
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Computer Science: Faculty Publications and 
Other Works 

Faculty Publications and Other Works by 
Department 

12-1994 

Toward Scalable Parallel Software: An Active Object Model and Toward Scalable Parallel Software: An Active Object Model and 

Library to Support von Neumann Languages Library to Support von Neumann Languages 

George K. Thiruvathukal 
Loyola University Chicago, gkt@cs.luc.edu 

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs 

 Part of the Computer Sciences Commons 

Author Manuscript 
This is a pre-publication author manuscript of the final, published article. 

Recommended Citation Recommended Citation 
George K. Thiruvathukal, Toward Scalable Parallel Software: An Active Object Model and Library to 
Support von Neumann Languages, In Proceedings of HiPC Workshop India, 1994. 

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other 
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty 
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please 
contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
Copyright © 1994 George K. Thiruvathukal 

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


1

Abstract

Scalable parallel processing has been proposed as the
technology scientists and engineers can use today to solve
the problems of tomorrow. Many computational Grand
Challenge problems require between two and three orders of
magnitude than can be provided with the scalable parallel
hardware of the early nineteen-nineties. While hardware
continues to become more scalable and cheaper, software is
not advancing at the same pace and remains a very expensive
part of systems development.

A great deal of emphasis on software technology to support
scalable parallel processing is placed on von Neumann
languages. One of two approaches is common: (a) augment
the von Neumann language with explicit parallel constructs
or (b) write super-optimizing compilers to “find” the
parallelism in a von Neumann program. These two
approaches appear to be useful at some level; however, this
paper argues that software constructed using these
approaches is not likely to scale very well, because an
appropriate level of abstraction is not being used to solve the
problem.

We propose a simple layered architecture for doing parallel
processing. The outer layer is the composition layer. This
layer is used from a von Neumann language to encode
algorithms using standard building blocks (objects). The
middle layer uses objects. These objects exhibit high
potential for parallelism. In our application, we focus on
multidimensional arrays. At the lowest level, Itinerant
Actors is used. Itinerant Actors is an object model developed
by Christopher and Thiruvathukal at IIT to support
asynchronous message-passing between active objects with
a number of other useful ideas.

Themes: Parallel Programming Systems, Distributed
Computing, Scalable Parallel Algorithms and
Implementations, Parallel Matrix Computation

Other Themes: Program Composition, Layered Architecture,
Dataflow with Macro-Operations

1     Introduction

The principle goal of high performance computing research
is to radically improve the performance of a given algorithm
or program in proportion to the number of processors
available at one’s disposal. A desirable attribute, therefore, is

that the performance of software scales up, given more
processors.

Scalable parallel processing should be easy to achieve. After
all, the available hardware continues to improve. A scalable
parallel processing system can be purchased for under a
million dollars. Once the purchase order is written, it should
be academic to get the software up-and-running in parallel--
no problem.

It ought to be simple to design and implement scalable
parallel software, but it remains a task whose difficulty
eludes even the best computational scientists. To a large
extent, the challenge of implementing parallel software
appears to be due to artificial complexity in systems
software architecture. We now explore this point further.

One manifestation of artificial complexity is due to a lack of
abstraction to solve the problem. The abstraction problem
has a severe repercussion in that the mathematics involved
in solving the problem is often lost in our implementation. In
other words, we have code, but it is difficult or impossible to
see the underlying algorithm or mathematics that looked so
good while on paper. How is it possible to lose the
mathematics?

The mathematics in most of our parallel programs is lost,
because of our reliance on mechanisms over methods. The
computational scientist is encumbered by the need to learn a
lot of unnecessary details about programming languages and
mechanisms. Instead of programming with objects such as
vectors, matrices, tensors, and lattice structures, the
computational scientist is preoccupied with the need to learn
about compiler pragmas, granularity calculations, message-
passing libraries, array layout algorithms, and compiler
optimization theory.

Object-oriented methodology has been proposed as essential
to the design and implementation of reusable software
components. Despite the potential for reuse through objects,
most applications of object technology remain trivial.
Example applications include graphical interface libraries,
fundamental structures libraries, and numerical class
libraries; however, these applications are all well-
understood. Prior to the existence of an object model, it was
well-understood how to package such subroutines in
modules. Despite the limited applications of object
technology to solve real problems, we argue in this paper
that objects can be vastly instrumental in managing artificial
complexity. Apparently, object technology can help us to
cope with the abstraction problem.

