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Introduction
Advances in sequencing technologies over the past two decades 
have led to many studies examining the complex microbial 
communities that support life on Earth. From extreme envi-
ronments1 to buildings,2 surveys of microbial communities 
have identified many novel taxa of bacteria and archaea.3,4 In 
parallel, exploration of the viral fraction of microbial com-
munities has also consistently uncovered novel genetic con-
tent.5,6 With an estimated 1030 viruses present in the ocean 
alone,7 and considering our current surfeit of knowledge,8 
viruses represent a vast untapped reservoir of genetic diver-
sity.9,10 Viruses that infect bacteria (bacteriophages) are some 
of the most abundant biological entities on the planet: they 
play a critical role in shaping microbial community structure 
and metabolism through mediation of mortality and genetic 
mobility.11 Therefore, phages have a global impact on biogeo-
chemical nutrient cycling.12

Assessing the diversity of viral species is not as straight-
forward as it is for prokaryotes. While bacteria and archaea 
can be classified via the 16S rRNA gene, there is no single 

conserved gene among all viral species. Thus, whole-genome 
sequencing (WGS), rather than targeted gene sequencing, 
must be employed to begin to assess the heterogeneity of viral 
taxa present within a sample (the metavirome). The WGS 
approach has also been employed in numerous studies of bacte-
rial and archaeal communities13–15; these studies have a crucial 
advantage – a well-populated repository of characterized gene 
sequences. Despite the critical role phages play in the natural 
environment as well as within the human microbiota,7,16–21 
data repositories lack sufficient quantity and diversity of phage 
gene and genome sequences. This is due to a general dearth of 
phage research in comparison to that of all other organisms, 
as well as the challenges associated with working with phages 
in the laboratory. Predominantly, the isolation of phages is 
limited in the same way as that of bacteria – only a fraction can 
be successfully isolated from the environment and maintained 
in laboratory settings. In addition, direct isolation and the use 
of metagenomics-based analyses are heavily biased in favor of 
examining the communities of phages that are actively destroy-
ing bacterial cells. These lytic phages are present as unattached 
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viral particles in the environment. However, a  large cohort 
of phages integrate with host genomes in a state known as 
lysogeny, forming prophages. Prophages are often overlooked 
during metaviromic examinations, along with all other bacte-
rial data. Furthermore, many prophages are mislabeled in data 
repositories as being innately bacterial.22,23

Interest in phage ecology and community dynam-
ics within natural and man-made environments continues 
to accelerate.24 Herein, we review the current bioinformatic 
approach for metavirome analyses with specific focus on the 
study of complex phage communities. While phage communi-
ties have been investigated in a variety of ecosystems, we focus 
on phage communities in freshwaters. Freshwater represents a 
potentially highly dynamic and variable community of phages 
and is likely to support a novel cohort of genetic and phe-
notypic diversity. In comparison to the marine environment, 
freshwater phages have been understudied: in light of the lim-
itations already discussed, this paucity of data contributes to 
our currently restricted insight into these important commu-
nities. Such hindrances reflect the general technicalities that 
are associated with the analysis of metagenomic data, which 
are, inarguably, very valuable to our broader knowledge of 
viral and microbial communities in the environment. Herein, 
we begin to examine the practical aspects of bioinformatics-
based analyses of metaviromic data, particularly those from 
freshwater, and how solutions to associated problems may 
inform the broader field.

Bioinformatic Analysis of Environmental 
Metaviromic Datasets

Current methodology. It is common practice to follow 
the well-established protocols developed for the investigation 
of microbial communities.25 Prior to beginning analyses, raw 
viral sequencing reads should be inspected to remove sequenc-
ing artifacts (eg, primers and/or adaptors). While contemporary 
sequencing platforms typically have very low overall error 
rates, errors and biases do occur26 and can be identified 
and removed alongside low-quality bases via a number of 
tools [eg, FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) and the FASTX-toolkit (http:// 
hannonlab.cshl.edu/fastx_toolkit/)]. Given the importance 
of high-quality data, several open-source software tools have 

been developed to facilitate quality control (eg, HTQC27; 
SUGAR28; khmer29).

