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Abstract
We describeTriveni, a framework and API for integrating
threads and events. Thedesignof Triveni is based on an
algebra, including preemption combinators, of processes.
Triveni is compatible with existing threads standards, such
as Pthreads and Java threads, and with the event models
structured on the Observer pattern. We describe the soft-
ware architecture and algorithms underlying a concrete
implementation of Triveni in Java. This environment in-
cludes specification-based testing of safety properties.

The results described in this paper have been used to in-
tegrate process-algebraic methods into (concurrent) object
oriented programming [8].

1 Introduction
The aim of this research is to enhance the practice of
threads programming with ideas from the theory of concur-
rency, such as process algebras [21, 15, 2] and synchronous
programming languages (see [14, 4] for surveys). In partic-
ular, we want to build a process-algebraic application pro-
gramming interface (API) combining threads and events.
To ensure that this API can (re)use the extensive existing
work in both the design and implementation of program-
ming languages and the analysis of concurrent systems, we
have the followingcompatibility requirements.

� The API should be compatible with existing threads
standards, such as Pthreads and Java threads.

� The API should be compatible with the event models
structured on the Observer pattern [12]. In Java(1.1),
for instance, events are generated by event sources
(subjects), and one or more listeners (observers) can
register with a source to be notified about events of a
particular kind.

� The API should be compatible with the extensive
analysis methodologies/tools developed for testing
and verifying concurrent systems, such as computer-
aided verification via model checking (e.g., see [7] for
a survey) and specification-based testing of temporal
properties (e.g., see [13, 10]).

We have designed and implemented Triveni, an API that
achieves the above goals.

Design. We base Triveni on a novel algebra of processes
that adds preemption combinators [3] to the standard com-
binators from process algebra such as parallel composition,
waiting for events, spawning processes, etc. The require-
ment that Triveni be compatible with event models based
on the Observer pattern dictates that the communication
model bemulticastand input events are always enabled.

Implementation. We describe an implementation of
Triveni as a Java library calledJavaTriveni.

� Any Java thread that uses an Observer-based interface
for events can be used as a primitiveJavaTriveni pro-
cess. In other words, users can fit existing Java code
into JavaTriveni unchanged.

� JavaTriveni includes a specification-based testing en-
vironment that automates testing safety properties ex-
pressed in (propositional) linear time temporal logic.

Related work. Occam and Pict [24] are two other pro-
gramming languages that are built on ideas from concur-
rency theory. Occam is based on CSP; Pict is based on the
(asynchronous) pi-calculus [16] and incorporates a pow-
erful typing system. The differences between Pict and



Triveni are primarily due to the differences in the under-
lying process algebra. Although the (asynchronous) pi-
calculus has mobile channels and is thus quite expressive,
it does not support preemptioncombinators. On the other
hand, in future work on adding mobility to Triveni, we
hope to benefit from the extensive experiences gleaned
from the Pict project. The rich analysis of typing in the
Pict project will be relevant to the integration of Triveni
with the extensions of Java inspired by type theory [23, 1].

Our work inherits the ideas of preemption and input-
enabled processes from synchronous programming lan-
guages. (See, for instance, [3, 14, 4, 26].) Indeed, a por-
tion of our work is essentially an effort to integrate asyn-
chronous message passing and synchronous programming;
e.g., see [5]. In contrast to the “global clock” assumption
that underlies synchronous languages, Triveni allows full
integration of autonomous and reactive behavior and sup-
ports asynchronous communication. A reactive system re-
sponds to stimulae from its environment, which means that
all subcomponents must work at approximately the same
granularity of response time. Autonomous/asynchronous
systems violate this assumption. The benefits that accrue
from integrating these two paradigms are illustrated by
the telecommunications case study of [8]. In this case
study, the entire functionality of the software was imple-
mented in Triveni. In contrast, the Esterel implementa-
tion of the same software [17] had to rely on external
implementations to realize the full functionality—e.g., an
autonomously evolving timer process and asynchronous
communication between loosely coupled components via
operating-system calls. The flexibility of Triveni comes
at a price; synchronous programming languages support
expressive and powerful notions of simultaneity and pre-
emption. In Triveni, we use the slogan “instantaneous is
approximated by eventually + fairness” to recover some of
the guarantees that the synchrony hypothesis provides.