Toward Scalable Parallel Software
An Active Object Model and Library to Support von Neumann Languages

George K. Thiruvathukal
Illinois Institute of Technology

High Performance Languages and Systems Group
Department of Computer Science

Chicago, Illinois 60616
gkt@iit.edu



2

While the abstraction problem in its own right is a very
serious problem, another problem is that we are in a constant
struggle with the von Neumann model of computation. In the
1979 Turing Lecture, John Backus discusses the von
Neumann bottleneck and its potential impact (negative) on
parallel processing. We argue in this paper that it is possible
to use von Neumann units of computation in a non-von
Neumann style, but we argue that there are certain aspects of
computing for which von Neumann languages are not well-
suited. Augmenting von Neumann languages with compiler
pragmas, explicit parallel constructs, message-passing
“primitives” and relying upon heuristics (compiler
optimizations) is not an appropriate level for exploiting task-
level, medium-grain, and coarse-grain parallelism.

We think, however, that it is important to give a practical and
theoretical treatment to the issue of von Neumann
computing. The pragmatics are that von Neumann languages
are here to stay. Computational scientists (and computer
scientists) are fluent in the von Neumann languages. Von
Neumann languages generally deliver better performance
than their functional counterparts, particularly in the solution
of numerical problems. FORTRAN 9x is proof that von
Neumann programming will continue for many, many years
to come.

It is possible to bring non-von Neumann capabilities to von
Neumann programming environments. For a number of
years, the author and others (mentioned in related work)
have been investigating active objects and dataflow as
methods of supporting high performance computing;
however, the majority of these works have centered around
new language designs, which does not provide an evolution
path for real applications. A few approaches have been based
on existing von Neumann languages, but migrating existing
codes to these new languages remained an unsolved
problem.

The issue of programming languages raises significant
human factors issues. The failure to address these issues
usually results in resistance to trying new programming
languages and the near-term extinction of a programming
language. A major human factors issue is religion. Religion
influences our choice of a programming language more than
any other issue. Language bashing has long been
fashionable, even between people who use languages that
have many of the same useful capabilities (e.g. FORTRAN
and C). Usually, the differences are found in syntax.

A second human factors issue is that most people would
rather use a familiar, proven language than an unfamiliar
one. Our experience with languages has shown that it is
better to propose language mechanisms, initially, through a
library (class library) and at a later point introduce a set of
language mechanisms as extensions to an existing language
or a new language. If you have a user community, it is much
easier to justify the use of a new programming language. Too
much language work exists in a theoretical vacuum, and
these languages usually become extinct before being used.

Another human factors issue seems very important in the
parallel world. There is a warm feeling experienced by a
software developer when the algorithm works without
modification when moving from the sequential to the parallel
universe. In the ideal case, it should be possible to develop

an algorithm sequentially and run it either sequentially or in
parallel and get the same results. This mandates the
availability of a clean semantics model, regardless of
whether a library or a language is provided. Sloppiness in the
semantics model results in non-portable applications.
Additionally, it results in software that cannot be easily
verified, which we believe is a requirement for parallel
software, because debugging and comprehension of
algorithms is presently a serious problem.

Having motivated the issue of scalable parallel processing,
the problems in achieving it, and the human factors that play
a role in our often futile attempts to deal with the problems,
what do we propose to do to effectively address scalable
parallel processing?

In this paper, we will be discussing an approach for
integrating von Neumann and non-von Neumann
environments. An Active Object Model and Library are
proposed to support object-oriented capabilities from
ordinary von Neumann languages. The present
implementation is designed to be used from C++, an object-
oriented language which does not support parallel, or active,
objects. A future implementation will use the object-
brokering principle (and an object-brokering standard, such
as CORBA) to allow procedural and functional languages to
define and manipulate parallel active objects.

2     Organization of Paper

As a roadmap to reading and understanding this paper, this is
an overview of the remaining sections.

Section 3, Scalable Parallel Software, attempts to bring some
definition to the notion of scalable parallel software. The
definition is more or less a collection of ideas. We discuss
what ideas support scalable parallel software development
and what ideas impede the same. A brief discussion of why
our ideas are a framework for scalable parallel software is
presented.

Section 4, Related Work, summarizes related work on
coordination languages, message driven execution, dataflow,
and abstracting the heterogeneous/homogeneous computing
environment. This work has influenced a number of ideas in
this paper.

Section 5, Active Objects Library/Language, discusses the
process coordination and active object library (language) and
the importance of dataflow. We will discuss how our library
is capable of directly supporting dataflow computations from
a von Neumann language.