While there are many methods for processing WGS 
datasets, extant metaviromic studies – particularly those 
focused on complex phage communities – typically follow a 
protocol similar to that shown in Figure  1. The reads pro-
duced, irrespective of the sequencing technology used, are 
first assembled into contigs using tools such as Velvet30 and 
SPAdes.31 While Figure  1 lists some of the assemblers fre-
quently used within freshwater metavirome studies, this 
is in no way an exhaustive representation of the tools avail-
able.25,32,33 Postassembly, the contigs can either be directly 
compared with viral data collections or open reading frame 
(ORF) prediction can be performed. In the latter case, sev-
eral different software tools are publicly available, includ-
ing those listed in Figure  1. Contigs are classified through 
heuristic homology comparisons (typically BLAST34 or in 
some cases BLAT35) to available viral sequence collections, 
such as GenBank,36 RefSeq,37 and SEED.38 Downstream 
analyses and comparisons between viromes often rely on these 
homology-based results.

There are several cloud-based or remote services, which 
encapsulate the process outlined in Figure  1. While both 
MG-RAST39 and MEGAN40 were developed for analyses of 
bacterial community sequencing efforts, they can be applied 
to metavirome data analyses. Two tools, MetaVir41 and 
VIROME,42 have been designed specifically for the analysis 
of metaviromic data sets. Sequences are classified by MetaVir 
through the top blastx comparisons to the RefSeq Virus data-
base.41 VIROME classifies viral sequences via the top blastp 
comparisons to the UniRef100 peptide database.42

Limitations of mainstream methodologies. The abil-
ity to classify a sequence originating from a phage, whether 
attempting to identify the taxa present or the putative func-
tionality of a coding region, is dependent upon the avail-
ability of representative sequences within the data repository 
used. As of January 2016, EBI’s Phage Genome collection 
(www.ebi.ac.uk/genomes/phage.html) includes only 2,010 
organisms, similar to that reported in the RefSeq collec-
tion through NCBI (2,018 total). NCBI’s Nucleotide data-
base (www.ncbi.nlm.nih.gov/nuccore) has just over 12,000 
phage sequences (complete and partial), nearly three orders of 

Reads Assembly

Newbler
SPAdes

Velvet/Meta Velvet

GetORF
MetaGeneAnnotator

prodigal

Sequence
database(s)

GenBank
RefSeq
SEED

Predict ORFs BLAST

BLAST

ORFsContigs

Figure 1. General protocol for metaviromic data analyses. Commonly used resources are listed for individual steps.
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magnitude less than the size of bacterial sequence collections. 
Thus, analyses of metaviromic datasets must acknowledge the 
dependency upon available sequence databases and the lim-
ited number of characterized species. The small fraction of 
phage diversity that has been sequenced also has inherent bias. 
dsDNA phage genomes outnumber those of RNA genomes, 
with Mycobacteriophages being the most expansively inves-
tigated, largely due to the work of PhageHunters (Fig. 2).43 
Likewise, phages that infect the commonly encountered type 
strain hosts (ie, Pseudomonas and members of Enterobacteri-
aceae) are also comparatively overrepresented (Fig.  2). This 
imbalance within the databases presents a challenge when 
assigning importance to previously unclassified viral sequences 
from uncultured viral samples.44,45

Furthermore, many sequence annotations are incorrect. 
Incomplete or mislabeled viral sequences in public databases 
are common. For instance, a blastx search of nucleic acid from 
purified virus-like particles against GenBank was shown to 
produce matches to nonviral sources.46 However, when these 
same sequences were compared with the ACLAME database 
(a collection of classified mobile genetic elements including 
phages, plasmids, and transposons47), the majority of reads 
could be reclassified as plasmid or phage.46 Two tools have 
been developed to assist in identifying sequences of viral 
origin within microbial genomes: VirSorter48 and Phage-
Phisher.49 Both can identify lysogenic viral sequences as well 
as prophage sequences. Prophages within bacterial genomic 
sequences can lead to erroneous classification of metaviromic 
sequences as being bacterial in origin, and thus necessitates 
further, often manual, investigation of such hits. Limiting 
comparisons to only annotated viral sequences circumvents 
this challenge; however, this comes at a cost of ignoring phage 
sequences that have only been identified within bacterial 
genomes (ie, their species of origin has yet to be discovered 
and characterized).

