etc. for each iteration in one run. Each of these
datasets is written in a single file. Therefore, a data file is
uniquely identified by dataset name, run id and the iteration
number. We make the following notations to express a data
file that is generated by concatenating the dataset name, run
id and iteration number: dataset-runid-iteration. For ex-
ample, if the temperature is dumped at the first iteration in
the fifth run, it is notated as temperature-5-1; if the pres-
sure is dumped at the second iteration in the sixth run, it is
expressed as pressure-6-2 and so on. The user can specify
the number of iterations and dataset sizes as command-line
arguments for each run.

Our second application is a parallel volume rendering
code (called volren henceforth). It generates a 2D image
by projection given a 3D input file. From a computer sci-
entist’s point of view, again, volren just reads a 3D input
file and creates an 2D image file for each iteration per run.
For example, volren may generate four image files (image-
5-1, image-5-2, image-5-3, image-5-4) given four input data
files at the fifth run.

2

Proceedings of the Fourth International Conference/Exhibition on
High Performance Computing in Asia-Pacific Region
0-7695-0589-2/00 $10.00 © 2000 IEEE

(MDMS)
O(R)DBMS

Hints (Collective I/O)
Schedule, Prefetch, Cache

Data

Query Input
Metadata

Performance Input

Hints, Directives

System Metadata

Parameters
Object IDs

for I/O

User Application

Simulation
Data Analysis
Visualization

Access Pattern, History
MPI-IO, PASSION
(Other Interfaces ...)

Metadata

Associations

(HSS)

Hierarchical
Storage System

I/O calls

Figure 1. Three-tiered architecture.

3 Design of Meta-data Management System
(MDMS)

Figure 1 shows a novel architecture we proposed in
[6]. The three-tiered architecture contains three key com-
ponents: (1) parallel application, (2) meta-data manage-
ment system (MDMS), and (3) hierarchical storage system
(HSS). These three components can co-exist in the same site
or can be fully-distributed across distant sites. The MDMS
is an active part of the system: it is built around an OR-
DBMS [17, 16] and it mediates between the user program
and the HSS. The user program can send query requests to
MDMS to obtain information about data structures that will
be accessed. Then, the user can use this information in ac-
cessing the HSS in an optimal manner, taking advantage of
powerful I/O optimizations like collective I/O [18, 5, 11],
prefetching [10], prestaging [7], and so on. The user pro-
gram can send access pattern hints to the MDMS and let the
MDMS to decide the best I/O strategy considering the stor-
age layout of the data in question. These access pattern hints
span a wide spectrum that contains inter-processors I/O ac-
cess patterns, information about whether the access type is
read-only, write-only, or read/write, information about the
size (in bytes) of average I/O requests, and so on. The
MDMS design consists of design of database tables and
the high-level MDMS user API. The database tables show
what meta-data should be maintained and the MDMS user
API shows how these meta-data will be used for I/O op-
timizations. The most distinguished feature of our design
is that by comparing the user specified storage pattern and
access pattern, our MDMS automatically chooses best I/O
optimizations. The design details can be found in [15].

4 Design of Java Graphical User Interface

4.1 Architecture of Integrated Java GUI

As it is distributed in nature, our programming environ-
ment involves multiple resources across distant sites. Con-
sider our current working environment: we are working
on local HP or SUN workstations, the visualization tools
are installed on a Linux machine, our database (POST-
GRESQL) is located on another machine and our parallel
applications run on a 16 node IBM SP2. Although these ma-
chines are within our department, they could be distributed
across a wide area and connected via the Internet.

When a user starts to work in such a distributed system,
she needs to go through the following procedures:

(1) log on to SP2 and submit the parallel application.

(2) When the application is finished, she needs to log on
to the database host and use native SQL language to
inspect the database to find datasets she would be in-
terested in for visualization.