Languages such as Ada, Amber [6], and CML [25]
support channels, dynamic channel and thread creation,
and rendezvous with selective communication. It is much
more difficult to compare Triveni with these languages be-
cause input-enabledness of processes significantly alters
the design decisions. Because Triveni processes are input-
enabled, they are tuned to handle event-driven computa-
tions, and there is no need for selection on input as a prim-
itive; we illustrate this in the following section. However,
we note that the the design and implementation of dynamic
channel creation in these languages will perforce influence
the future treatment of mobility in Triveni.

2 Example: an office building
To introduce Triveni and illustrate various features of
Triveni, we describe an environmental control system for
an office building. The design of this system is compo-

sitional; aided by Triveni constructs, the implementation
reflects this structure. We postpone more precise details
of the features of Triveni to the section on theJavaTriveni
implementation.

We begin with the notion of anoffice I/O, which is a
system that accepts as input the events that control the en-
vironment of an office (heating and lighting) and emits as
output the various events necessary to communicate with
the rest of the environment-control system. Some of these
emitted events may originate from an action by a human
occupant (switch on/off, door open/close, and temperature
request). The remaining output event is a physical temper-
ature reading, which may be automatically generated from
time to time. Office I/O illustrates the decoupling of sys-
tem components supported by Triveni. The events emitted
by an office I/O may be asynchronous with the rest of the
system. Furthermore, an office I/O may contain its own
autonomously evolving state—e.g., a process that controls
how often temperature readings are emitted based on how
fast the temperature is changing.

A thermostatpartially automates the temperature con-
trol of an office. An office I/O combined with a thermo-
stat is called atemperature-stable office. The pseudocode
realization in Triveni of these processes is shown below,
along with a diagram giving the interface of each process
in terms of the events that it emits and accepts. Note that
some events carry temperature data.
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SetTemp(t)

RequestTemp(t)

SwitchOn
SwitchOff

DoorOpen
DoorClose

Temp(t)

LightOn

LightOff

HeatOff

HeatOn

temperature-stable office

thermostat

office I/O

thermostat:

temp actual_temp = INITIAL_ACTUAL_TEMP;
temp target_temp = INITIAL_TARGET_TEMP;

LOOP
Temp(t) -> { actual_temp = t; }

EMIT (t < target_temp) ? HeatOn : HeatOff
||

SetTemp(t) -> { target_temp = t; }
EMIT (actual_temp < t) ? HeatOn : HeatOff

temperature_stable_office:

office_IO io;
thermostat therm;

LOCAL HeatOn HeatOff Temp
IN io || therm



TheLOOP combinator in the thermostat implements an
“event loop”; the body of the loop terminates after han-
dling any event and restarts with the next event. The body
of the loop is a parallel composition (using thejj com-
binator) of two processes. The first process responds if
the current event is of the formTemp(t) (i.e., a physi-
cal temperature reading); on any other event, it terminates
silently. It is similar for the second process and events of
form SetTemp(t). Thus, the body of the loop is essen-
tially a selection construct on the input eventsfTemp(t),
SetTemp(t)g. In both parallel components, two things
happen on receipt of the specified event: an assignment
takes place and an event is emitted to control a heater. The
assignment is anaction, written between braces, and may
in general be any code in the host programming language
(typically something that terminates quickly). TheEMIT
combinator emits an event. Events are delivered even-
tually (and simultaneously) to all interested listeners and
the emitting process terminates. Triveni thus distinguishes
event emission from arbitrary Java actions.

A thermostat is attached to an office I/O simply by com-
posing them in parallel, yielding a temperature-stable of-
fice process as illustrated above. The parallel composi-
tion automatically ensures that theHeatOn, HeatO�, and
Temp(t) events are transmitted between the two subpro-
cesses. In this case, these three events are hidden with the
LOCAL combinator so that they are not accessible externally
as either inputs or outputs, as shown in the diagram above.