In addition to practical aspects of computational analyses, 
bias is also introduced during isolation and sample prepa-
ration. Filtering, a standard aspect of water sample prepa-
ration,50 potentially excludes large dsDNA viruses.44,51,52 
Additionally, chloroform treatment, CsCl gradients, and 
random PCR amplification favor chloroform-tolerant 
viruses, tailed phages, and abundant taxa, respectively.53 
Amplification of whole DNA via techniques such as mul-
tiple displacement amplification is known to favor single-
stranded circular DNA in the amplification process,54 which 
may result in the overrepresentation of these viruses in some 
metaviromic studies. Sample storage times and tempera-
tures may also exclude some environmental viruses as their 
decay rates vary.44

Exploring metaviromes – case study: freshwater 
samples. The initial discovery that phages were highly abun-
dant in aquatic samples55 paved the way for the eventual 
determination of the pivotal impact that phages have on global 
bacterial-mediated processes. Phage metagenomics essentially 
began in the marine environment,56 and marine datasets con-
tinue to be one of the most comprehensively examined from 
a biological and bioinformatic perspective (eg, The Pacific 
Ocean Virome10). There are comparatively few datasets col-
lected from freshwaters, despite their importance as sources of 
drinking water, recreation, and commerce. At the microbial 
scale, water chemistry and hydrological factors can contribute 
to a dynamic environment, which is likely to be reflected in 
the indigenous phage populations.

To date, there have been 12 freshwater metavirome data-
sets, which focus on phage populations within their samples 
and for which details regarding their methods and results of 
analyses are published (Table  1 and Fig.  3). Many of these 
studies have been performed using 454  sequencing, as pre-
sented in Table 1. In addition to the studies listed in Table 1, 
there have been several other metavirome datasets gener-
ated. A search through, eg, NCBI’s Sequence Read Archive 
(SRA: http://www.ncbi.nlm.nih.gov/sra/) or the iMicrobe 
data commons (http://data.imicrobe.us/), will reveal addi-
tional sequencing datasets from various other freshwater 
environments. Given our motivation here is on the analyses 
of metaviromic datasets, we will thus focus on those studies 
accompanied by publications.

As presented in Table 1, the majority of the sequences 
generated by metaviromic studies exhibit no discernible simi-
larity to the sequences in current data repositories; in fact, at 
most 29.5% of the sequences generated exhibit homology to a 
known viral sequence. This is universal, regardless of the fresh-
water ecosystem under investigation. Freshwater metavirome 
surveys have largely been focused on DNA viruses, which 
include nucleic acids from both phages and eukaryotic viruses. 
However, phages constitute the majority of the identifiable 
sequences within these datasets.51,57–59 Nevertheless, from the 
small fraction which is identifiable, varying conclusions have 
been drawn.

Other taxa

Burkholderia
Bacillus

Clostridium

Listeria
Pseudomonas

Propionibacterium

Streptococcus
Staphylococcus

Lactobacillus
Lactococcus

Cellulophaga

Synechococcus

Enterobacteria

Mycobacterium

Vibrio

Figure 2. Composition of the annotated host for the current collection 
of complete phage genomes available. Other taxa include all genera/
families not listed here.
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Figure 3. Locations of the freshwater metaviromes in Table 1.

Nutrient levels affect phage community structure. 
Previous work suggests that the diversity of DNA phages in 
freshwater environments is subject to change based on various 
environmental factors including temperature and available 
nutrient levels.45,60 Freshwaters of lower nutrient availabil-
ity tend to have less viral species richness in comparison to 
their higher trophic counterparts, eg, the mesotrophic Lake 
Bourget and oligotrophic Lake Pavin.60 This corresponds to 
greater taxonomic diversity of bacterial hosts within envi-
ronments with high nutrient availability. However, this con-
tradicts a study performed on Antarctic samples from the 
oligotrophic Lake Limnopolar, which demonstrates high 
species richness.45 Given the fact that the databases, from 
which species identification is made, are themselves not repre
sentative of phage diversity, claims of changes in diversity are 
inherently biased. Furthermore, as the vast majority of the 
virome is unidentifiable, quantifying the true diversity pres-
ent is not possible.

