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Abstract

During embryogenesis, primordial germ cells (PGCs) and somatic gonadal precursor cells

(SGPs) migrate and coalesce to form the early gonad. A failure of the PGCs and SGPs to

form a gonad with the proper architecture not only affects germ cell development, but can

also lead to infertility. Therefore, it is critical to identify the molecular mechanisms that func-

tion within both the PGCs and SGPs to promote gonad morphogenesis. We have character-

ized the phenotypes of two genes, longitudinals lacking (lola) and ribbon (rib), that are

required for the coalescence and compaction of the embryonic gonad in Drosophila melano-

gaster. rib and lola are expressed in the SGPs of the developing gonad, and genetic interac-

tion analysis suggests these proteins cooperate to regulate gonad development. Both

genes encode proteins with DNA binding motifs and a conserved protein-protein interaction

domain, known as the Broad complex, Tramtrack, Bric-à-brac (BTB) domain. Through

molecular modeling and yeast-two hybrid studies, we demonstrate that Rib and Lola homo-

and heterodimerize via their BTB domains. In addition, analysis of the colocalization of Rib

and Lola with marks of transcriptional activation and repression on polytene chromosomes

reveals that Rib and Lola colocalize with both repressive and activating marks and with each

other. While previous studies have identified Rib and Lola targets in other tissues, we find

that Rib and Lola are likely to function via different downstream targets in the gonad. These

results suggest that Rib and Lola act as dual-function transcription factors to cooperatively

regulate embryonic gonad morphogenesis.
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Introduction

Organ development depends upon the specification, migration, and interaction of multiple

cell types, which give structure and function to that organ. Failure to execute any of these steps

during development can result in birth defects or even lethality. The embryonic gonad pro-

vides an excellent model to study the genes that regulate cell migration and cell-cell interac-

tions during organogenesis, as it is formed from two primary cell types: the primordial germ

cells (PGCs) and the somatic gonadal precursors (SGPs) [1, 2]. PGCs are formed at the poste-

rior end of the embryo at stage 4–5 and remain there until stage 7, when the midgut invagi-

nates and passively pulls the PGCs with it [2, 3]. The PGCs begin active migration through the

midgut epithelium toward the mesoderm during germ band elongation at stage 9 [3, 4]. The

SGPs are specified bilaterally in three clusters from the mesodermal layer of abdominal para-

segments 10–12 at stage 11 [1, 2]. During stage 12, the PGCs migrate bilaterally and begin to

intermingle with the SGPs as the germ band retracts [5]. By the end of germ band retraction at

stage 13 the three SGP clusters and the PGCs coalesce into an elongated gonad on each side of

the developing embryo (Fig 1A) [5]. During stage 13 SGPs also begin to ensheath the PGCs by

sending out membrane extensions, which persist throughout gonad development and are criti-

cal for proper germ cell development [6–9]. Following gonad coalescence, SGPs and PGCs

compact to form a spherical gonad by stage 15 of embryogenesis (Fig 1A) [5]. Previous studies

have identified many genes that are critical for PGC migration, gonad coalescence and com-

paction, and ensheathment [10, 11]; however, understanding of this complex process is far

from complete. In this paper, we describe the role of two genes, ribbon (rib) and longitudinals
lacking (lola), in embryonic gonad morphogenesis.

Molecularly, Rib and Lola belong to the BTB/POZ (Broad Complex, Tramtrack and Bric à
Brac/Pox Virus and Zinc finger) family of proteins. These proteins include a conserved BTB

domain, which has been demonstrated to mediate protein-protein interactions [12–16]. The

BTB domain is located at the amino (N)-terminus where it mediates homo- and heterodimeri-

zation, as well as multimerization with other BTB and non-BTB domain-containing proteins

[14, 17, 18]. Many BTB domain-containing proteins, including Rib and Lola, contain an N-ter-

minal extension of the BTB domain, which plays an important role in stabilizing BTB domain

interactions [18]. Frequently, the BTB domain is observed in combination with DNA-binding

motifs, and studies have demonstrated that many of these BTB family proteins function

as transcriptional regulators [19–22]. In some cases, the BTB domain has been shown to

interact with transcriptional repressors and activators, further supporting this regulatory role

[17, 23–26].

