
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

2007

A Model-Driven Approach to Job/Task Composition in Cluster A Model-Driven Approach to Job/Task Composition in Cluster

Computing Computing

Yogesh Kanitkar

Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

Neeraj Mehta

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Neeraj Mehta, Yogesh Kanitkar, Konstantin Laufer, George K. Thiruvathukal, "A Model-Driven Approach to
Job/Task Composition in Cluster Computing," ipdps, pp.233, 2007 IEEE International Parallel and
Distributed Processing Symposium, 2007

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2007 Neeraj Mehta, Yogesh Kanitkar, Konstantin Läufer, George K. Thiruvathukal

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

A Model-Driven Approach to Job/Task Composition in Cluster Computing

Neeraj Mehta, Yogesh Kanitkar, Konstantin Läufer, and George K. Thiruvathukal

Emerging Technologies Laboratory
Department of Computer Science

Loyola University Chicago
820 North Michigan Avenue

Chicago, IL 60611, USA
www.etl.luc.edu

{laufer,gkt}@cs.luc.edu

Abstract

In the general area of high-performance computing,
object-oriented methods have gone largely unnoticed. In
contrast, the Computational Neighborhood (CN), a frame-
work for parallel and distributed computing with a focus
on cluster computing, was designed from ground up to be
object-oriented. This paper describes how we have suc-
cessfully used UML in the following model-driven, gener-
ative approach to job/task composition in CN. We model
CN jobs using activity diagrams in any modeling tool with
support for XMI, an XML-based external representation of
UML models. We then export the activity diagrams and use
our XSLT-based tool to transform the resulting XMI repre-
sentation to CN job/task composition descriptors.

1 Introduction

This paper is a culmination of several different but re-
lated projects. The fundamental intent of the research is to
experiment with model-driven architecture in parallel and
distributed computing as applied to cluster based supercom-
puting. We focus on the use of UML and its relevant mod-
eling notations in our software framework—the Computa-
tional Neighborhood (CN).

Clustering is the use of multiple computers, typically
workstations or rack-mounted servers, to form what appears
to users as a single computing resource. Leading hardware
and software companies offer clustering packages that offer
scalability as well as availability. As demands on the system
increase, all or some parts of the cluster can be increased in

1-4244-0910-1/07/$20.00 c©2007 IEEE.

size or number to handle the increased demand. Cluster
computing can also be used as a relatively low-cost form
of parallel processing for scientific and other applications
that lend themselves to parallel computing. An early and
well-known example is the Beowulf [15] project in which a
number of off-the-shelf PCs were used to form a cluster for
scientific applications. Today, most so-called supercomput-
ers are in reality a variation on the theme of cluster comput-
ing.

CN presents a similar approach toward cluster comput-
ing as does Beowulf. This approach can be described as
building a supercomputer as a cluster of commodity off-
the-shelf personal computers, interconnected with a local
area network technology like Ethernet, and running pro-
grams written for parallel processing. The idea is to en-
able the average university computer science department or
small research company to build its own small supercom-
puter that can operate in the gigaflop range. In addition
to being economical, one can take advantage of the ever-
evolving off-the-shelf technology by upgrading the cluster
components.

There are many software solutions available that enable
expert computer engineers to deploy, maintain and write
programs for clusters. However, the intent of our research
is to simplify and extend this genre of do-it-yourself super-
computing to the masses. This means the focus is on sim-
plicity in installation, deployment, programmability, main-
tainability, and upgradability and on straightforwardness
and clarity of the software development model. The guiding
principle for CN is simplicity for the programmer and the
end user. The various design decisions and trade-offs that
the development of a system like this demand, are and con-
tinue to be made in favor of usability and robustness. The
belief is that such an approach would be able to steer clear of

the complexity added if the guiding principle is optimal per-
formance and support heterogeneity. The prospective appli-
cations for CN might be limited by this approach; however,
with the proliferation of low-cost high-performance nodes
there is a significant user base that can benefit from a simple
and straightforward metacomputing environment. (Users in
the parallel computing community are accustomed to wait-
ing for faster next-generation hardware to gain performance
without changing their existing codes.)

In this paper, we describe our preliminary experiences
in using UML to model problems arising in the area of
distributed cluster computing. In Section 2, we introduce
our running example. In Section 3, we summarize the CN
framework. In Section 4, we illustrate how activity dia-
grams can be used to model job/composition in CN. In Sec-
tion 5, we describe the transformation of activity diagrams
to executable specifications and implementations in the tar-
get language. In Section 6, we give an overview of related
projects. Finally, in Section 7, we conclude with a brief
discussion future work.