Variation due to seasonality and weather. Correla-
tions between season and species diversity have also been 
observed.45,58 Furthermore, shifts in the taxa have been asso-
ciated with environmental stressors, including decreased 
rainfall.57 In a study examining Saharan gueltas (ponds), 
the authors postulated that the extreme conditions of this 
site favor lysogenic phages, supported by their observation 

of Microbacterium phage Min1.57 Given phage dependence 
upon the presence and susceptibility of their bacterial host(s) 
and the seasonality previously observed within bacterial spe-
cies in freshwaters,61,62 fluctuations in viral population struc-
ture are expected. These results rely on the small fraction of 
identifiable sequences. Exploring the unknown constituent is 
far more difficult. Cross-sample assemblies – assembling con-
tigs from one sample with another sample – can provide some 
insight into the similarity/dissimilarity between sequences, 
regardless of their homology to databases.44,63

Spatial and temporal variation. Examination of fresh-
water bodies from the Arctic and Antarctic revealed similar 
taxa within their waters, despite their geographic distance.45,64 
Similarly, when the metaviromes of Lake Ontario and Lake 
Erie were examined concurrently, little to no significant dif-
ference in species diversity was observed.51 However, temporal 
variation was observed in both lakes when taxonomic com-
position was examined between samples taken a year apart. 
For example, although dominant in the collections of 2012, in 
2013 Myoviridae populations decreased in both Lake Ontario 
and Lake Erie samples.51 While these two studies compare 
somewhat similar habitats, comparison between diverse envi-
ronments (such as those presented in Table 1) highlights the 
variability observed. Nevertheless, the same caveats discussed 
earlier are just as true here.
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Anthropogenic effects. The effects of human-related 
impact on the microbial environment have recently been 
attracting more attention. In a study of the Virginian Lake 
Matoaka, viral species richness and diversity was found to 
be negatively correlated with the level of human activity at 
the sample site, with the highest levels of diversity and spe-
cies richness found at the main body of the lake,54 the area 
least affected by human activity. Similar results were found 
in Saharan gueltas57; the guelta most influenced by human 
beings exhibited the lowest amount of viral diversity and more 
heterotrophic microorganisms and human pathogens. When 
potable and reclaimed water were compared in terms of viral 
abundance, it was found that the latter contained 1,000-fold 
more viruses than the former46; reintroducing reclaimed water 
within the environment can thus potentially affect native 
microbial species.

Caveats of Applying Existing Methods of Analysis to 
Environmental Metaviromic Datasets
As the discussed studies of freshwater phage populations exem-
plify, the dearth of characterized phage genome sequences 
limits the ability to classify the majority of metaviromic 
sequences. The genomes of phages are extremely plastic and 
are able to shuttle genes between organisms65; looking at the 
number of BLAST hits to a single genome may erroneously 
indicate the species’ presence. For instance, several thousand 
hits to the Planktothrix phage PaV-LD genome suggested the 
presence of this phage within the Lake Michigan nearshore 
waters.66 However, further investigation of these BLAST 
results revealed that these hits were to a single gene, thus 
suggesting that the gene rather than the species was present 
within the sample.66 Thus, BLAST is an effective means of 
assessing the presence and absence of genes of interest; simi-
larly, metaviromic sequences could be mapped to user-selected 
gene sequences to detect and qualify the prevalence of genes 
of interest. Nevertheless, in the absence of a conserved genetic 
marker, ascertaining the presence of particular species within 
metaviromic sequences is fraught with challenges that have 
yet to be addressed.