(3) When the user is interested in a particular dataset, she
would transfer the data file explicitly, for example us-
ing ftp, from SP2 where data are located to the visual-
ization host (DATA) where visualization tools reside.

(4) Log on to the visualization host (DATA) and start the
visualization process.

(5) Repeat steps 2-4 as long as there exist datasets to be
visualized.

Obviously, these steps might be very time-consuming
and inconvenient for the users. To overcome this problem
(which is due to the distributed nature of the environment),
an integrated Java graphical user interface (IJ-GUI) is im-
plemented and integrated to our application development
environment. The goal of the IJ-GUI is to provide users
with an integrated graphical environment that hides all the
details of interaction among multiple distributed resources
(including storage hierarchies).

Java has been chosen because it is an enabling access
language and operating environment that supports all plat-
forms of interest, including IBM AIX, Linux, Windows
NT, Solaris, and others. Transparency is made possible
by the many platform-independent abstractions of Java, in-
cluding process management (the built-in Runtime and Pro-
cess classes), multithreading (a language feature), network-
ing and streams (built-in classes), GUI components (the
Abstract Windowing Toolkit), and database access (Java
Database Connectivity, or JDBC). Java has proven to be
flexible and delivers good performance in all of these di-
mensions without being in any way on the critical path of

3

Proceedings of the Fourth International Conference/Exhibition on
High Performance Computing in Asia-Pacific Region
0-7695-0589-2/00 $10.00 © 2000 IEEE

Figure 2. Java GUI in overall system.

performance in our environment. In this environment, the
users need to work only with IJ-GUI locally, rather than go
to different sites to submit parallel applications or to do file
transfers explicitly. Figure 2 shows how IJ-GUI is related to
other parts of our system. It actively interacts with three ma-
jor parts of our system: (1) parallel machines to launch par-
allel applications. (2) databases through JDBC to help users
query meta-data from databases. (3) visualization tools to
carry out visualization process.

4.2 Main functions of IJ-GUI

The main functions that IJ-GUI provides are described
as follows:

� Registering new applications To start a new applica-
tion, the user needs to create a new suite of tables for
the new application. By IJ-GUI, the user needs only to
specify attributes of run table that she would be inter-
ested in, and all the other tables will be created auto-
matically with run table.

� Running applications remotely The applications are
usually running somewhere on parallel machines such
as SP2, which are specified by the user when she reg-
isters a new application. Therefore, remote shell com-
mand is used in IJ-GUI to launch the job on remote
parallel machines. The user can specify command line
arguments in the small text fields as well. Defaults are
provided and the user can change them as needed. The
running results will be returned in the large text area.

� Data Analysis and Visualization Users can carry out
data analysis and visualization through our IJ-GUI.
Data Analysis may come in a variety of flavors, it
is quite application specific. For some applications,

data analysis may simply calculate the maximum, min-
imum or average value of a given dataset, for some
others, it may be plugged into the application and cal-
culate the difference between two datasets and decide
whether the dataset should be dumped now or later.
Our systems current method of data analysis is to cal-
culate the maximum, minimum and means of each
dataset generated. From the IJ-GUIs point of view, it
is no different than just submitting a remote job. Visu-
alization is becoming an important approach in large-
scale scientific simulation to inspect the inside nature
of datasets. It is often a little bit more complicated
than data analysis: first of all, the users’ interest in
a particular data set may be very arbitrary. Our ap-
proach is to list all the candidate datasets by searching
the database by user-specified characteristics such as
maximum, minimum, means, iteration numbers, pat-
tern, mode and so on. Then the candidates are pre-
sented in radio box for user to choose easily. Second,
the datasets that are created by parallel machines, are
located either at parallel machines or stored in hierar-
chical storage systems. But our visualization tools are
installed in some other places. Therefore, inside IJ-
GUI, we transparently copy the data from the remote
parallel machine or hierarchical storage systems to the
visualization host and then start the visualization pro-
cess. The user does not need to check the database for
interesting datasets or do data transfer explicitly. The
only things the user has to do are to checkmark the ra-
dio box for interesting datasets, select a visualization
tool (vtk, xv etc.), and then click the Visualization but-
ton to start the process of visualization. Our current vi-
sualization tools include Visualization Toolkit (VTK),
Java 3D, XV etc.