The occupant of an office should have manual control
over the heat and lights. This is done with theoccupant
controlprocess that essentially renames events.

occupant_control:

LOOP
RequestTemp(t) -> EMIT SetTemp(t)

|| SwitchOn -> EMIT LightOn
|| SwitchOff -> EMIT LightOff

UponSwitchOn, the above process will eventually emit
LightOn. Triveni makes no guarantee as to the timing of
event emission, so it is possible thatSwitchO� could ar-
rive beforeLightOn is emitted and thus would not actu-
ally turn off the light. Later, we will show a program-
ming style to bulletproof against such cases. But in this
case,SwitchOn andSwitchO� originate from human ac-
tions, and because we can reasonably assume that the light
comes on faster than a human can flip the switch, we would
not expect the bad case ever to occur. Triveni supports
a notion of “assert” statements appropriate for concur-
rent programs, namely temporal-logic formulas, to express
such safety properties. These properties express the as-
sumptions under which a piece of Triveni code functions
correctly, in the spirit of preconditions in Hoare-style rules

for sequential programs. For instance, the formula

LightOnPending =def :LightOn S SwitchOn

expresses the property of a single point during an execu-
tion run that “LightOn did not occur since the most recent
SwitchOn.” Then, the formula

SwO�Safety =def 2(SwitchO� ! :LightOnPending)

expresses the property of an entire execution (read2 as
“always”) that “wheneverSwitchO� occurs, there is no
pendingLightOn”. Adding SwOffSafety(and the symmet-
ric property forSwitchOn) to the office program generates
a run-time error whenever the property is violated. Sim-
ilar properties would be appropriate for thethermostat
process.

An office can be in two modes,occupant modeand
economy mode. Occupant mode is the normal mode of op-
eration, as implemented by the occupant-control process
above. In economy mode, the temperature is reduced to
and held at a specified value, despite any requests oth-
erwise, and the lights are turned off and the switch dis-
abled. TheEconomyMode(t) event puts an office into
economy mode, lowering the temperature tot, and the
OccupantMode event returns the office to occupant mode,
restoring the requested temperature to the most recent ob-
served request. In addition, if an office is in economy
mode, it should temporarily revert to occupant mode when
the door is open, in case someone arrives in the middle of
the night to work; in that case, the office returns to econ-
omy mode when the door is closed.

The economy controlprocess implements this control,
emitting Sleep(t) whenever the office should enter econ-
omy mode, lowering the temperature tot, and emitting
Awake(t) whenever the office should return to occupant
mode, restoring the temperature tot. The process runs
three subprocesses in parallel. The first one monitors con-
tinuously the last requested temperature (DONE is the “skip”
of Triveni; it does nothing and terminates immediately).
The second and third parallel components to determine
when the office should change modes. The code structure

LOOP
EconomyMode(t) -> DO

....
WATCHING OccupantMode

|| LOOP
OccupantMode -> DO

....
WATCHING EconomyMode

establishes mutual exclusion between theoccupant
modeandeconomy mode. The invariant maintained is that
the mode is determined by the last occurrence of the events
EconomyMode andOccupantMode. This structure also



illustrates the technique of preempting a process to estab-
lish priorities on events — the eventsEconomyMode and
OccupantMode have higher priority than the events occur-
ring in the::: above.

On receipt of eventEconomyMode, a process enters a
loop that monitors the status of the office door. The in-
variant upon entry to the loop is that the office has just
been placed in economy mode and needs to be put to sleep.
While Sleep is being emitted, theAWAIT combinator waits
until DoorOpen occurs. In the case thatDoorOpen arrives
while the emission ofSleep is still pending, the emission
is aborted via theDO/WATCHING combinator to ensure con-
sistency. When the door becomes open, a symmetric pro-
cess emitsAwake and waits forDoorClose. On receipt
of OccupantMode, the door-monitoring loop is preempted
and the office returns to occupant mode. The code handles
the possibility thatEconomyModewill arrive whileAwake
is still pending.

economy_control:

temp last_temp = INITIAL_TARGET_TEMP;
temp economy;

LOOP
RequestTemp(t) -> { last_temp = t; }

DONE
||

LOOP
EconomyMode(t) -> { economy = t; }

DO
LOOP

DO EMIT Sleep WATCHING DoorOpen
|| AWAIT DoorOpen ->

DO EMIT Awake WATCHING DoorClose
|| AWAIT DoorClose -> DONE

WATCHING OccupantMode
||

LOOP
OccupantMode ->

DO
EMIT Awake(last_temp)

WATCHING EconomyMode

Now we build an office control process from an
occupant-control process and an economy-control pro-
cess. Note that the occupant-control process must be
disabled during economy mode. This is done with the
SUSPEND/RESUME combinator, which suspends a process
on receipt of a specified event (Sleep in this case) and
resumes it on another event (Awake in this case). Thus,
whenever the economy control sends aSleep event, the
occupant will lose control of the light and heat until the
economy control sends anAwake event. Two processes
(not shown in the picture) run in parallel with the occupant
control and the economy control to adjust the light and heat
appropriately whenever the office toggles modes; each pre-
empts the other to avoid inconsistency. Note that parallel
composition automatically routesRequestTemp(t) events
to both subprocesses that accept them.