As metaviromic surveys of environments continue, it is 
imperative – regardless of the environment sampled – that 
any conclusions drawn with regard to incidence of par-
ticular viral species be informed, considering not only the 
number of hits to a particular reference genome but also its 
coverage (the percentage of a query sequence that is aligned 
with a database sequence). Samples that produce hits to 
the majority of a genome’s coding regions may signify the 
abundance of a particular taxon. The complete genomes of 
highly prevalent species have been successfully constructed 
from complex metagenomic datasets, eg, the highly abun-
dant crAssphage within fecal samples.67 Mapping reads to a 
reference genome of interest can also be used to classify and 
extract complete genome sequences. While neither approach 
has to date been applied to phage genome reconstruction 

within freshwater samples, some success has been possible 
with samples from other environments.68,69 The genomic 
plasticity of phages again presents a challenge as gene order 
and content between a reference genome and an isolate from 
nature may vary significantly, thus limiting the effectiveness 
of mapping strategies.

Furthermore, hypothesis-based inquiry of complex viral 
communities in nature is limited by the quality and quantity 
of data available. In an effort to gain insight into the puta-
tive predator–prey dynamics of phage and host, a metaviromic 
survey66 in parallel with a bacterial 16S rRNA gene survey70 
of Lake Michigan nearshore waters was conducted. Metavi-
romic sequences were examined following the procedure out-
lined in Figure 1 (Velvet → getOrf → BLAST against NCBI’s 
viral RefSeq database). Metavirome contigs were classified 
via MetaVir41; for each phage species detected, its annotated 
bacterial host was determined referencing the NCBI genome 
record and the associated literature. Figure  4 illustrates the 
observed (via 16S rRNA gene sequencing) relative abundances 
of bacterial phyla vs. the expected (via annotated host species 
for phage identified) for eight samples collected from one of 
the two sites along the Chicago shore of Lake Michigan. As 
Figure 4 shows, the majority of the phage species identified 
within the metaviromic analyses are documented for a host 
species that were not detected by the bacterial survey. Highly 
prevalent phage species included Pseudomonas-infecting spe-
cies; however, pseudomonads were found in very low abun-
dance based on the 16S rRNA gene survey. Most notably, 
Figure 4 suggests a large contingent of phages, which infect 
other bacterial taxa, predominately cyanobacteria; however, 
cyanobacteria were not detected via the complementary 16S 
rRNA gene survey.

The observed phage diversity reflects the underlying 
database (correlation of a number of predicted hosts to that of 
the annotated hosts for the available RefSeq phage sequences 
is r2 . 0.99). While many factors (limited available data, mis-
annotated and/or incomplete annotation of phage host spe-
cies, etc.) may contribute to this discord, Figure 4 highlights 
the fact that without improved phage data resources, high-
throughput sequencing projects are likely to uncover artifacts 
of the data repositories themselves. In many cases, the anno-
tated host species for a phage genome is limited to a single, 
often laboratory, bacteria strain. Broad host range phages – 
phages capable of infecting bacteria belonging to the phyla 
Proteobacteria, Actinobacteria, and Bacteroidetes – have been 
isolated from Lake Michigan.71 This generalist lifestyle has 
benefits within environments for which bacterial communi-
ties, ie, susceptible host populations, are often ephemeral. It 
is important to note that the Lake Michigan broad host range 
viruses are relatives of the Pseudomonas PB1 phage, which 
to date has only been documented as infecting Pseudomonas 
spp.72 This suggests that phage species within the annotated 
collection of sequences may in fact have a broader host range 
than currently documented.
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Moving Forward
In this review, we have illustrated the bioinformatic challenges 
faced by all metaviromic studies. These include poor represen-
tation of most virus groups in sequence repositories relative to 
their expected diversity in nature; overrepresentation of viruses 
infecting a handful of model laboratory bacterial strains; low 
rates of isolation and characterization of new phages in the 
laboratory; and generally, poor annotation of the genomes for 
phage that have been sequenced. Furthermore, while we have 
focused largely on dsDNA phages, RNA and ssDNA phages 
are important members of viral communities.73 While a few 
studies have been conducted,45,74,75 this fraction of the virome 
often goes unsequenced and unsampled due to additional dif-
ficulties with their genomic extraction and amplification. If 
the goal is to obtain a fair representation of all viruses in data 
repositories, then more work is also needed to identify the 
non-dsDNA phages. Even when sequenced, RNA phages can 
be especially difficult to identify, either due to their relative 
scarcity in a particular sample76 or due to biases in the analysis 
itself.77 Nevertheless, the bioinformatic obstacles highlighted 
here also extend to non-dsDNA phages. We have learned a 
great deal from metaviromic studies across biomes, and there 
are several steps available to improve the state of metaviro-
mic bioinformatics going forward. We emphasize the role that 
freshwater studies can play in leading the way.