� Table browsing and searching Advanced users may
want to search the database to find datasets of par-
ticular interest. So the table browsing and searching
functions are provided in our IJ-GUI. The user can just
move the mouse and pick a table to browse and search
the data without logging on to a database host and typ-
ing native SQL script.

� Automatic Code Generator Our IJ-GUI relieves
users great burden of working in a distributed system
with multiple resources. For an application that has al-
ready been developed, the user would find it very easy
to run her application with any parameters she wants:
she can easily carry out data analysis and visualiza-
tion, search the database and browse the tables. For
a new application to be developed, however, although
our high-level MDMS API is easy to learn and use,
the user may need to make some efforts to deal with
data structure, memory allocations and argument se-

4

Proceedings of the Fourth International Conference/Exhibition on
High Performance Computing in Asia-Pacific Region
0-7695-0589-2/00 $10.00 © 2000 IEEE

lects for the MDMS functions. Although these tasks
may be considered routine, we want to reduce them to
almost zero by designing an Automatic Code Genera-
tor (ACG) for MDMS API. The idea is that given a spe-
cific MDMS function and other high-level information
such as the access pattern of a dataset, ACG will auto-
matically generate a code segment that includes vari-
able declarations, memory allocations, variable assign-
ments and identifications of as many of the arguments
of that API as possible. The most significant feature
of ACG is that it does not just works like a MACRO
which is substituted for real codes: it may also con-
sult databases for advanced information if necessary.
For example, to generate a code segment for set-run-
table(), which is to insert one row into the run table
to record this run with user-specified attributes, our
ACG would first search the database and return these
attributes, then, it uses these attributes to fill out a pre-
defined data structure as an argument in function set-
run-table(). Without consulting the database, the user
has to deal with these attributes by hand. Our ACG is
integrated within our IJ-GUI as part of its functions.
The user can simply copy the code segment generated
and paste them in her own program.

Our current IJ-GUI is implemented as a standalone sys-
tem, we are also embedding it into the web environments,
so the user can work in our integrated environment through
a web browser.

5 Optimizations in IJ-GUI

One significant feature of our IJ-GUI is that it also pro-
vides performance-oriented optimizations. When we look
back the main functions that IJ-GUI provides in section 4,
we would find that running new application and data anal-
ysis do not incur a performance problem because IJ-GUI
only launches a remote job; registering new applications,
table browsing and searching only negotiate with database
for exchanging meta-data, namely, the size of data is small.
Therefore, the only performance problem the user may en-
counter is in the process of visualization. The size of data
sets for visualization could be very large since it is typical
for modern simulations to generate huge datasets nowadays.
These datasets are usually stored on tertiary storage systems
such as HPSS [7]. Without saying, the performance to ac-
cess tertiary storage systems is considered poor. Moreover,
technology trend favors distributing resources across distant
sites rather than centering on one spot, i.e., our visualization
tools could be installed far away from where datasets are
stored. In addition, the network failures may significantly
reduce the data access reliability. In this section, we present
two optimization schemes, both of them aggressively take
advantage of meta-data kept in databases.

5.1 Data Replica

The idea of data duplication is that if we can keep a copy
of data on local visualization host, therefore, when the user
asks for this data later, without going to remote tertiary stor-
age systems, the local copy can be served. In other word,
we take advantage of ‘temporal locality’. The idea is very
much like introducing a cache between processor and main
memory, but the difference is that there is no data consis-
tency problem in this case because the datasets here are
read-only. Based on these characteristics, employing data
duplication approach seems very attractive because there is
no data consistency problem as encountered in processor-
memory cache which significantly complicates the system
and compromise the performance achieved.