2 Guiding Example

We have used the parallel version of Floyd’s all-pairs
shortest-path algorithm [8] as a guiding example in this
work, since it is representative of the many typical problems
faced in designing and implementing parallel algorithms.
This algorithm is based on a one-dimensional, row-wise do-
main decomposition of the intermediate matrix I and the
output matrix S.

The algorithm can use at most N processors or tasks
where N is the number of nodes in the graph. Each task
has one or more adjacent rows of the adjacency matrix that
represents the input graph and is responsible for performing
computation on those rows. Fundamentally, this algorithm
derives the resultant matrix S in N steps, constructing at
each step k an intermediate matrix I(k) containing the best-
known shortest distance between each pair of nodes. Due to
this approach, in the parallel version, in the kth step, each
task requires, in addition to the rows assigned to it, the kth
row. Thus, we need to set up each task with the rows it
computes and maintains, track k, in the kth iteration have
the task with the kth row broadcast it and collate the results
at the end.

The CN implementation of the transitive closure al-
gorithm consists of three different tasks. The first task,
TaskSplit, reads the input and initializes the worker
tasks, TCTask, with the appropriate rows. Each of the
TCTask workers keeps track of k, and the tasks coordi-
nate among themselves using using the CN API for intertask
communication (CN also supports communication via tuple
spaces, which are not covered in this paper). The collation
of the results is done by yet another task named TCJoin.

The tasks TaskSplit, TCTask, and TCJoin are pack-
aged as Java archive (jar) files conforming to the interface
specified in the CN API.

This above tasks are glued together using the client pro-
gram that we generate directly using UML activity dia-
grams. We describe the composition using UML and trans-
formation into an executable specification (and implemen-
tation) in the subsequent sections.

3 CN Summary

In general, CN provides a framework to define and exe-
cute tasks in a parallel program transparently on the various
nodes in the cluster and collate the final results. The ulti-
mate goal is to develop an integrated development environ-
ment for cluster computing in which the entire process can
be done in a model-driven fashion, where the user seldom
is forced to deal with low-level issues unrelated to solving
the actual research problem.

One of the obvious challenges faced in cluster comput-
ing is identifying the parts of the program that can run in
parallel, execution and management of these parts and co-
ordinating among them. CN does expect the user to iden-
tify these parts but provides a framework for assembling
the overall solution. The CN programming model loosely
imitates the multithreaded paradigm; however, the threads
(tasks) run anywhere where computing power is available
and can be coordinated regardless of where they actually
run. This makes it easy for anybody familiar with multi-
threading essentials to design for and exploit CN’s capabil-
ities. Additionally, CN provides a messaging model that is
similar to that of Windows (X and Win32) programming to
reduce the programmer’s learning curve.

CN provides a modular framework comprising four main
components: Job, Task, Job Manager and TaskManager. A
Task is defined to be a unit of work that the user wants to
perform. A Job is defined as a collection of Task objects.
The Job and Task creation, control and coordination is all
done using CN API (a factory). The user is responsible,
usually toward the beginning of the parallel program, to ac-
quire a reference to the CN API. A JobManager is a conduit
between the client CN application and the Job in CN to talk
to each other. TaskManager executes the various Tasks of
various Jobs and is transparent to the user. (For those famil-
iar with X Windows, the CN design uses the term client sim-
ilarly; a user-developed application is considered a client of
the CN system.) The components of the CN framework and
implementation are shown in Figure 1.

More specifically, JobManager and the TaskManager are
part of the same process, CNServer, which is a servant
(since it acts as a client and a server). The JobManager
can support multiple Jobs. The client links to the CN API,
which exposes the following capabilities:

CN Server CN Servers run on the various nodes of the cluster.

CN API Client programs use the CN API to execute and exploit
the various resources of the cluster.

CN Intelligent Object Editor The user could specify the details
required to generate the Client program using this graphical
use interface.

CNX CNX (XML) is a compositional language that captures the
details of the client program.

CNX2Java CNX2Java is an XSLT that translates CNX to com-
pilable JAVA code.

XMI2CNX XMI2CNX is an XSLT that translates UML model
in XMI format to CNX.