Both Lola and Rib contain DNA binding motifs in addition to a BTB domain. The lola gene

locus encodes at least 20 protein isoforms generated by alternative splicing [27, 28]. While all

protein isoforms contain a common N-terminal region, which includes the BTB domain, their

carboxy (C)-terminal domain structure varies [27–29]. Of the 20 identified protein isoforms,

there are only 3 isoforms that lack a zinc finger motif at the C-terminus, while most isoforms

contain two zinc fingers, as shown for isoforms T and K (Fig 1B) [28]. Variability in the

sequence of these zinc fingers and analysis of the DNA binding specificity of different Lola iso-

forms suggests that different isoforms have different DNA binding specificities [28, 30]. In

addition, yeast two-hybrid studies reveal that different Lola isoforms are capable of heterodi-

merization, thereby increasing the variability of potential Lola binding sites [31, 32]. The pres-

ence of zinc fingers implies that Lola may function as a transcriptional regulator, and previous

studies have demonstrated the ability of Lola to repress expression of the copia retrotransposon
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in the embryonic central nervous system [19]. While Lola is hypothesized to function primar-

ily as a transcriptional repressor, expression of copia appears reduced in the embryonic gonad

of lola mutants [19]. These results suggest that Lola isoform function may be determined in

part by its binding partners, or that different Lola isoforms regulate gene expression in differ-

ent tissues. Gene expression profiling of lola null mutant embryos compared to controls has

resulted in the identification of hundreds of genes that exhibit increased or decreased expres-

sion upon lola mutation, although the direct transcriptional regulation of these targets has not

yet been demonstrated [33].

Unlike lola, which has at least 20 protein isoforms, the rib gene locus encodes three protein

isoforms. All Rib isoforms have a DNA binding motif located C-terminal to the BTB domain

that is referred to as the Pipsqueak (PSQ) motif (Fig 1B) [15, 16]. The PSQ motif is a 50-amino

acid sequence that binds to DNA [34, 35]. Recent work has resulted in the identification of

multiple Rib transcriptional targets in the salivary gland, some of which are repressed while

others are activated [36]. These results suggest that Rib transcriptional activity may also

depend on its interaction with different binding partners.

Both rib and lola were previously identified in genetic screens for mutants that affect early

gonad formation [37, 38], and have been shown to function in other contexts to regulate organ

morphogenesis. The rib gene was first identified in an ethyl methanesulfonate mutagenesis

screen for larval cuticle abnormalities [39]. Subsequently, rib was shown to regulate cell migra-

tion and morphogenesis of the trachea and salivary glands [15, 16, 40]. When rib is mutated,

the tracheal cell bodies and apical surface have severe migration defects and impaired morpho-

genesis, while the salivary glands fail to elongate [15, 16]. Recent work has demonstrated that

Rib is required to promote the changes in cell shape and volume needed for salivary gland

morphogenesis [36]. Molecular studies of the downstream effectors of Rib are consistent with

these cellular functions. rib mutants exhibit reduced levels of Crumbs (Crb), an apical mem-

brane protein that functions in epithelial cell polarity and in apical membrane growth [41, 42].

Rib also regulates the activity of Moesin (Moe), the only Ezrin-Radixin-Moesin (ERM) family

protein in Drosophila, which plays a role in linking the plasma membrane to the actin cytoskele-

ton [42]. In rib mutants, levels of active, phosphorylated Moe are increased, suggesting that

down-regulation of Moe activity is required for salivary gland and tracheal morphogenesis [42].

Finally, levels of the recycling endosomal protein Rab11 were reduced in rib mutants, consistent

with an observed decrease in the number of apically-localized vesicles [42]. In the context of sal-

ivary gland and tracheal morphogenesis, Rib has also been demonstrated to genetically interact

with another BTB protein, Lola like (Lolal) [42]. Given that Rib interacts with other BTB

domain containing proteins such as Lolal, it is possible that Rib may interact with other BTB

family proteins in a tissue-specific manner to regulate development of other tissues.