As in processor-memory cache, the data replica should
also address capacity problem: the local host has limited
space for data duplications. This means when the allocated
space for data replica is exceeded, some replica will be cho-
sen evicted. The LRU (Least-Recently-Used) approach ap-
plies very well here: we associate an attribute, reference
counter, to each cached data replica, whenever this dataset
is accessed by the user, the reference counter will increment
by one. Therefore, when the local host space is exceeded,
the datasets with small reference numbers will be evicted
until sufficient space is obtained.

5.2 Data Contiguity

We introduce the data contiguity concept in this subsec-
tion which is helpful for guiding our next optimization ap-
proach. We define two datasets are contiguous if their itera-
tion number is contiguous with same dataset name and run
id (called iteration-contiguous datasets), or if two datasets
are associated (as described in Section 3) and with same run
id (called association-contiguous datasets), or if the run id is
contiguous with the same dataset name and iteration num-
ber (called run-contiguous). For instance, temperature-5-1
and temperature-5-2 are iteration-contiguous, temperature-
5-1 and pressure-5-1 are association-contiguous since tem-
perature and pressure are associated according to Sec-
tion 3, and temperature-5-1 and temperature-6-1 are run-
contiguous.

5.3 Data Prediction

The data replica can improve performance by taking ad-
vantage of ‘temporary locality’. But when a dataset is first
asked by the user, or it is asked again when it is evicted from
local disk due to limited space, the application will suffer
poor data access latency as discussed previously. The idea
to solve this problem is to make predictions about which
datasets are going to be accessed later at a proper time. For

5

Proceedings of the Fourth International Conference/Exhibition on
High Performance Computing in Asia-Pacific Region
0-7695-0589-2/00 $10.00 © 2000 IEEE

instance, when the user read dataset temperature-5-1 and
it would most likely that the user would be also interested
in temperature-5-2. Thus, an aggressive optimization ap-
proach is to prefetch the temperature-5-2. Here, prefetch
means read datasets from storage systems or/and transfer
data from remote sites to the local machine.

The questions must be answered here are: what data sets
are candidates for prediction and when datasets should be
prefetched.

The answer to the second question is straightforward: the
prefetching could happen either when the user is examining
the current dataset or when the user is searching or browsing
the meta-data from databases. Thus, the prefetching can be
overlapped by the user’s current activity.

The first question, however, is not obvious, since the
user’s behavior could be very application-specific. But
some general characterization of user’s behavior can be
identified by our data contiguity concept as follows. Users
are likely to

� Inspect iteration-contiguous datasets These datasets
of the same run are likely to be accessed shortly.
For instance, when the user finishes examining
temperature-5-1, she may be subsequently interested
in the same dataset of next iteration: temperature-5-
2, so she can find the difference of how temperature
changes between two contiguous iterations.

� Inspect association-contiguous datasets As we have
discussed in the previous sections, our MDMS library
allows users to group different datasets in one associ-
ation for manipulation. These associated datasets are
closely related. For example, the associated temper-
ature and pressure of Astro-3D application may influ-
ence each other. When the user carry out visualization,
if she finds changes on temperature, she may then want
to inspect how these changes influence the changes
on pressure. Obviously, when the user is examin-
ing temperature, we can aggressively prefetch pressure
datasets, thus when the user begins to inspect pressure,
the data are already on the local disks.

� Inspect run-contiguous datasets The user may be
interested in the same datasets(dataset name) on two
contiguous runs. This is because the user may ad-
just parameters, re-run the application and examine the
same datasets to see what changes.

In sum, contiguous datasets are most likely to be visual-
ized by the users. Data contiguity can greatly help us make
correct predictions. The prefetch based on data contiguity is
very much similar to the processor-memory cache that em-
ploys block size to take advantage of spatial locality. In the
next subsection, we present our initial implementation.