Conclusions, future directions, and references will be
presented toward the end of the paper.

3     Scalable Parallel Software

To understand why software is not scaling up well, it pays to
discuss the trends toward scalable parallel hardware. Parallel
hardware today is much better suited to scalable solutions
than parallel hardware of the past for a number of reasons.
First, parallel machines are being built from off-the-shelf



3

components (commodity parts) as opposed to proprietary
components. This allows a better software development
environment to be provided, since many operating systems
and development tools can run on the new parallel machines.
Second, hardware has always been modular in nature. Now it
is more modular. A parallel system once represented a huge
purchasing commitment, but now a parallel system can be
purchased inexpensively and grow, as the needs of an
organization grow.

The net effect is that parallel hardware has become more
accommodating from the standpoint of software
development. Parallel computers are of much more general
applicability than in the past. As an example, many
companies are looking at parallel machines to support better
database throughput for multimedia applications. Relational
databases, on a commercial scale, are available for some of
the emerging parallel computers and boast support
distributed data and transactions processing. In short, this
trend means parallel hardware is able to support general
applications and is no longer exclusively catering to
computational science applications.

The availability of scalable hardware emphasizes the need to
continue research and development of solutions for scalable
parallel software. The notion of scalable parallel software
continues to be elusory, because the parallel software
solutions of today are lacking in a number of areas. Parallel
hardware is elegant, by comparison to software in any event,
and has modular structure. While some software exists, as
discussed under related research, which supports modular
software design, to a large extent parallel software lacks
modular structure.

What is scalable software then? This paper proposes that
objects can be helpful for managing task-level parallelism
and process-level parallelism. This loosely-coupled
architecture allows a unit of work to be executed on any
available processor. The ability to define such objects from a
von Neumann language allows a parallelizing compiler to
uncover hidden parallelism in a unit of work to be
performed.

Another attribute of scalable parallel software appears to be
a decupling from message-passing libraries, compiler
pragmas, and explicit parallel constructs. All of these items,
while being appropriate at some level of abstraction,
interfere with comprehension of the underlying algorithms.
The work proposed here provides a level of abstraction
above, but not beyond, these ideas to improve performance
for applications. Application developers and end-users
should not have to understand how to pack and unpack data
structures to be passed in a message. These capabilities can
be supported by a class library, such as TLC.

Finally, scalable parallel software can be defined in one of
two ways. The first definition involves the addition of
processing elements. As processing elements are added,
scalable parallel software is able to exploit the additional
processing power and achieve improvement with little or no
loss of efficiency. This definition is somewhat liberal but fair.
Many applications that benefit from parallel processing do
not have high efficiency, but the problem is solved in
dramatically less time than it would take sequentially;
however, the software cannot be argued to be scalable if the

efficiency is dropping off dramatically as we add more
processors.

Another way of defining scalable parallel software is the
partial or total replacement of a system. What if the
processor speed doubles? What if the network speed triples?
What if the memory bandwidth is improved? A scalable
software architecture is able to adapt to such changes in
performance parameters. If performance cannot be tuned,
the software cannot be argued to be scalable.

4     Related Work

The work described earlier is based on a solid foundation of
computer science literature. The relevant literature pertains
to coordination languages, message driven execution,
dataflow computation, and abstraction of the heterogeneous
computing environment. These four areas have some degree
of overlap, but the aim here is to classify a related research
area according to the principle goals of the stated research.

Coordination Languages and Generative Computing

The seminal research in coordination models and constructs
is CSP [11] (Communicating Sequential Processes) and
Linda [8]. In both of these models, support is provided to
synchronize processes. The essence is to provide a more
dignified interface for coordinating processes than a low-
level message-passing library and to support classical
synchronization mechanisms. The Linda model is a major
advancement for coordinating processes in its introduction
of a tuple space which provides the application with a
conceptually shared memory. Distributed Memo [14][16] is
proposed as an alternative to Linda, which preserves the
elegance and simplicity of the Linda model, and provides a
clarification of the shared memory abstraction as merely a
distributed table of unordered process queues. Additionally,
the simplification is enhanced with better support for
mapping table entries (a major struggle reported in actual
Linda implementation). Much of our work in Memo is
reused here to provide support for coordinating processes.