Fig 1. lola and rib mutants exhibit defects in gonad morphogenesis. (A) Schematic of the stages of embryonic

gonad formation. At stage 12 SGP (red) clusters and PGCs (green) begin to intermingle. At stage 13 SGP clusters

fuse and coalesce with the PGCs, sending out extensions around PGCs to ensheath them. By the end of stage 15

SGPs and PGCs compact to form a spherical gonad. (B) Molecular structure of Lola and Rib with BTB domains (light

blue), Lola common region (dark blue), zinc finger DNA binding motifs (ZF; yellow), pipsqueak DNA binding motif

(PSQ; pink), and the corresponding mutations found in alleles used in this study. (C-G) Stage 15 mutant embryos

immunostained for the 68-77-lacZ enhancer trap, which labels the cytoplasm of SGPs for analysis of gonad

morphology. Posterior to the right. (C) Control embryos expressing the 68-77-lacZ enhancer trap. Scale bar: 10μm.

(D-E) lola46.38/22.05 embryonic gonads exhibiting fusion (D) and compaction (E) defects. (E-F) rib35.14/55.25 embryonic

gonads exhibiting (F) fusion and (G) compaction defects. (H) Quantification of the frequency of gonad phenotypes

observed in control, lola mutant and rib mutant embryos. Gonad morphology was assessed using the 68-77-lacZ

enhancer trap. The following phenotypes were scored: fusion (red), compaction (blue) and wild-type (green). A chi-

square test was performed to test the null hypothesis that the phenotypic ratios will be the same across all genotypes.

Results allow us to reject the null hypothesis: Χ2
28, 0.05 = 118.95, p<0.001.

doi:10.1371/journal.pone.0167283.g001
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One candidate for this interaction is Lola. Previous studies have demonstrated a critical role

for Lola in Drosophila nervous system development. lola is required for axon growth in the

embryonic central nervous system (CNS), and mutation of lola results in axon pathfinding

defects along the longitudinal tracts of the CNS [43]. In addition, Lola is required to prevent

midline crossing of longitudinal axons [44]. In this context, Lola appears to up-regulate

expression of the midline repellent protein, Slit, and its longitudinal axonal receptor Round-

about (Robo) [28, 44]. Previous studies have demonstrated that Lola is also required for

embryonic gonad morphogenesis and for gametogenesis in the adult [22, 37, 38, 45].

Here, we have further characterized the role of Lola and Rib in embryonic gonad morpho-

genesis. Using genetic and physical interaction analysis, we have examined the relationship

between Rib and Lola and our results suggest that they cooperate to promote gonad morpho-

genesis. Molecular modeling suggests that both Rib and Lola are capable of homo- and hetero-

dimerization via their BTB domains. The colocalization of Rib and Lola with marks of

transcriptional activation and repression and with each other at a subset of sites on polytene

chromosomes suggests that Rib and Lola function as dual-function transcriptional regulators

to regulate tissue morphogenesis.

Materials and Methods

Fly strains and genetics

The following stocks were acquired from the Bloomington Drosophila stock center (Indiana

University, Bloomington, IN, USA): Oregon R, PBac{lola.GR-GFP.FLAG}VK00033, PBac

{lola.I-GFP.FLAG}VK00033, lolaORE76 [43], and rib1 [16]. lola46.38, lola22.05, rib35.14, rib55.25

[37], 68-77-lacZ [46], forkhead-Gal4 [47], and 24B-Gal4 [48] were acquired from Mark Van

Doren. lolaORC4 [43] was a gift from Edward Giniger and rib1, UAS-rib [16] was a gift from

Deborah Andrew. Balancer chromosomes carrying a transgene encoding Green Fluorescent

Protein (Kr-Gal4, UAS-GFP) [49] or Yellow Fluorescent Protein (dfd-eYFP) [50] were used

for genotyping.

Immunohistochemistry and microscopy

Embryo fixation and immunostaining were performed as previously described [9] with the

exception of immunostaining for Robo. For Robo immunostaining, embryos were fixed in

1.75 ml PCM (100mM Pipes pH 6.9, 1mM CaCl2, 2mM MgSO4), 0.25 ml 37% formaldehyde,

and 8 ml heptane for 22 minutes. Embryos were washed in heptane, dried, and rehydrated in

PBTx (1xPBS, 0.1% Triton X-100). Embryos were briefly sonicated to devitellinize them,

washed, blocked, and immunostained in BBTx (1xPBS, 0.3% Triton-X-100, 1% BSA) with 5%

normal goat serum. The following primary antibodies were used (dilution, source): chick-GFP