Prototype Web interface to the CN cluster that accepts UML
model in XMI format, translates the model to an executable,
executes model and displays or makes the results available
for download.

Figure 1. CN framework components

• Initialize CN API (using the factory)

• Create Job in JobManager

• Create Tasks for the Job

• Start the Tasks

• Get Messages from Tasks

• Send Messages to Tasks

Requests to JobManager are communicated using mul-
ticast. JobManagers respond to multicast requests for Job-
Managers if they have free resources and are willing to be
JobManagers. A JobManager is selected based on User
specified Job requirements from the list of willing JobMan-
agers. The Job is subsequently created in the selected Job-
Manager.

A Task is typically packaged as a self-sufficient JAR file
that has a class that conforms to the Task interface defined
by CN API. The JobManager solicits TaskManager for the
Tasks that requested to be created by the User program. If a
willing TaskManager is found the JobManager will upload
the JAR file to that TaskManager. TaskManager in turn sets
up a message queue for each Task and then executes each
Task in a separate thread when the User program requests
to start the Task.

CN uses messages as the fundamental information be-
tween the CN and the client. CN has well-defined messages
that define the Message Request, expected Message Action
and expected Message Response. Besides the well-defined
messages, CN also allows user-defined messages that only

the application (client and its tasks) understands. Thus, in
the case of user-defined messages CN merely provides a
message delivery mechanism.

CN can be deployed in multiple configurations. One
could install CN servers on all the machines of a subnet and
a user could run their client programs from any machine on
the subnet. The other deployment configuration is through
a web portal so that the user does not need to log on to the
subnet.

4 Activity Diagrams

In this section, we provide an overview of activity dia-
grams in UML [12] and discuss their applicability to mod-
eling the composition of tasks in parallel programs.

An activity diagram is a visual representation of an ac-
tivity graph. An activity graph is a state machine whose
states represent actions or subactivities and where transi-
tions out of states are triggered by the completion of the
corresponding actions or subactivities. Activity diagrams
are thus intended for modeling computations whose control
flow is driven by internal processing. In a UML model, ac-
tivity diagrams are usually attached to a classifier, such as a
use case or a package.

In parallel computing, a computational job typically con-
sists of one or more concurrent tasks whose dependencies
form a directed acyclic graph. In CN, a client is composed
from one or more such jobs. While the details of jobs and
tasks are implemented modularly in the target programming
language, the jobs and tasks need to be “glued” together
outside of the implementation itself. An example of a CNX
client descriptor for computing the transitive closure of a
graph is provided in Figure 2.

It is helpful to have a visual notation to express the com-
position of jobs from tasks and the dependencies among
tasks. Since transitions between CN tasks are triggered by
internal task termination, activity diagrams provide a natu-
ral notation for modeling the composition of tasks in CN.
Furthermore, it is natural to attach an activity diagram for
a client computation to the package containing the other el-
ements of the model (class diagrams and interaction dia-
grams) for that client.

Specifically, each job is represented as an activity, and
each task is represented as an action state; the dependen-
cies among tasks are represented as transitions between the
action states. The data flow between tasks is an implicit
part of the control flow. (Tasks can also communicate asyn-
chronously, but such communication is deliberately not rep-
resented in this model. Instead, asynchronous communica-
tion would be part of the dynamic model for each task.)
Finally, a client consisting of more than one job is repre-
sented as an activity that performs the jobs in some partial
order (allowing for a mix between sequential and concur-

Figure 3. Activity diagram for transitive clo-
sure using explicit concurrency.

jar tctask.jar
class org.jhpc.cn2.trnsclsrtask.TCTask
memory 1000
runmodel RUN AS THREAD IN TM
ptype0 java.lang.Integer
pvalue0 2

Figure 4. Tagged values for TCTask2.

rent execution); the tasks themselves then become nested
activities.

An activity diagram that visualizes the task composition
of the transitive closure CN client is shown in Figure 3. This
example shows a splitter task, a fixed number of worker
tasks that execute concurrently, and a joiner task.

UML’s tagged values allow us to model all of the in-
formation present in a CN client descriptor, including the
implementation class of each task, the archive containing
the implementation class, as well as various other task con-
figuration parameters. Figure 4 shows the tagged values for
the worker task TCTask2, whose parameter pvalue0 has
value 2.