Message Driven Execution

Message driven computing and execution are proposed as
another model of computation. All of the major works in this
area center around variations on the actors model of
computation. The essentials of actors are discussed in detail
in [1][12]. An actor is an object in the purest sense. It has a
mailbox, into which messages are deposited, and a name. An
actor executes a script whenever it receives a message. The
script is useful for modifying the local state of the actor and
for issuing communications with other actors. The message-
passing support provided by actors systems is asynchronous.

A number of actors systems are provided. We apologize for
any omissions in this survey. Act [12] and ABCL/1 [22] are
extensions to the functional language model to support
actors. In these implementations, the mailbox concept is
tightly coupled with the actor. Our approach is to decuple
these principles. We will show how deadpanning the
mailbox and actors principles give us a lot of flexibility for
supporting process coordination (synchronous operations)
and object coordination (asynchronous operations).



4

Mentat is proposed as an extension to the object-oriented
model of computation aimed at providing easy-to-use
parallelism for people who are not computer science experts
[9]. Specifically, it is implemented atop C++. The major
contribution of the Mentat research is to allow objects in an
object-oriented sequential language (such as C++) to run in
parallel model with the support of a translator to support
dynamic dataflow graph elaboration [10]. Grimshaw alludes
to a principle called macro-dataflow. This is a variant of
dataflow to support coarse-grained dataflow (dataflow on
arbitrary objects). Some difficulties in this research include
the inability to map structures and to synchronize processes
effectively. Additionally, the software developer must
understand dataflow to exploit the capabilities of Mentat. In
the literature on Charm, a criticism is levied against Mentat
in that the cost of procedure calls is somewhat unclear.
Additionally, the implementation of Mentat includes a large
dataflow simulator, which for many applications presents
performance and portability problems.

Charm and CHARM++ are proposed as enhancements to the
actors model of computation [18]. The unit of computation
in Charm is a chare. A chare is an actor which corresponds to
a chare, an old English term for a chore, or a unit of work. In
this model of computation, a chare is defined with a number
of named entry points, similar to actors. When one of these
named entry points is called, the semantics are similar to the
basic actors model. Charm and Mentat provide extensive
support for shared, or global, variables, but the necessity of
these features is somewhat questionable. Linda and Memo,
as discussed earlier, support the notion of a global shared
memory adequately within the bounds of the model of
computation. Supporting this notion in the model has the
immediate benefit of not imposing ad hoc protection
mechanisms on the global shared memory from the end-user
and application developer’s point of view.

Christopher has proposed Message Driven Computing as a
model of computation based on actors [5]. A major
contribution of this work is in isolating the performance
issues of actors languages and applications employing the
actors model to solve problems. MDC provides a lightweight
execution model with locations (similar to mailboxes),
behaviors (similar to scripts), and generalized message
pattern-matching. The generalized pattern matching
principle allows full support of the various forms of
dataflow, and it does so efficiently. The other languages
discussed here do not support general-purpose pattern
matching, which in general requires an extensive currying of
operators. The foundations for an object-oriented version of
Message Driven Computing (so-called OO/MDC) are
presented by Christopher in [6]. In OO/MDC, the objects
have local state; however, the objects cannot be used as in
other object-oriented languages (such as Smalltalk and
C++). Furthermore, inheritance is not supported, which
many argue as an essential ingredient in object language
design.

Dataflow Model and Pattern Matching

Dataflow is a model of computation which has been the most
inspirational research area for us. Many of the design
decisions we have made in our computational model
specifically address dataflow; however, we are more

interested in dataflow as part of a suite of techniques
available in one’s programming arsenal. Work in progress
has shown that many computations (iterative and irregular
problems) perform extraordinarily well when expressed as a
dataflow algorithm. Given appropriate computational
granularity, a dataflow solution to such computations we
have found to perform with near linear speedup.

Research on static dataflow [7] and dynamic dataflow [3]
architecture exposed a number of problems implementing
dataflow architecture effectively in hardware. In particular,
the implementation of matching hardware and data
structures imposes serious overhead in practice at the
architecture level. At the hardware level, it is important to
keep things “light.” The model proposed in our paper
addresses these problems, by imposing these responsibilities
on our actor and mailbox abstractions, and includes the
numerous value-adding aspects of dataflow: futures,
incremental structures [2], and parallel loop operations.
These details are the subject of an unpublished paper, but we
will address each briefly when discussing the model.

Abstraction Levels

Talk about Snyder’s XYZ levels. Aside from terminology,
we are thinking of the same ideas.

The highest level is composition. Snyder discusses phase
composition at the Z, or problem, level. In our scheme, a
single process creates specifies a computation by brokering
the services of existing objects. These objects are
concurrent/parallel in nature.