p
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SwitchOn

SwitchOff

RequestTemp(t)

DoorClose

DoorOpen

SetTemp(t)

LightOn

LightOff

office control

economy control

occupant control

Sleep(t) Awake(t)

EconomyMode(t) OccupantMode

suspend resume

office_control:

occupant_control oc;
economy_control ec;

LOCAL Sleep Awake
IN

ec
|| oc SUSPEND Sleep RESUME Awake
|| LOOP

Sleep(t) -> DO EMIT SetTemp(t)
|| EMIT LightOff

WATCHING Awake
|| LOOP

Awake(t) -> DO EMIT SetTemp(t)
WATCHING Sleep

The office control is rather complex, and so we may
want to sprinkle in some temporal safety properties to be
checked during execution. For instance, using definitions

Sleep =def :Awake S Sleep

Awake =def (:Sleep S Awake) _ -2(:Sleep)
SwOn =def :SwitchO� S SwitchOn

SwO� =def :SwitchOn S SwitchO�

where -2(:Sleep) means thatSleep never occurred (i.e., an
office is initially awake), we define the following property
to specify the behavior of the light:

LightSafety =def 2((LightOn! Awake ^ SwOn)
^ (LightO� ! Sleep _ SwO� ))

This specifies that wheneverLightOn occurs, both the of-
fice must be awake (noSleep since the lastAwake) and
the switch must be on (defined similarly). Also, when-
everLightO� occurs, either the office must be asleep or
the switch must be off. Note thatSleep XOR Awake is
a tautology, but that this is not quite true ofSwOn XOR
SwO� because neitherSwOn norSwO� is true during an
execution until the firstSwitchOn or SwitchO� event.

To complete the implementation of a single office, we
compose a temperature-stable office with an office control.
The resultingofficeprocess emits no events and accepts
only eventsEconomyMode(t) andOccupantMode. The
LOCAL combinator hides all other events.
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6 6

office

office
control

DoorOpen

SwitchOn

DoorClose
LightOn

LightOff

SwitchOff

EconomyMode(t) OccupantMode

SetTemp(t) RequestTemp(t)

office:

temperature_stable_office tso;
office_control oc;

LOCAL SwitchOn SwitchOff LightOn LightOff
RequestTemp SetTemp DoorOpen DoorClose

IN tso || oc

Finally, multiple offices are combined into an entire
floor of an office building. The implementation below al-
lows offices to be added one by one. The entire floor is
commanded to be placed in economy mode and to be re-
stored to occupant mode as a whole. However, while in
economy mode, individual offices may temporarily revert
to occupant mode due to door activity, as described above.

pp6 6 6 6

OccupantModeEconomyMode(t)

building floor

officefloor
building

building_floor:

building_floor bf;
office o;

bf || o

We conclude this example by recalling our earlier com-
ments about asynchronous communication. In a building
with many offices, each office is mostly decoupled from the
others. Logically, the only communication shared between
them is theEconomyMode(t) andOccupantMode events.
Furthermore, each office I/O typically generates events
asynchronously with the other offices. Triveni supports
this kind of decoupling, allowing each office to evolve au-
tonomously of the others.

3 The JavaTriveni implementation
We have implementedJavaTriveni, a realization of Triveni
in Java. In this section, we describe in high-level terms
the design ofJavaTriveni, ignoring certain implementa-
tion details for the sake of conceptual clarity.

3.1 The entities in the implementation
Activities. The Activity class captures the notion of
communicating threads. EachActivity must have the
following capabilities. (We explain below Java’s Ob-
server/Observable protocol for event transmission.)

public interface Controllable extends Runnable {
void start();
void stop();
void suspend();
void resume(); }

public abstract class Communicator
extends Observable implements Observer { }

public abstract class Activity
extends Communicator implements Controllable {...}

Note that the requirements are not very severe, and
many existing Java threads already qualify asJavaTriveni
Activities. For example, one can imagine that the un-
derlying implementation of anoffice I/Ois anActivity.