When modeling a parallel computation, it is sometimes
desirable to leave the number of concurrent invocations of a
task open until run time, dependent on system load or other
external factors. Activity diagrams support this approach
through their dynamic invocation notation. The number of
concurrent invocations is determined by a run-time expres-
sion that evaluates to a set of actual argument lists, one for
each invocation. An activity diagram for the transitive clo-

Figure 5. Activity diagram for transitive clo-
sure using dynamic invocation.

sure job involving dynamic invocation is shown in Figure 5.
Here, the multiplicity is zero or more; a specific run-time
argument expression would be specified separately.

5 From Model to Executable Specification:
XMI to CNX

In this section, we describe the transformation of the
UML model of a CN computation to an executable version
of the computation, including a CNX client descriptor. At a
high level, this transformation involves the following steps,
which are also illustrated in Figure 6.

1. The UML model for the CN computation is created in
the form of an activity diagram.

2. The UML model is exported as an XMI docu-
ment [11].

3. The XMI document is transformed, using XSL Trans-
formations (XSLT) [16], to a CNX client descriptor.

4. The CNX client descriptor is transformed, using XSL
Transformations, to a client program in the target lan-
guage (currently Java).

5. The resulting client program is deployed to a CN
server along with the archives containing the compiled
classes.

6. The client computation is executed by the CN server.

Figure 6. Transformation of UML model to ex-
ecutable CN client specification.

We will now illustrate this process in the context of our
transitive closure example. The activity diagram for this ex-
ample was shown in Figure 3. A fragment of the exported
XMI document can be seen in Figure 7; this fragment cor-
responds to the TCTask2 state whose tagged values were
shown in Figure 4. Finally, the resulting CNX client de-
scriptor was shown in Figure 2.

6 Related Work

The Askalon project [13] utilizes the UML extension
mechanisms to customize UML for the domain of perfor-
mance oriented distributed and parallel computing. This
project focuses on modeling and performance analysis, and
visualization. In contrast, our work attempts to go a step
further and generate executable code from the model.

The remaining literature to one degree or another is re-
lated thematically but does not employ UML and model-
driven architecture specifically. Nevertheless, some of these
works do provide support for higher-level modeling and are
included for completeness.

The Frugal system [5] transforms Jini-enabled networks
into metacomputers. The Frugal System allows users on
any machine in the network to run their Java jobs on any
other machine in the network. It uses advanced decision-
making algorithms to automatically place these jobs on the
best machine, guaranteeing near-optimal end-to-end perfor-
mance of all submitted jobs.

The Globus project [9] is developing fundamental tech-
nologies needed to build computational grids. Grids are per-
sistent environments that enable software applications to in-
tegrate instruments, displays, computational and informa-
tion resources that are managed by diverse organizations in
widespread locations.

Legion [10], an object-based metasystems software
project at the University of Virginia, is designed for a sys-
tem of millions of hosts and trillions of objects tied together
with high-speed links. Users working on their home ma-
chines see the illusion of a single computer, with access to
all kinds of data and physical resources, such as digital li-
braries, physical simulations, cameras, linear accelerators,
and video streams.

Beowulf [15] is a high-performance massively paral-
lel computer built primarily out of commodity hardware
components, running a free-software operating system like
Linux or FreeBSD, interconnected by a private high-speed
network. It consists of a cluster of PCs or workstations ded-
icated to running high-performance computing tasks.

SNIPE [7] is a metacomputing system that aims to pro-
vide a reliable, secure, fault-tolerant environment for long-
term distributed computing applications and data stores
across the global Internet. This system combines global
naming and replication of both processing and data to sup-
port large scale information processing applications leading
to better availability and reliability than currently available
with typical cluster computing and/or distributed computer
environments.

Titanium [17] is an explicitly parallel dialect of Java de-
veloped at UC Berkeley to support high-performance sci-
entific computing on large-scale multiprocessors, including
massively parallel supercomputers and distributed-memory

clusters with one or more processors per node. Other
language goals include safety, portability, and support for
building complex data structures.

The Distributed Object Migration Environment (DOME)
project [1] aims to build sets of distributed objects which
can be used to program heterogeneous networks of com-
puters as a single computing resource. Dome addresses the
problems of load balancing in a heterogeneous multiuser
environment, ease of programming, and fault tolerance.

The GLOBE project [3] research focuses on a powerful
unifying paradigm for the construction of large-scale wide
area distributed systems: distributed shared objects. In this
model, the universe consists of a vast number of shared ob-
jects, each of which has some associated methods invokable
by authorized users.