The next level is concurrent evaluation. The objects
brokered by the composition level cause the creation of
itinerant actors. Itinerant actors are used to do one of the
following:

• process coordination

• object coordination

• macro-dataflow (with virtual pattern matching)

• distributed and shared data structures (all objects)

Snyder speaks of a Y level, wherein a phase composes
process units to achieve a parallel computation. In our
model, we use the term process somewhat differently. Our
processes are lightweight at this level and partially ordered
as in dataflow. This allows a much higher degree of
parallelism to be achieved, since we do not rely on operating
system mechanisms to manage lightweight processes (in
other words, we do not use threads either).

Snyder speaks of the X level, wherein a process composes
sequential program units in a single address space. We are
consistent in this interpretation at our lowest level. While we
do not address this in detail in this paper, there is nothing to
stop you from exploiting parallelism at this level. This is the
level where we believe optimizing compiler technology is
particularly applicable.



5

5     Active Objects Library/Language

5.1 Goals and Guiding Principles

To support the middle layer of the conceptual model, the
concurrent execution layer, we have developed (and are
continuing to develop) an actors model which incorporates
many of the coordination mechanisms of the Memo model.
Addtionally, we have added support to specifically address
dataflow.

Rather than define a language at this point, we have chosen
to define a class library which provides classes and an
application programming interface for introducing and
executing actors from a von Neumann programming
language, such as C or C++. The API will be discussed
shortly. The idea of borrowing object-oriented capabilities
from another language (not necessarily object-oriented) is
called object-brokering.

We believe this approach to providing parallel object-
oriented capabilities for von Neumann languages (and
implemented in von Neumann languages) allows course and
fine grain parallelism to be exploited. Our emphasis is on
course-grain parallelism (in the ability of the model to
support macro-dataflow, job jars, distributed and logically
shared data structures), but nothing precludes the possibility
of exploiting fine-grain parallelism. Since our model is
easily implemented in von Neumann languages, objects and
behaviors which modify their local state can be optimized
and parallelized very effectively. This is not just a lofty
claim. As an object has a local state, and behaviors directly
modify only the local state, optimizations can be much more
effective.

5.2 Language Elements

This section presents the essential language elements of the
actors model we have evolved to support concurrent active
objects. The basis for this model is called Itinerant Actors,
developed by Christopher and expanded to support the
object model by Thiruvathukal.

Itinerant Actors is based on the Actors model, described
earlier, and the Memo model. Memo is a model designed to
support process coordination. Processes deposit and retrieve
memos to/from mailboxs with varying degrees of blocking
supported. This model is particularly useful for supporting a
number of ideas, collectively called generative computing. It
also has an efficient implementation, since the mailbox name
can be hashed to map the mailbox onto a given processor.
When memos are exchanged between processors, it is clear
as to the cost of performing a given communication.

5.2.1 Generalized Naming and Structure Mapping

In Itinerant Actors, the folder is referred to as a mailbox. The
mailbox is an abstract class that defines a protocol to be
followed by all subclasses:

• hash - produce a hash value for yourself, which will be
taken modulo the number of processing elements to

compute a destination processor id.

• compare - compare yourself to another mailbox.
Comparison is essential to manage collisions which may
occur (two mailboxes produce a same hash value).

We really cannot resist the opportunity to talk about the
benefits of structured naming here.

5.2.2 Itinerant Actors and Rock-Bottom Actors

Two additional abstract classes are provided in Itinerant
Actors: Message and Actor. An Actor is also a Message. The
essential operations1 of Message include:

• encode - encode the message into a network
representation.

• decode - decode the message from a network
representation.

An Actor has only one essential operation in addition to the
protocol defined by Message:

• script - a block of code to be executed when the Actor
receives a message from a mailbox.

The Itinerant Actors framework defines rock-bottom actors
as a basis for further discussion.

5.2.3 Evolving Pattern-Matching and Dataflow

The rock-bottom actors defined by the Itinerant Actors
framework is useful to support a variety of data structures
(Section 5.2.6, Distributed Data Structures) and
synchronization mechanisms (Section 5.2.7,
Synchronization Mechanisms).

The variety of programming techniques that can be
supported by this model is an improvement over the basic
actors model and Linda coordination models. We believe,
however, that both of these models are inadequate to support
dataflow in general.

MDC, Message Driven Computing, introduced pattern-
matching of named messages. We have expanded the
Itinerant Actors framework to support a the matching
capabilities needed to support dataflow.