Figure 3. Optimizations in IJ-GUI.

5.4 Implementations

We create two performance-related tables in the database
to help IJ-GUI perform aggressive optimizations for visu-
alization. One table is called data-access-trace, whose at-
tributes (fields) include application name, dataset name, it-
eration number, date and time, run id etc. Whenever the user
carries out visualization on a dataset, a row is inserted to
record users’ behavior on datasets. Another table is called
data-replica, whose attributes (fields) include, application
name, dataset name, iteration number, local directory and
reference counter. It keeps information about what datasets
are currently cached on the local disk and how many times
they are accessed by the user. Figure 3 shows a flow of how
and what kind of optimizations are performed through our
initial implementation. The optimization procedure is sum-
marized as follows.

(1) Whenever the user asks for a dataset for visualization,
our optimized IJ-GUI will consult the data-replica ta-
ble to see if there is an cached copy on local disks. If
yes, the local data replica will be served.

(2) If the dataset is not found on local disk, then IJ-
GUI has to read it from HPSS or transfer it from
remote sites. A new data replica entry will be in-
serted into data-replica table once the dataset has
been transferred to local host. If the local space for
data replica is exceeded, some data replica will be
chosen as victims according to the rules discussed
previously. After that, the user will start the pro-
cess of visualization and stay some time on it. In
the meanwhile, another thread or process is spawn
and run simultaneously with the above procedure to
make data prediction decisions. These decisions in-
clude no prefetching due to lack of information or
what kind of datasets should be prefetched: iteration-
contiguous, association-contiguous or run-contiguous

6

Proceedings of the Fourth International Conference/Exhibition on
High Performance Computing in Asia-Pacific Region
0-7695-0589-2/00 $10.00 © 2000 IEEE

datasets. Once a dataset is chosen then IJ-GUI
prefetches it on background when the user is visual-
izing the current dataset on foreground.

5.5 Discussions

The two optimizations we have discussed so far may
not have the same ‘weight’ when we design optimization
schemes in our IJ-GUI: The data replica approach is al-
ways ‘safe’ because it has no data consistency problems as
discussed previously and it only has a slight overhead of
accessing databases in the worst case; the prefetching ap-
proach, however, may hurt performance if it is not handled
properly: this could happen when a wrong predicted dataset
evicts from local disks a useful dataset which would be used
in the future. Therefore, employing prefetch scheme should
be very careful. This requires precise prediction scheme and
smart caching policy. P. Cao et al [4] have studied the rela-
tionship of prefetch and caching between disk and memory.
We believe their works are also applied to our situation. In
our future work, we would investigate such relationship in
our context.

6 Conclusions

In this paper, we presented an integrated Java graphical
user interface (IJ-GUI) to efficiently help users work on an
environment that is characterized by distributed and hetero-
geneous natures. Our IJ-GUI provides users an unified in-
terface to all the resources and platforms presented to large-
scale scientific applications. In addition, two optimization
approaches, data replica and data prediction have been in-
tegrated into our IJ-GUI to achieve high performance. The
last approach is based on data contiguity characteristic of
scientific datasets. All these works take advantage of Java’s
powerful features such as platform independence, portabil-
ity, process management, multithreading, networking and
streams. In the future, we would investigate other optimiza-
tions in our environment, such as subfiling [13]. The rela-
tionship between prefetch and caching in our context will
also be studied.

References

[1] A. Malagoli, A. Dubey, and F. Cattaneo. A Portable and
Efficient Parallel Code for Astrophysical Fluid Dynamics.
http://astro.uchicago.edu/Computing/On-Line/cfd95/camelse.html

[2] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC storage re-
source broker. In Proc. CASCON’98 Conference, Dec 1998, Toronto,
Canada.

