Overview

• Motivation
 – Real time systems
 – non PC software development

• New Course
 – Goals:
 • Small scale microcontroller system development
 • Focus = hardware control and interaction
 • Advanced computer science students (graduate / undergrad)
 • Limit need for hardware development (and cost)

• Results – Fun, successful course
 – Limited hardware knowledge not a barrier
 – Changed student perceptions
 – Economical
Course Tools

- **Hardware**
 - Arduino open source microcontroller board
 - Atmel Atmega 328 processor
 - 32K bytes of memory
 - Power options, clock, timers
 - inputs / outputs
 - Physical reset button
 - Wireless breadboards
 - Electronics parts

- **Software** - Programming in C
 - Standard C, interfaces to hardware, helper methods
 - Boot loader, USB interface
 - Very basic main loop “operating system”

Software Structure

```c
/*Blink
Turns on an LED on for one second, then off for one second, repeatedly.
The circuit: LED connected from digital pin 13 to ground.
By David Cuartielles; based on an original by H. Barragan for the Wiring i/o board*/
int ledPin = 13; // LED connected to digital pin 13

void setup() {
  pinMode(ledPin, OUTPUT);
}

void loop() {
  digitalWrite(ledPin, HIGH);  // set the LED on
  delay(1000); // wait for a second
  digitalWrite(ledPin, LOW);  // set the LED off
  delay(1000); // wait for a second
}
```

Hardware Tinkering

• Project Construction
 – Arduino board a piece part
 – Add
 • Inputs – buttons, sensors (temp, sound, touch)
 • Outputs – LEDs, motors / servos, speakers
 – Need to learn basic electronics
 • What’s a multi meter?
 • Electrostatic Discharge (ESD) precautions
 • Only 9 volts and milliamps, but…

Course Structure

• Introduction to Arduino and Hardware
 – Series of simple projects
 – Experimentation with sensors
 – Build simple circuits from diagrams
 – Access to the Arduino community

• Custom Project(s)
 – One or two people
 – Student defined project
 – In class demonstrations and help
 – Student self assessment of others
Findings & Results

Do you understand the difference between programming microcontrollers and higher level programming (i.e., Java)?

Structured Analysis and Design Technique (SADT)
William L. Honig, whonig@luc.edu

Reasonable Economics (USD):
- $150 per student kit
- $500 in hand tools
- $45 damaged parts

Advanced Projects

Arduino: capable platform; enables creativity

Arduino Glider Auto Pilot

William L. Honig, whonig@luc.edu
Next Steps / Improvements

- Speed up the basics
 - Expanded standard set of labs
 - Circuit experiments (no Arduino)
- Option to BYO Arduino
 - Build Arduino from parts
 - Students enjoyed soldering
- Option for assembly code
 - When is timing really critical?
- Expand in robotics
 - Interest is keen
 - Real time input and response

Summary

- Small scale intelligent systems / embedded computing
 - Important student learning
- Arduino open source hardware / software
 - Accessible for advanced computer science students
 - Even those without electronics background
 - Strong and capable platform
- Economics – possible for non engineering schools

• Acknowledge
 - Reviewers, Thanks!
 - Arduino Community:
 • Massimo Banzi, Tom Igoe, …
Backup Materials

• Rover Videos:
 • see http://technospino.com/micro/

• Robert’s YouTube:
 • http://www.youtube.com/watch?v=moFl8xIHG9c