The Condor project [6] aims to develop, implement, de-
ploy, and evaluate mechanisms and policies that support
High Throughput Computing (HTC) on large collections of
distributively owned computing resources.

The Pangaea [14] project provides an automatic distri-
bution environment for Java. Given a centralized Java pro-
gram, and certain requirements for distribution, the envi-
ronment automatically creates a distributed version of the
program.

Orca [4] is a language for parallel programming on dis-
tributed systems, based on the shared data-object model.
This model is a simple and portable form of object-based
distributed shared memory.

Cluster JVM [2] for Java virtualizes the cluster, support-
ing any pure Java application without requiring that applica-
tions be tailored specifically for it. The aim of Cluster JVM
for Java is to obtain improved scalability for a class of Java
Server Applications (JSA) by distributing the application’s
work among the cluster’s computing resources.

7 Conclusions and Future Work

In this paper, we have focused on our early work in ap-
plying UML to an application domain in which more mod-
eling is truly needed and relevant to improve the way soft-
ware is presently being developed. We do not claim to have
the complete solution in hand; however, our early work sug-
gests that the Activity Diagram framework of UML can play
a significant role in conceiving and developing software for
cluster computing.

We plan to explore UML to model other aspects of CN
development, including the lower-level details of the com-
putation or problem being solved and complex interactions
between tasks. We are currently working on model and tool
support to facilitate development of the computational tasks
themselves. At present the user has to hand-code these tasks
using the target language API. (Java is presently the only
supported language.) Nevertheless, the preliminary steps

we have taken allow higher-level problem-solving strategies
to be employed in high-performance computing—a needed
evolutionary step for the field to go beyond niche status.

Finally, we see potential to apply the results of this work
to other high-performance computing environments with a
different but related goals. In particular, grid computing,
which exposes a number of low-level interfaces for devel-
oping wide-area high-performance computing applications,
could benefit from higher-level model-driven architecture.
We will be investigating this and other possibilities through
our future work and collaborations.

8 Obtaining the Computational Neighbor-
hood Code

The code for Computational Neighborhood is
available via the Google Code Project Hosting site
http://code.google.com/p/neighborhood/
and can be checked out anonymously using Subversion as
an Eclipse project as follows:

svn checkout http://neighborhood.\
googlecode.com/svn/trunk/cn-java

References

[1] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman,
M. Starkey, and P. Stephan. Dome: Parallel programming in
a heterogeneous multi-user environment. Technical Report
CS-95-137, School of Computer Science, Carnegie Mellon
University, 1995.

[2] Y. Aridor, M. Factor, and A. Teperman. cJVM: A single
system image of a JVM on a cluster. In International Con-
ference on Parallel Processing, pages 4–11, 1999.

[3] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik,
I. van der Wijk, M. van Steen, and A. S. Tanenbaum. The
globe distribution network. In Proceedings of the USENIX
Annual Conference, pages 141–152, 1999.

[4] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: a
language for parallel programming of distributed systems.
IEEE Transactions on Software Engineering, 18(3):190–
205, 1992.

[5] R. S. Borgstrom. A Cost-Benefit Approach to Resource Allo-
cation in Scalable Metacomputers. PhD thesis, Johns Hop-
kins University, Sept. 2000.

[6] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and
J. Pruyne. A worldwide flock of condors: load sharing
among workstation clusters. J. on Future Generations of
Computer Systems, 12, 1996.

[7] G. E. Fagg, K. Moore, and J. J. Dongarra. Scalable
Networked Information Processing Environment (SNIPE).
Future Generation Computer Systems, 15(5–6):595–605,
1999.

[8] Floyd, R. W. Algorithm 97: Shortest Path. Comm. ACM,
5:345, 1962.

[9] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[10] A. Natrajan, A. Nguyen-Tuong, M. A. Humphrey, and A. S.
Grimshaw. The Legion Grid Portal, 2001. Submitted for
publication.

[11] Object Management Group. XML Metadata Interchange
(XMI). Technical Report formal/02-01-01, Object Manage-
ment Group, Jan. 2002.

[12] Object Management Group. Unified modeling language.
Specification v1.5 formal/2003-03-01, Object Management
Group, Mar. 2003.