(1:1000, Abcam); rabbit anti-GFP (1:2000, Torrey Pines Biolabs); mouse anti-GFP (1:50, Santa

Cruz); rabbit anti-β-Galactosidase (1:1,000, Cappel); rat anti-Rib (1:50, Deborah Andrew

[42]); rabbit anti-Lola (1:100, Edward Giniger [43]); guinea pig anti-Traffic Jam (1:1000, Mark

Van Doren [9, 51]); rabbit anti-Vasa (1:200, Santa Cruz Biotechnology); rat anti-Vasa (1:50,

Developmental Studies Hybridoma Bank (DSHB)); mouse anti-Eya (1:25, DSHB); rabbit anti-

Vasa (1:200, Santa Cruz Biotechnology); mouse anti-Crb (1:10, DSHB); rabbit anti-phospho-

Moe (1:200, Cell Signaling Technology); mouse anti-Robo (1:10, DSHB); mouse anti-SpirC3

(1:100, Susan Parkhurst [52]) and mouse anti-Fasciclin 3 (1:30, DSHB). Alexafluor 488, 546,

and 633 conjugated secondary antibodies were used at 1:500 (Invitrogen) and mounted in

DABCO (70% glycerol, 2.5% 1,4-diazabicyclo[2.2.2]octane, 10mM Tris-HCl pH 7.5) for

immunofluorescence microscopy. For immunohistochemical staining, biotin conjugated

secondaries (Jackson ImmunoResearch) were used at 1:5000, and the stain was developed
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using the ABC Elite kit (Vector Labs) using DAB (3030-diaminobenzidine) as a substrate (Vec-

tor Labs). These embryo stains were mounted in 80% glycerol/20% PBS. Embryos were staged

according to their gut morphology. Fluorescently stained embryos were imaged on an Olym-

pus Fluoview 1000 confocal microscope equipped with 488, 561 and 633 lasers using a Pla-

nApo N 60x oil (NA 1.42) objective. All images are a single plane unless otherwise noted.

Immunohistochemically stained embryos were imaged on a Zeiss AxioImager.M2 using an

EC Plan-NEOFLUAR 40x oil (NA 1.3) objective. Images were processed using ImageJ

software.

Plasmid construction

For yeast two-hybrid analysis, DNA fragments were PCR amplified from LD16058 DNA (rib)

and LD28033 DNA (lola) (Drosophila Genomics Resource Center), using the following prim-

ers: Rib-Ndel-Fwd 5’-CATGCATATGGGCGGCCCAACGGCG-3’, Rib-BamHI-Rev 5’-TGCA

AGGATCCTATGATTGAACTTCATCAAGTTGTCGTACAGAC-3’, Lola-Ndel-Fwd 5’-CAT

GCATATGGATGACGATCAGCAGTTTTGTTTG-3’, and Lola-BamHI-Rev 5’-TGCA AGG

ATCCTTACTCCGCCGCCAGTGCG-3’. PCR fragments were cloned into the multiple clon-

ing site of the pGADT7 and pGBKT7 vectors (Clontech) using NdeI and BamHI.

For the UAS-3xHA-rib transgene, DNA fragments were PCR amplified from LD16058

DNA (rib), using the following primers: Rib-FL-Reverse 5’-CAAGGGATCCGCGTTAATCA

GTCGGCCCGGGCCTGAGCGT-3’, 3xHA-rib-Kozak 5’-CAAGGCGGCCGCGCCGCCACC

ATGGGATACCCATACGATGTTCCAGATTACGCTTACCCATACGATGTTCCAGATTA

C GCTTACCCATACGATGTTCCAGATTACGCTGGAGGAGGCGGCCCAACGGCGCC

G -3’. PCR fragments were cloned into the pUASpB (a modified version of pUASP [53] with

an attB site for phiC31-mediated integration) using NotI and BamHI. Transgenic flies were

generated by integration of this construct into P{CARYP} attP40 [54, 55] by phiC31 integra-

tion by BestGene Inc. (Chino Hills, CA).