Abstract class Message is expanded to include a unique
name, or ID, which can be used to do fast pattern matching.
This ID can be combined with a matching operator to
support a pattern-matching operation in an Actor in true
dataflow style.

Abstract class Actor is expanded to include an additional
essential operation, match, which enables an actor whenever
a pattern of messages exists. There are two possibilities for

1. These essential operations are so-called pure vir-
tual functions in C++. What this means: a class
derived from this class must provide a definition for
this function.



6

supporting matching:

• the actor is enabled and given one of each of the
messages that caused the pattern to match (provided the
match operator demands the message)

• the actor is enabled as above, but its execution is
mutually exclusive to other actors that might be enabled
in the same mailbox. This is important in dataflow, so
that an enabled dataflow node can leave messages to
suppress executions at the same mailbox (or cause totally
different execution).

The support for generalized pattern-matching allows for a
very efficient implementation of dataflow, particularly
dataflow with macro-operations. In our implementation, a bit
vector (bit set) can be used to match a pattern in constant
order time, since our messages are indexed. We discuss the
performance of dataflow in the context of a simp

5.2.4 Essential System Architecture

Put a figure here, maybe.

• end-user perspective - application is composed of
objects. These objects may represent tasks, loosely-
coupled objects, or domain-specific objects (with an
actors implementation)

• application - a SPMD program. The architecture of the
application is assumed to be fully distributed. The
application may or may not be object-oriented. The
application, however, is bound to an execution
environment, which is a lightweight actors run-time
package.

• actors execution environment - this environment is
responsible for supporting the coordination and
message-driven execution semantics described earlier.
The environment is extremely lightweight. Maintains a
queue of actors which are ready to execute. These actors,
once ready, may execute on any processor. Presently, we
execute them locally.

5.2.5 Application Programming Interface

The following Application Programming Interface (API) is
provide to use the capabilities of the Active Object Model.
This describes the core Itinerant Actors functions; the
pattern-matching discussed earlier (see section 5.2.3) is not
presented, due to space considerations.

send(Mailbox* mailbox, Message* message)

Deposit message into mailbox. If an actor is present in the
mailbox structure, it can be scheduled for execution with
message passed as a parameter to its script upon execution.
If an actor posted a receiveCopy function, the actor is
executed with a copy of message; message remains in
mailbox on the message queue in this case or when no actor
is present.

receive(Mailbox* mailbox, Actor* actor)

Deposit actor into mailbox. If a message is present on the
message queue, the actor is scheduled for execution with the
found message passed as a parameter to its script upon
execution. If no message is present, the actor remains in the
mailbox on the actors queue.

receiveCopy(Mailbox* mailbox, Actor* actor)

Identical to receive with the exception that the actor, when
scheduled, will receive a copy of the message. Receive copy
is convenient for the implementation of read-only, shared
variables.

create(Mailbox* mailbox, Actor* actor)

Identical to receive but intended to make it clear a new actor
is being introduced to the execution environment.

Message* get(Mailbox* mailbox)

Get a message from mailbox. If no message is available at
the time the call is made, return NULL. This is a non-
blocking function.

Message* getWait(Mailbox* mailbox)

Get a message from the mailbox. If a message is not
available, this function will block until one becomes
available. Used in conjunction with send, this allows the
Linda and Memo computation models to be employed to do
process-level coordination.

5.2.6 Distributed Data Structures

This section presents examples of distributed data structures
that can be implemented using the Active Object Library
discussed. Similar examples have been presented in a paper
describing the Memo [14] programming model.

Named Objects

A mailbox that holds at most one actor can represent a
dynamically allocated object on the heap. Instead of
pointers to objects, we use a mailbox name object to refer to
the actor.

Arrays

Arrays of shared objects may be created similarly. The
element a[i,j] can be stored in a mailbox whose name is
constructed as:

Mailbox* m = new Array2DMailbox(“A”,i,j);
Actor* a = new SomeActor;

actorEnv->create(m, a);

Recall from the earlier discussion of Mailbox and Actor as
abstract classes. Array2DMailbox and SomeActor are
classes derived from Mailbox and Actor, respectively.

The above example illustrates using the key name to
construct a 2-dimensional array abstraction. The key name



7

will support up to 3-dimensional array abstractions.

Unordered Queues

A mailbox structure contains an unordered queue of actors
and messages, so if order is not vitally important, processes
and actors can communicate simply by passing messages
through a mailbox.