[13] S. Pllana and T. Fahringer. UML Based Modeling of Per-
formance Oriented Parallel and Distributed Applications. In
Proceedings of the 2002 Winter Simulation Conference, San
Diego, California, USA, December 2002. IEEE.

[14] A. Spiegel. PANGAEA: An automatic distribution front-end
for JAVA. In IPPS/SPDP Workshops, pages 93–99, 1999.

[15] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A.
Ranawake, and C. V. Packer. BEOWULF: A parallel work-
station for scientific computation. In Proceedings of the
24th International Conference on Parallel Processing, pages
I:11–14, Oconomowoc, WI, 1995.

[16] World Wide Web Consortium. XSL Transformations
(XSLT), 1999. http://www.w3.org/TR/xslt.

[17] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Li-
blit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, and A. Aiken. Titanium: A high-performance
Java dialect. In ACM, editor, ACM 1998 Workshop on Java
for High-Performance Network Computing, New York, NY
10036, USA, 1998. ACM Press.

<?xml version="1.0"?>
<cn2>
<client class="TransClosure" log="CN_Client1047909210005.log" port="5666">
<job>

<task name="tctask0" jar="tasksplit.jar"
class="org.jhpc.cn2.transcloser.TaskSplit" depends="">

<task-req>
<memory>1000</memory>
<runmodel>RUN_AS_THREAD_IN_TM</runmodel>
</task-req>
<param type="String">matrix.txt</param>
</task>

<task name="tctask1" jar="tctask.jar"
class="org.jhpc.cn2.trnsclsrtask.TCTask" depends="tctask1">

<param type="Integer">1</param>
<task-req>
<memory>1000</memory>
<runmodel>RUN_AS_THREAD_IN_TM</runmodel>
</task-req>
</task>
.
.
.
<task name="tctask5" jar="tctask.jar"

class="org.jhpc.cn2.trnsclsrtask.TCTask" depends="tctask0">
<param type="Integer">5</param>
<task-req>
<memory>1000</memory>
<runmodel>RUN_AS_THREAD_IN_TM</runmodel>
</task-req>
</task>

<task name="tctask999" jar="taskjoin.jar"
class="org.jhpc.cn2.transcloser.TaskJoin"
depends="tctask1,tctask2,tctask3,tctask4,tctask5">

<task-req>
<memory>1000</memory>
<runmodel>RUN_AS_THREAD_IN_TM</runmodel>
</task-req>
<param type="String">matrix.txt</param>
</task>

</job>
</client>

</cn2>

Figure 2. Client descriptor for transitive closure

<UML:ActionState xmi.id = ’a89’ name = ’TCTask2’
isSpecification = ’false’ isDynamic = ’false’>
<UML:TaggedValue xmi.id = ’a91’ isSpecification = ’false’
dataValue = ’1000’>
<UML:TaggedValue.type>
<UML:TagDefinition xmi.idref = ’a13’/>

</UML:TaggedValue.type>
</UML:TaggedValue>
<UML:TaggedValue xmi.id = ’a92’ isSpecification = ’false’
dataValue = ’RUN_AS_THREAD_IN_TM’>
<UML:TaggedValue.type>
<UML:TagDefinition xmi.idref = ’a16’/>

</UML:TaggedValue.type>
</UML:TaggedValue>
<UML:TaggedValue xmi.id = ’a93’ isSpecification = ’false’
dataValue = ’tctask.jar’>
<UML:TaggedValue.type>
<UML:TagDefinition xmi.idref = ’a7’/>

</UML:TaggedValue.type>
</UML:TaggedValue>
<UML:TaggedValue xmi.id = ’a94’ isSpecification = ’false’
dataValue = ’org.jhpc.cn2.trnsclsrtask.TCTask’>
<UML:TaggedValue.type>
<UML:TagDefinition xmi.idref = ’a10’/>

</UML:TaggedValue.type>
</UML:TaggedValue>

</UML:ModelElement.taggedValue>
<UML:StateVertex.outgoing>
<UML:Transition xmi.idref = ’a95’/>
<UML:Transition xmi.idref = ’a96’/>

</UML:StateVertex.outgoing>
<UML:StateVertex.incoming>
<UML:Transition xmi.idref = ’a78’/>

</UML:StateVertex.incoming>
</UML:ActionState>

Figure 7. Sample XMI for transitive closure job

	A Model-Driven Approach to Job/Task Composition in Cluster Computing
	Recommended Citation

	tmp.1322249967.pdf.k37mD