Yeast-two hybrid interaction

The yeast strains Y2H-Gold and Y187 were transformed with pGADT7 and pGBKT7 vectors,

respectively, by standard Lithium acetate-Tris-EDTA transformation and transformants were

selected on SD-Leu or SD-Trp plates. The yeast two-hybrid was performed according to the

Matchmaker1 Gold Yeast Two-Hybrid System User Manual (Clontech) with a few modifica-

tions. For yeast mating, individual yeast colonies were inoculated into 5 ml of YPDA in 250 ml

Erlenmeyer flasks in the morning. In the mid/late afternoon, yeast growth was measured by a

spectrophotometer to ensure similar culture density. The desired mating combinations were

mixed with equal amounts of media in a 500 ml Erlenmeyer flask and then the volume was

brought up to ~10 ml for incubation overnight at 30˚C. After 20 hours, cultures were exam-

ined for the presence of zygotes in the media and plated on SD-Trp-Leu media to select for

successful mating. Following successful mating, colonies were streaked on SD-Leu-Trp-His-

Ade plates supplemented with X-α-Gal and Aureobasidin A for yeast two-hybrid analysis.

Protein modeling

Evolutionarily related structures for the sequences of Lola and Rib were found by using Blast

[56] and HHBlits [57] to search the SWISS-MODEL template library (SMTL version 2016-03-

30, PDB release 2016-03-25) [58]. Homology models for the BTB domain dimers of Lola and

Rib were constructed using SWISS-MODEL [59] using the crystal structure of the human

Bach2 POZ domain (PDBid: 3OHV) [60] as a template. The initial dimer for Lola-Rib was

modeled using one subunit from each of the homodimers. The three initial dimers were then
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refined using a combination of energy minimization and molecular dynamics. Each simula-

tion box, containing one dimer, a TIP3 water box extending at least 10 Å beyond the protein

in all directions and 0.15 M NaCl adjusted to neutralize the charge in the water box, was

assembled using the molecular graphics program VMD [61]. The simulation box was then

brought to equilibrium using the molecular dynamics program NAMD [62]. The equilibration

procedure involved energy minimization with and without restraints on the protein coordi-

nates (3000 steps each), slow heating from 10 to 310 K (30,000 steps), and then pressure and

temperature equilibration using a Langevin piston (10,000 steps). Finally, unrestrained

dynamics for 100,000 steps was done before data was acquired. The time step was 2 fs with

every 150th step being saved in the trajectory for analysis. Periodic boundary conditions were

used. The cutoffs for nonbonding (van der Waals and electrostatic) interactions were 12 Å.

The switch distance was 10 Å, and 1.0 1–4 scaling factor was used. All calculations were done

using CHARMM 27 parameters [63]. The van der Waals and electrostatic dimer interaction

energy values presented in Table 1 were determined for the final 100 steps (30 ps) in each sim-

ulation and then averaged. All molecular graphics diagrams were generated using VMD [61].

Salivary gland polytene chromosome squashes

Third instar larval salivary glands were dissected in 1xPBS and fixed as follows: fix 1 (100 μl

37% formaldehyde, 700 μl H2O, 100 μl 10xPBS and 100 μl 10% Tween-20) for 1 minute, fix 2

(100 μl 37% formaldehyde, 300 μl H2O, 500 μl glacial acetic acid and 100 μl 10% Tween-20) for

2 minutes, fix 3 (550 μl H2O and 450 μl glacial acetic acid) for 5 minutes. After fixation the sali-

vary glands were transferred onto a siliconized cover slip (using Sigmacote SL-2; Sigma-

Aldrich), flipped over onto a poly-L-lysine treated slide, and squashed using the thumb to

apply firm pressure onto the salivary glands for ~50–60 seconds. The slides were frozen in liq-

uid nitrogen, the cover slip was popped off, and the slides were transferred to 1x PBS. The

slides were washed 2 times for 30 minutes in PBST (1xPBS and 0.1% Tween-20) and 1 time for

30 minutes in antibody dilution buffer (1xPBS, 0.1% Triton-X-100, 5% milk). Slides were incu-

bated overnight at 4˚C in a humid chamber in antibody dilution buffer containing the follow-

ing antibodies: mouse anti-H3K27me3 (1:125, Millipore); mouse anti-RNA Polymerase II

phosphoserine 5 H14 (1:35, BioLegend), rat anti-HA (1:100, Roche Diagnostics), and/or rabbit

anti-Lola (1:100, Edward Giniger [43]). Following incubation, slides were washed 3 times in