Job Jars

An important use of an unordered queue is a job jar. The
actors (and/or messages) in the job jar indicate tasks to
perform. When ever a process creates more work to do, it
drops actors (and/or messages) in the job jar.

It is often convenient to have one job jar for each process
and one common jar for all. The individual job jars are used
for operations that must be performed by a particular
process.

Futures and I-Structures

A future ia an assign-once variable used to communicate
between a producer and a consumer. Both the producer and
consumer may run in parallel, with the consumer only being
delayed if  it attempts to fetch from a variable before is has
been assigned.

An I-structure (an “incremental structure”) is a collection, or
array, of futures. I-structures were invented for dataflow [2].
In the Active Objects Model, any mailbox that will have
only one memo ever placed in it may correspond to a future.
The consumer executing a receive or receiveCopy, fetching
from the mailbox will be delayed until the value has been
produced.

5.2.7 Synchronization Mechanisms

In addition to distributed, logically-shared data structures,
the Active Objects Model supports process synchronization
mechanisms.

Locks and Shared Records

Shared records are accessed by getting them from their
mailboxes, examining them and updating them, and putting
them back. While the record is being updated, it’s mailbox is
empty, and any other process trying to access it will have to
wait; the records are implicitly locked.

Mailbox* m = new NamedMailbox(“Object”);
Message* anObject;

object = actorEnv->getWait(m);
/* modifications to object */
actorEnv->send(m,object);

There is more than one way to implement a shared record. It
could easily be done with actors, as well.

Semaphores

The simplest implementation of a counting semaphore is

identical to a lock, except that to initialize the semaphore, a
process places as many memos in the semaphore’s mailbox
as required.

Dataflow

Dataflow programming triggers execution of code when it’s
operands become available. This is supported by the pattern-
matching of messages in a mailbox by an actor. An actor
which performs a pattern-matching operation has exclusive
access to the mailbox while doing the pattern-match. When
the actor is enabled, it may or may not have exclusive access
to the mailbox, depending on whether it needs to suppress
further matches by other actors in that mailbox.

In addition to pattern-matching of messages, the model may
be expanded to include an operator similar to the
put_delayed operator in the Memo programming model. The
put_delayed operator facilitates the implementation of basic
dataflow, where general pattern-matching is not needed.
Presently, the functionality of put_delayed can be supported
by introducing an actor whose script performs a forwarding
operation to another mailbox.

6     Implementation Status

A porting implementation of the Active Objects Library is
available now which runs on any platform supporting C++.
This implementation has a fully object-oriented design and
ships with a C++ class library developed by the author called
TLC (tools, libraries, and catalogues). The current
implementation is sequential and can be used to design and
test parallel algorithms today. A parallel implementation is
being developed at the Argonne High Performance
Computing Facility and is expected to be pre-released by the
end of year.

A significant effort is underway in the High Performance
Languages and Systems research group in the Department of
Computer Science at the Illinois Institute of Technology to
release a version of the Distributed Memo system. This
release is built atop a class library called DOPPLER, which
is intended to support the implementation of parallel systems
by providing a number of classes to abstract the
heterogeneous computing environment. An implementation
of the Active Objects Library is expected to be released
concurrently with Distributed Memo toward the end of year.

7     World Wide Web and Anonymous-FTP

A site has been established for the retrieval of products,
papers, and other information related to the High
Performance Languages and Systems Group.

The Anonymous-FTP site is ftp.rice.iit.edu. Check the
directory /pub/research/parallel. There are subdirectories
which contain packages (Active Object Library, D-Memo,
MDC, and TLC).

The World Wide Web site is www.rice.iit.edu. The home
page for the HPLS group is:

http://www.rice.iit.edu/hpls/hpls.html



8

8     Acknowledgements

This work would not be possible without the inspiration of
others.

Thomas Christopher has been a constant source of
inspiration and idea generation since 1988, when we first
began working with compilers and parallel computating
systems. His work on actors and message-passing
environments is a living part of the present work. His
insistence on exploring “crazy ideas” has given identity to
this work and to the work of the High Performance
Languages and Systems research group.

William O’Connell, a hard worker, has been a major source
of inspiration in the area of distributed systems
implementation. His class library, DOPPLER, will prove
invaluable in the deployment of the Active Objects Library
on a grand scale.

Scott Danielson has been a participant in the design,
implementation, and configuration of the TLC library. His
contributions in the area of configuration have greatly
enhanced the potential to release a portable parallel and
distributed object environment in the near future.