First, more studies of freshwater phages will help to 
improve the relative sampling of virus groups in sequence 
databases. To date, most studies have focused on phages 
from soil,78–80 sewage,81 and marine environments,10,56,82–84 
with only a handful of studies reporting on the diversity of 

phages in freshwater (including those listed in Table 1). This 
is particularly surprising, as freshwater rivers and lakes have 
a direct impact on society and human health. Furthermore, 
freshwater ecosystems are available throughout the world at 
different latitudes and altitudes and include bodies of water 
of varying size, productivity, and geological history. Taken 
together with the seasonal dynamics of many freshwater sys-
tems, we expect these environments to harbor a great deal of 
undiscovered viral diversity.

Second, it is necessary to isolate and characterize 
phages uncovered from new metaviromic studies. Thus, 
virus groups in sequence repositories will be better repre-
sented aiding in the analyses of environmental viromes. Of 
central importance is the comprehensive characterization of 
new isolates. This goes beyond sequencing genomes; assay-
ing growth characteristics (eg, latent period, generation 
time, and burst size) and the phage’s host range (follow-
ing protocols such as Ref. 85) are imperative to furthering 
our understanding of environmental phages. In doing so, it 
will also be important to move beyond isolation on typical 
laboratory hosts and to include coisolated bacterial species. 
More work is also needed to characterize viral gene func-
tions. Even for one of the best-studied laboratory strains, 
Enterobacteriophage T4, 114 of its 278 genes are currently 
annotated as hypothetical proteins in GenBank. Sequencing 
more genomes alone cannot fill in these gaps in our know
ledge. RNA-seq has been used to track bacteriophage gene 
expression in vivo (eg, in the oral microbiome86), and simi-
lar approaches may also help to identify important, unan-
notated genes, in viral communities.
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Figure 4. Phage–host populations within Lake Michigan nearshore waters.  
Notes: Left: prevalence of bacterial phyla as determined by 16S rRNA gene sequencing.70 Right: expected prevalence of bacterial phyla based on the 
detection of phages annotated as infecting particular bacterial host species.66 The two sampling sites, along Chicago’s shoreline, are Montrose Beach 
(located 6.5 miles north of downtown Chicago) and 57th Street Beach (located 7.5 miles south of downtown Chicago). Sampling was conducted within the 
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Third, new analytical tools are necessary to make sense 
of the data that we do have. While the studies reviewed here 
often follow a bioinformatic analysis strategy akin to that 
presented in Figure  1, alternative approaches developed for 
prokaryotic and eukaryotic metagenomic studies (eg, those 
reviewed in the studies by Li and Homer32 and Nagarajan 
and Pop33) may be applicable as well. Such methods require 
thorough vetting using both synthetic and real metavirome 
datasets. Furthermore, existing computational tools for pro-
tein structural and functional prediction may be adapted to 
the task of high-throughput prediction of novel functions 
in viral communities. New tools may also predict virus host 
range from genome sequences alone. Existing methods have 
recently been reviewed87 and it is found that simple methods, 
such as finding homologous genes in phage and bacteria using 
BLAST, can accurately predict many phage hosts. Though the 
best success rate of these current approaches is only near 40%, 
these tools provide an optimistic starting point for developing 
new methods. Improving host prediction from metagenomes 
would provide database-free analysis of local virus and bacte-
rial interactions.

Freshwater systems, particularly freshwater lakes, offer 
unique opportunities for hypothesis-driven metaviromics that 
is to varying degrees independent of these database limita-
tions. As discussed above, previous studies have explored how 
nutrient availability, seasonality, temperature, and human 
activity influence freshwater viral communities. Experimen-
tal metaviromics controlling for these variables should play an 
exciting role in both developing new computational tools and 
exploring viral ecology and evolution.
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