Events and Labels. As shown above,Activitiescom-
municate by sending events via the event multicast por-
tion of Java’s Observer protocol. Observables emitEvents
and observers acceptEvents via a subscription mecha-
nism; each observer subscribes to the observables whose
Events it wishes to receive, and when an observable emits
anEvent it sends it to its subscribers. However, the Triveni
programmer need not explicitly perform these subscrip-
tions; as we will explain later, Triveni handles the subscrip-
tions automatically.

EachEvent comprises alabel and some data. For in-
stance, in the office example theTemp(t) Event has label
Temp and datat. Labels are arbitrary objects, but they
must have an equality method.

Note that concrete event sources and consumers such
as graphical user-interface components often use their own
event-handling mechanism. Fortunately, it is possible to
provide adapter classes that serve to convert these into
the form compatible with Triveni. For example,Java-
Triveni provides the adapter classAWTActivity (extends
Activity) to adapt AWT events, and one may add other
adapter classes as needed.

Processes. A Process is a special case (i.e., subclass)
of Activity that can act as an operand of Triveni combi-
nators. In other words,Processes are constructed induc-
tively (realized inJavaTriveni via the Composite pattern).
For instance, the various components of the office example
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Figure 1: The architecture of aJavaTriveni Process P .

areProcesses. In addition,JavaTriveni provides a func-
tion to convert anyActivity to aProcess so that exist-
ing Java code can be integrated into Triveni. For instance,
the underlying implementation of anoffice I/O might be
anActivity, but one would first convert it to aProcess
before combining it with, say, a thermostatProcess. We
discuss this conversion below.

Actions. The implementation of Triveni combinators in
JavaTriveni provides a facility for specifying that certain
side-effects will occur at various points during the evolu-
tion of a Process. These side-effects may be any Java
code. AnAction is a set of such side-effects (see the Com-
mand pattern [12]); the order in which they are performed
is unspecified. For instance, when a thermostatProcess

of the office example receives aTemp(t) Event, it exe-
cutes anAction that assigns the variableactual temp.
In general, anAction A is executed via itsexecute
method, which is passed theEvent (if any) that triggered
theAction.

public abstract class Action {
public abstract void execute(Event); }

3.2 Structure of aJavaTriveni process
Figure 1 shows the structure of aProcess P in Java-
Triveni. P comprises

1. a set of Activities fAP;1; : : : ; AP;ng, each
equipped with a bidirectionaltranslatorTP;i that re-
namesEvent labels, and

2. acontrollerCP , implemented as deterministic finite-
state automaton, that controls thoseActivities.

Events flow throughP as follows. EachActivity AP;i

emits anEvent to its translatorTP;i, which, after perhaps
renaming theEvent’s label, emits it toP itself. Process
P in turn emits anyEvent it receives toP ’s controllerCP ,
which may forward it back to one or more selected trans-
latorsTP;j , each of which renames it back to its original

label and sends it toActivityAP;j . According to the de-
sign of Triveni,P upon receipt of anEvent, must always
complete its transfer to a new configuration, before accept-
ing the nextEvent.

P controls all communication between itsActivities
fAP;1; : : : ; AP;ng. Note, however, that anActivityAP;i

may itself have internal communication; for instance, it
may be a user-provided Java thread.

The Controller automaton. Any reasonable category of
determinate finite state machines that supports the con-
structions of parallel and sequential composition and loop-
ing can be used as the class of the controller automaton. In
particular, one can use:

� hierarchical finite-state machines
Our initial implementation was based on this class.

� Petri nets
Our current implementation is based on this class.

For the purposes of this paper, we will speak about the con-
troller automaton at an abstract level without committing to
a particular choice of class of automaton. We will however
assume that an automatonCP has the following character-
istics.

� CP has exactly one start state,Start(P ), and is
equipped with an initialAction Init(P ) that is per-
formed whenP starts. Typically, thisAction will
startP ’s Activities fAP;1; : : : ; AA;ng.

� CP has final states,Final(P ), which representsCP ’s
termination configurations. Typically, these states co-
incide with the termination (either normal or preemp-
tive) of P ’s Activities fAP;1; : : : ; AP;ng. State
Final(P ) has no outgoing edges.

� Each non-final states of CP is equipped with asus-
pendAction Susps (specifying what should happen
if P is suspended while in states), a resumeAction
Ress (specifying what should happen ifP is resumed
after having been suspended while in states), and a
kill Action Kills (specifying what should happen if
P is killed while in states in addition to setting the
active state toFinal(P )).