Ufuk Verün has participated in numerous discussions to
expand the scope of the actors model. Many of his
suggestions will be part of a future version of the model.

The Argonne National Laboratory Math and Computer
Science (MCS) Division High Performance Computing
Research Facility (HPCRF) has provided access to one of the
best parallel computing environments available today, the
IBM SP-X. This IBM SP-X is being used for the
development of the first production version of the Active
Object Library.

A special thanks to George Kutty, William O’Connell, and
Ben Wong, who reviewed the drafts of this paper (under
somewhat high pressure circumstances) and provided
insightful suggestions for improvement.

9     References

[1] G. Agha and C. Hewitt. Concurrent Programming
Using Actors. In A. Yonezawa and M. Tokoro, Object-
Oriented Concurrent Programming. MIT Press. 1987.

[2] Arvind. “I-structures: An Efficient Data Type for
Functional Languages”, Technical Report LCS/TM-
178. MIT. 1980.

[3] Arvind. “Dataflow Architecture“, Annual Reviews in
Computer Science. Volume 1, pages 225-253. 1986.

[4] J. Backus. Can Programming be Liberated from the
von Neumann Style? 1979 Turing Award Lecture.
Communications of the ACM.

[5] T. W. Christopher, “Message Driven Computing and
its Relationship to Actors”, Proc. of the ACM Sigplan
Workshop on Object-Based Concurrent
Programming” San Diego, CA. 1988

[6] Christopher, T. W. Early Experience with Object-
Oriented Message Driven Computing. In Proceedings

of the3rd Symposium on Frontiers of Massively
Parallel Computing, October 1990.

[7] J. B. Dennis “Data Flow Architectures“,IEEE
Computer, November 1980, pp. 48-56.

[8] D. Gelernter. “Generative Communication in Linda”,
ACM Transactions on Parallel Languages and
Systems, Vol. 7, No 1, Jan. 1985, Pages 80-112.

[9] A. Grimshaw “Easy-to-Use object oriented Parallel
Processing with Mentat”, IEEE Computer, May 1993

[10] A. Grimshaw, W. Strayer, P. Narayan “Dynamic,
Object-Oriented Parallel Processing”, IEEE Parallel
& Distributed Tech., Sys. & Apps., May 1993

[11] Hoare, C. A. R. Communicating Sequential Processes.
Communications of the ACM. Volume 21, Number 8
(August 1978), pp. 666-677.

[12] Lieberman. Concurrent Object-Oriented
Programming in Act I. In A. Yonezawa and M.
Tokoro, Object-Oriented Concurrent Programming.
MIT Press. 1987.

[13] Microsoft. OLE Specification. Where was it
published?

[14] W. T. O’Connell, G. K. Thiruvathukal, and T. W.
Christopher. Distributed Memo: A Heterogeneously
Parallel and Distributed Programming Environment.
In Proceedings of the 23rd International Conference
on Parallel Processing, August 1994.

[15] O’Connell, Thiruvathukal, and Christopher. A Generic
Modelling Framework for Building Heterogeneous
Distributed Systems. In Proceedings of the 10th
International Conference on Advanced Science at
Technology, May 1994.

[16] O’Connell, Thiruvathukal and Christopher. The Memo
Programming Language. To appear Proceedings of the
International Conference on Parallel and Distributed
Computing Systems, October 1994.

[17] Object Management Group. CORBA Sepcification
Document

[18] L. Kale and S. Krishnan. CHARM++: A Portable
Concurrent Object-Oriented System Based on C++. In
Proceedings of OOPSLA ‘93.

[19] L. Snyder et al. The XYZ Levels of Abstraction.
Where was it published?

[20] Thiruvathukal and Christopher. Supporting
Macrodataflow in MDC. Technical Report HPLS-91-
001. Illinois Institute of Technology.

[21] U. Verün and T. Elrad, “Integrating Decision Controls
in Concurrent Programming Languages.” Submitted
to ACM SIGPLAN ‘95 for consideration.

[22] A. Yonezawa, E. Shibayama, T. Takada, and Y. Honda.
Modelling and Programming in an Object-Oriented
Concurrent Language ABCL/1. In A. Yonezawa and
M. Tokoro, Object-Oriented Concurrent
Programming. MIT Press. 1987.


	Toward Scalable Parallel Software: An Active Object Model and Library to Support von Neumann Languages
	Author Manuscript
	Recommended Citation

	untitled