PBST for 15 minutes and incubated for 1 hour at 37˚C in the appropriate secondary antibod-

ies, diluted 1:400 in antibody dilution buffer. After incubation, slides were washed once again

3 times in PBST for 15 minutes and mounted in DABCO for viewing. Polytene chromosomes

were imaged on an Olympus Fluoview 1000 using the 488 and 561 lasers using a PlanApo N

60x oil (NA 1.42) objective. Images were processed using ImageJ software.

Results

Characterization of the role of Rib and Lola in gonad morphogenesis

Previously, lola and rib were identified in screens for genes that are required for embryonic

gonad morphogenesis [37, 38]. In order to further characterize the gonad phenotypes of rib

Table 1. Calculated Interactions Energies for BTB Dimers.

Dimer Electrostatic (Kcal/mol) van der Waals (Kcal/mol) Total (Kcal/mol)

Lola-Lola -350 -204 -554

Lola-Rib -386 -206 -592

Rib-Rib -173 -201 -374

doi:10.1371/journal.pone.0167283.t001
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and lola mutants, the 68-77-lacZ enhancer trap, which is expressed in the cytoplasm of the

SGPs, was used to mark the cytoplasm of SGPs and examine gonad morphology (Fig 1C) [4, 5,

46]. During normal gonad development, SGP clusters fuse into an elongated, coalesced gonad

by the end of stage 13, and PGCs and SGPs compact into a spherical gonad with SGPs

ensheathing the PGCs by the end of stage 15 (Fig 1A and 1C). Therefore, we scored rib and

lola embryonic gonads for a failure of SGP clusters to coalesce, referred to as fusion defects,

and a failure of gonads to form a round spherical gonad, referred to as compaction defects.

Immunostaining of SGPs of the gonad in both rib and lola mutants revealed defects in SGP

cluster fusion and gonad compaction (Fig 1D–1H; S1 Fig). Quantification of these phenotypes

demonstrates that the control embryos, which carry the 68-77-lacZ enhancer trap, exhibit a

low frequency of fusion and compaction defects of ~7% (Fig 1H). Less than 17% of the gonads

in embryos heterozygous for rib and lola mutations exhibited fusion and compaction defects

(Fig 1H). For analysis of rib and lola homozygous mutants, heteroallelic combinations were

used to minimize the potential contribution of second site mutations to the observed pheno-

type, as these mutant alleles were obtained from a mutagenesis screen [37]. Four lola alleles

were used in these studies: mutations in lolaORE76 and lola22.05 (Q97STOP) are predicted to

affect all Lola protein isoforms [28, 38], while lola46.38 encodes a H844L mutation in the second

the zinc finger of Lola isoform T (Flybase designation PR/PG) and lolaORC4 encodes a prema-

ture stop codon (P771STOP) in Lola isoform K (Flybase designation PI) (Fig 1B). We observed

defects when each isoform-specific allele was combined with a null or hypomorphic allele

affecting all isoforms (Fig 1D, 1E and 1H). In the case of the lola46.38/22.05 and lola22.05/ORE76

mutants, fusion and compaction defects were observed in just under 40% of gonads (Fig 1H).

A small increase in the frequency of gonad defects to 44% was observed in lola46.38/ORE76

mutants (Fig 1H), suggesting that despite an early stop codon in lola22.05 it may not be as

strong of a loss of function mutant as lolaORE76. lola22.05/ORC4 mutants carrying one copy of the

Lola isoform K-specific mutation in combination with a mutation affecting the Lola common

region exhibited gonad defects 34% of the time (Fig 1H). Thus, all heteroallelic lola mutants

exhibited an increase in fusion and compaction defects when compared to their heterozygous

counterparts. These results also suggest that multiple Lola isoforms, namely Lola-T and Lola-

K, function in gonad morphogenesis.