Often, whenP is suspended, resumed, or killed, it
will suspend, resume, or stop some of itsActivities

fAP;1; : : : ; AP;ng.

� A transition between states and states0 of CP is
equipped with (1) either anEvent label e or the to-
kendefault, and (2) anAction a.

The labels determine which transitionCP takes on re-
ceipt of anEventwhile in states, and the correspond-
ing Action is performed on that transition. There



may be at most onedefault transition for each state
s, and it matches anyEvent whose label does not
match one of the other transitions ofs. If the incom-
ing Event does not match any transition, thenCP re-
mains ins.

When theAction a of a transition is performed, it
is provided with theEvent that triggered that tran-
sition. For instance, theActions of the thermostat
Process in the office example extract the tempera-
ture data from theEvent.

The transition method of the automaton is a
synchronized method. Thus, the automaton (and
hence the associatedProcess) is blocked until all
Actions induced by a receivedEvent complete.

3.3 Building processes
Activities are Processes. Earlier we said thatJa-
vaTriveni provides a facility to convert an arbitrary
ActivityA into aProcess P , so that existing Java code
can be integrated into the Triveni framework. This works
as follows.

� A is the soleActivity of P .

� A’s translatorT performs no renaming of labels.

� P ’s controller CP has two states—the start (run-
ning) stateStart(P ) and the final (terminated) state
Final(P ).

– There is adefault transition fromStart(P ) to
Start(P ) whoseAction is to notifyT of the re-
ceivedEvent.

– There is a transition fromStart(P ) to Final(P )
whose label isTERM andAction is ;. A sends
aTERM Event upon normal termination.

– Init(P ) = fA:start()g,
SuspStart(P ) = fA:suspend()g,
ResStart(P ) = fA:resume()g, and
KillStart(P ) = fA:stop()g.

� Using the subscription mechanism of the Ob-
server/Observable paradigm, the flow ofEvents is set
up to match Figure 1. In other words,A subscribes to
T , which subscribes toCP , which subscribes toP it-
self, which subscribes toT , which subscribes toA.
Events thus flow through that chain in the opposite
order, fromA to T to P to CP to (via thedefault
transition ofStart(P )) T toA.

The reason thatP itself is in the chain ofEvent flow is
so thatP may still communicate with an external environ-
ment, emittingEvents that originate fromA and accepting
Events into its controllerCP , which in turn controlsA and

sendsEvents (via thedefault transition ofStart(P )) that
reachA (throughT ).

Building Processes inductively. In JavaTriveni, one
way to build aProcess is out of any arbitraryActivity,
as we described immediately above. In addition,Java-
Triveni provides the standard set of Triveni combinators
for the inductive construction ofProcesses. Each of these
functions is implemented as a constructor for aProcess

subclass; we describe each in turn. (When giving examples
in this section, we will for brevity omit thenew keyword.)

Done(ainit) constructs and returns aProcess P with
noActivities, with initial Action ainit, and whose con-
troller CP has a single state (which by definition is both
Start(P ) andFinal(P )) and no transitions.P simply per-
formsainit and terminates immediately.

ActivityProc(ainit; A; akill) constructs aProcess
P out of Activity A, as described above, and then adds
Action ainit to Init(P ), addsakill to KillStart(P ), and re-
turnsLocal(TERM; P ) to hideA’s TERM Events.

Emit(E) is a special case of the above in whichA
emitsEvent E and terminates.

Await(ainit; e; ae; P )

constructs and returns aProcess Q that is equivalent to
P except that:

� The initialAction Init(Q) is ainit.

� CQ has a fresh start stateStart(Q), andSuspStart(Q),
ResStart(Q), andKillStart(Q) are all the; Action.

� There is a single transition fromStart(Q) to Start(P )
whoseEvent label ise andAction is ae [ Init(P ).

Note that there is an implicitdefault transition from
Start(Q) to Start(Q) whoseAction is ;. In other words,
Q performsainit and waits until it receives ane Event,
upon which it performsae and startsP .

IfImmediate(ainit; e; ae; P ) is the same as the above

except that there is adefault transition fromStart(Q) to
Final(Q) whoseAction is ;. In other words, thefirst
Event thatQ receives must be ane Event for P to start;
otherwise,Q terminates immediately.