[3] P. Brown, R. Troy, D. Fisher, S. Louis, J. R. McGraw, and R. Musick.
Meta-data sharing for balanced performance. In Proc. the First IEEE
Meta-data Conference, Silver Spring, Maryland, 1996.

[4] P. Cao, E. Felten, and K. Li. Application-controlled file caching
policies. In Proc. the 1994 Summer USENIX Technical Conference,
pages 171–182, June 1994.

[5] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Pon-
nusamy, T. Singh, and R. Thakur. PASSION: parallel and scalable
software for input-output. NPAC Technical Report SCCS-636, Sept
1994.

[6] A. Choudhary, M. Kandemir, H. Nagesh, J. No, X. Shen, V. Taylor,
S. More, and R. Thakur. Data management for large-scale scientific
computations in high performance distributed systems, In Proc. the
8th IEEE International Symposium on High Performance Distributed
Computing (HPDC’99), August 3-6, 1999, Redondo Beach, Califor-
nia.

[7] R. A. Coyne, H. Hulen, and R. Watson. The high performance stor-
age system. In Proc. Supercomputing 93, Portland, OR, November
1993.

[8] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed. Input/output
characteristics of scalable parallel applications. In Proceedings of Su-
percomputing’95.

[9] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel
I/O via a two-phase run-time access strategy. In Proc. the 1993 IPPS
Workshop on Input/Output in Parallel Computer Systems , April
1993.

[10] C. S. Ellis and D. Kotz. Prefetching in file systems for MIMD mul-
tiprocessors. In Proc. the 1989 International Conference on Parallel
Processing, pages I:306–314, St. Charles, IL, August 1989. Pennsyl-
vania State Univ. Press.

[11] D. Kotz. Disk-directed I/O for MIMD multiprocessors. In Proc. the
1994 Symposium on Operating Systems Design and Implementation,
pages 61–74. USENIX Association, Nov 1994.

[12] MCAT http://www.npaci.edu/DICE/SRB/mcat.html.

[13] G. Memik, M. Kandemir, A. Choudhary, Valerie E. Taylor. APRIL:
A Run-Time Library for Tape Resident Data. To appear in the 17th
IEEE Symposium on Mass Storage Systems, March 2000.

[14] R. Ramakrishnan. Database Management Systems, The McGraw-
Hill Companies, Inc., 1998.

[15] X. Shen, W. Liao, A. Choudhary, G. Memik, M. Kandemir, S. More,
G. Thiruvathukal and A. Singh. A Novel Application Development
Environment for Large-Scale Scientific Computations. Submitted to
International Conference on Supercomputing, May 2000, Santa Fe,
New Mexico

[16] M. Stonebraker. Object-Relational DBMSs : Tracking the Next Great
Wave. Morgan Kaufman Publishers, ISBN: 1558604529, 1998.

[17] M. Stonebraker and L. A. Rowe. The design of Postgres. In Proc.
the ACM SIGMOD’86 International Conference on Management of
Data, Washington, DC, USA, May 1986, pp. 340–355.

[18] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O in
ROMIO. To appear in Proc. the 7th Symposium on the Frontiers of
Massively Parallel Computation, February 1999.

[19] S. Toledo and F. G. Gustavson. The design and implementation of
SOLAR, a portable library for scalable out-of-core linear algebra
computations, In Proc. Fourth Annual Workshop on I/O in Parallel
and Distributed Systems, May 1996.

[20] UniTree User Guide. Release 2.0, UniTree Software, Inc., 1998.

7

Proceedings of the Fourth International Conference/Exhibition on
High Performance Computing in Asia-Pacific Region
0-7695-0589-2/00 $10.00 © 2000 IEEE

	Loyola University Chicago
	Loyola eCommons
	2000

	A Java graphical user interface for large-scale scientific computations in distributed systems
	X Shen
	George K. Thiruvathukal
	Wei-keng Liao
	Alok Choudhary
	A Singh
	Recommended Citation

	tmp.1322190543.pdf.yEcyc