Sequence(ainit; P; abetween; Q) constructs and returns
a Process R that first performsP and upon successful
completion performsQ:

� R’s set of Activities/translators is the union of
P ’s set of Activities/translators andQ’s set of
Activities/translators, but the translators commu-
nicate withR instead ofP andQ.



� Init(R) = ainit [ Init(P ).

� The transition structureCR is the sequential compo-
sition ofCP with CQ, as implemented by the under-
lying class of automata.

Loop(ainit; P; aloop) constructs and returns aProcess

Q that is equivalent toP except thatInit(Q) = ainit [
Init(P ). The transition structureCQ is the result of ap-
plying the loop construction of the underlying class of
automata toCP , taking into account that all new transi-
tions into the initial state are extended (i.e., unioned) with
Action aloop [ Init(P ). Note thatQ never terminates un-
less preempted externally.

SuspendResume(ainit; P; esusp; asusp; eres; ares) con-

structs and returns aProcess Q that is equivalent toP
except thatInit(Q) = ainit [ Init(P ), and for all non-final
statess of CP :

� If there exists inCP a transition out ofs labeled with
Event labelesusp, it is removed fromCQ.

� The following objects are added toCQ:

– A fresh statehsiwhereSusphsi = ;,Reshsi = ;,
andKillhsi = Kills.

– A transition froms to hsi labeled withEvent
labelesusp and whoseAction is asusp [ Susps.

– A transition fromhsi to s labeled withEvent
labeleres and whoseAction is ares [ Ress.

Intuitively, hsi is the suspended form of states. Q acts like
P until it receives anesusp Event, upon which it performs
bothAction asusp and the suspendAction of the current
states (which may, for instance, suspend some or all of
Q’s Activities). Then it absorbs allEvents until the
first eres Event, upon which it performs bothAction ares
and the resumeAction of s. If it is killed preemptively
while in suspended statehsi, it performs the killAction
of s.

DoWatching(ainit; P; e; akill; Q) constructs and
returns aProcessR as follows.

� R’s set of Activities/translators is the union of
P ’s set of Activities/translators andQ’s set of
Activities/translators, but the translators commu-
nicate withR instead ofP andQ.

� Start(R) = Start(P ),
Final(R) = the merge ofFinal(P ) andFinal(Q), and
Init(R) = ainit [ Init(P ).

� For each non-final states in CP ,

– If there exists inCP a transition out ofs labeled
with Event labele, it is removed fromCR.

– A transition from s to Start(Q) labeled with
Event labele and whoseAction is akill [Kills
is added toCR.

Intuitively, R performsP until it receives ane Event, at
which point it immediately killsP (perhaps killing some
or all of P ’s Activities) and entersQ. If P terminates
without having ever received ane Event, Q is not per-
formed.

Parallel(ainit; P;Q) constructs and returns a
ProcessR as follows.

� R’s set of Activities/translators is the union of
P ’s set of Activities/translators andQ’s set of
Activities/translators, but the translators commu-
nicate withR instead ofP andQ.

� Init(R) = ainit [ Init(P ) [ Init(Q).

� The transition structureCR is the productCP � CQ,
as implemented by the underlying class of automata.
All corresponding suspend, resume, kill, and transi-
tion Actions ofP andQ are unioned inR.

Intuitively,R performsP andQ simultaneously. Note that
P ’s Activities andQ’s Activities can now interact
with each other. For instance, one ofP ’s Activitiesmay
send anEvent toR, which could, say, cause anActivity
within Q to suspend.

Local(e; P ) constructs and returns aProcess Q that
is equivalent toP modulo the following changes, where
enew is a freshEvent label not occurring inP .

� Every occurrence ofEvent labele in CP is changed
to enew in CQ.

� For each translatorTP;i in P and for every labele0 that
it translates toe, the corresponding translatorTQ;i in
Q translatese0 to enew.

Intuitively, Q performs likeP except thate Events are
internalized via its translators. Note that translators are
bidirectional, and thusQ’s Activities do not need to be
changed.

Spawning Processes. As we have describedJava-
Triveni, one must construct aProcess beforeexecuting it.
However, there is a facility for spawning newProcesses
dynamically. The run-time configuration of aJavaTriveni
program actually comprises atop-level setof Processes.
Semantically, theseProcesses execute as if they were
composed in parallel via theParallel combinator. This
allows the dynamic creation of newProcesses, essentially
performing parallel composition at the top level dynami-
cally.



3.4 Examples
Select example. For example, consider the selec-
tion paradigm that we used in thethermostat and
occupant control processes. Below,ProcessS repeat-
edly selects on distinctEvent labelsfe1; : : : ; eng, execut-
ing the correspondingProcess in fP1; : : : ; Png.

Qi = IfImmediate(;; ei; ;; Pi)
R0 = Done(;)
Ri = Parallel(;; Ri�1; Qi)
S = Loop(;; Rn; ;)

The controllerCQi
is built as follows:
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en=Init(Pn)

e1=Init(P1)

default=;

This controller waits (via thedefault edge) for one
of fe1; : : : ; eng, upon which it starts the corresponding
Process Pi, performing its initialAction Init(Pi). When
Pi terminates, it restarts this select. In the above figure,
the sizejCS j is proportional to�n

i=1jCPi j. To achieve this
efficiency in practice, one must take care with the prod-
uct construction on automata; the above automaton is the
reachablesegment of the straight product construction.

Spawn example. To spawn (potentially multiple occur-
rences of) aProcess P , one would write anActivity
SPAWNP that, when started, spawns a copy ofP , placing
it in the top-level run-time environment. Then one can use
theActivityProc combinator to build aProcessQ that

will invoke SPAWNP , spawning a copy ofP to be run in
parallel at the top level, perhaps multiple times. For in-
stance, theProcess

Loop(;; Await(;;KeyPress; ;;
ActivityProc(;; SPAWNO�ce; ;)); ;)

spawns anO�ce Process on each occurrence of a
KeyPress Event. Care must be taken withEvent labels.
For instance, in the office example discussed earlier, the
spawnedOffice Processes must all shareEconomyMode

and OccupantMode Events, but must each keep local
copies of all otherEvents, such asLightOn, DoorOpen,
and so forth.

4 Specification-based testing
The Triveni framework provides a compositional, non-
intrusive form of instrumentation for testing and debug-
ging. Intuitively, this instrumentation is in the flavor of
assert statements in traditional languages, with temporal
extensions for reactive and concurrent computing.

Concretely, conditions on sequences of events are ex-
pressed as safety properties in propositional linear time
temporal logic; we recall that a given execution of an appli-
cation violates a safety property only if some finite prefix
violates the safety property. Following [20], we consider
properties� defined using the past operators:

� : : = E! j :� j � ^ � j � _ � j � ! � j -2� j -3�

j � S � j � B �

The basic propositions areE!, corresponding toEvent E.
:;^;_ correspond to the standard boolean combinators
Not, And, Or. -2� specifies that� must have been true
for the entire past history of this system run.-3� specifies
that� must have been true sometime in the past history of
this system run.�1 S �2 specifies that�2 must have been
true sometime in the past history of this system run, and
that�1 must have been true in every time unit since the last
time that�2 was true.�1 B �2 specifies that either�1 S �2
is true or -2�1 is true. Our safety properties are of the form
2�, specifying that� is always true.

From the safety properties, we automatically generate
finite-state automata that signal an error if the safety prop-
erty is violated; the language of the generated automaton
is the set of all sequences that violate the safety property.
Thus, the accepting states of the automaton indicate a vi-
olation; the machine is driven into a accepting state if and
only if a safety property has been violated. (See [11] for
a survey of the related theory and algorithms.) OurJava-
Triveni implementation embeds the automaton in aJava-
Triveni Process . This generatedProcess is composed in
parallel with theJavaTriveni Process that is being mon-
itored, thus ensuring that the monitorProcess and the



monitoredProcess agree on the sequence ofEvents in
the system. If the specified property is violated at any point
during the run of the system, any stage, the assertion fails.
The user has the option to abort the application or ignore
the failed assertion. As a convenience, the system can be
made to report entire test traces. In the event that a viola-
tion is detected this allows users to reproduce and analyze
the violation using a debugger.

5 Rough edges and future work
The event-based exceptions and priorities in Triveni over-
lap conceptually with Java’s notions of exceptions and
thread priorities. This interaction bears careful study and
analysis, an endeavor particularly critical to investigate the
interaction between Triveni and distributed programming
via remote method invocation (RMI) in Java [27].

We will also study the issue of mobility [22], namely
dynamic channel creation and passing. Mobility increases
the expressive power of the programming language by al-
lowing the communication capabilities to evolve dynami-
cally. In semantics, mobility allows uniform treatment of
dynamic channels and process creation and the rudiments
of object-oriented programming.
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