In the case of the rib alleles, only the rib1 allele encodes a protein with a premature stop

codon (R283STOP) [15], while rib35.14 encodes a protein with a D406V missense mutation,

which is localized to the PSQ DNA binding motif and is likely to function as a hypomorph

(Fig 1B). While the precise mutation in the rib55.25 allele is unknown, sequencing has revealed

that it is not within the coding sequence. Examination of rib35.14/55.25 mutants reveals the pres-

ence of fusion and compaction defects in approximately 52% of embryonic gonads (Fig 1F–

1H). rib55.25/1 heteroallelic mutants exhibited the highest frequency of defects with a total of

61% (Fig 1H). Thus, the rib55.25 mutant allele is likely a stronger allele than the rib35.14 allele.

Overall, these results suggest that Rib and Lola are critical regulators of gonad coalescence and

compaction.

Previous studies also demonstrated a requirement for Lola in germ cell migration, as germ

cells were observed outside of the coalesced gonad [38]. Therefore, we scored the number of

extragonadal germ cells in rib and lola mutant embryos. While controls had an average of less

than one extragonadal germ cell per embryo, rib heterozygotes had a slight increase to an aver-

age of 1.5 extragonadal germ cells and homozygotes had a statistically significant increase to

~5 extragonadal germ cells per embryo (S2 Fig). In the case of lola mutants, heterozygotes had

an average of ~5 extragonadal germ cells per embryo, while homozygotes had a statistically sig-

nificant increase to ~10 extragonadal germ cells (S2 Fig). These results suggest that Rib and

Lola also function to regulate germ cell migration cell autonomously or non-autonomously.
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Lola and Rib function in the SGPs to promote gonad development

The fusion and compaction defects observed in the gonad suggest that these proteins function

in the SGPs during gonad morphogenesis, while germ cell migration defects suggest they may

also be required in the PGCs. Therefore, immunohistochemistry for Rib and Lola proteins was

performed to determine where Rib and Lola are expressed in the developing gonad. Antibody

staining for Lola with an antibody that recognizes all Lola isoforms demonstrates that Lola is

expressed in the SGPs and PGCs and the surrounding mesoderm in stage 13 embryos and and

primarily in the SGPs and surrounding mesodermal cells in 15 embryos (Fig 2A and 2B). As

our genetic analysis suggested Lola isoforms T and K may function in gonad morphogenesis,

we also examined expression of these isoforms using Lola-T and Lola-K GFP fusion proteins.

Lola-T is expressed in the SGPs and to a lesser extent the PGCs of stage 13 embryonic gonads,

while it does not exhibit significant expression in Stage 15 gonads (S3A and S3B Fig). In con-

trast, Lola-K is expressed in the SGPs and PGCs of both stage 13 and stage 15 gonads (S3C and

S3D Fig). These results support our earlier genetic analysis suggesting that both Lola-T and

Lola-K function during gonad morphogenesis.

Antibody staining for Rib revealed expression of Rib in the SGPs and no staining in the

PGCs in stage 13 and 15 embryos (Fig 2C and 2D). Given the similar phenotypes observed in

rib and lola mutants and similar expression patterns in the SGPs of the embryonic gonad, the

colocalization of both of these proteins was examined. Immunohistochemistry analysis reveals

the colocalization of Lola and Rib in SGPs in stage 13 and 15 embryos (Fig 2E and 2F), suggest-

ing that Lola and Rib are both required in the SGPs to promote gonad morphogenesis. Rescue

experiments previously demonstrated that overexpression of Lola in the mesoderm could res-

cue lola mutant gonad phenotypes [38]. Therefore, the ability of Rib overexpression in the

mesoderm to rescue the rib mutant phenotype was tested. Results demonstrate that Rib over-

expression in the mesoderm rescues the rib mutant phenotype (S4 Fig).

Because lola and rib expression is also observed in the surrounding mesoderm, it was neces-

sary to eliminate the possibility that the gonad defects were due to a more generalized defect in

mesoderm development. In order to look at mesoderm development, stage 12 embryos were

immunostained with anti-Fasciclin 3 to examine visceral mesoderm development (Fig 3). Vis-

ceral mesoderm development was indistinguishable from controls for both lola and rib mutant

embryos (Fig 3), demonstrating that mesoderm development was not globally disrupted in rib
and lola mutants. Thus, expression data suggests Rib and Lola function specifically in the SGPs

to promote gonad morphogenesis.

rib and lola genetically interact

With the observations that both rib and lola exhibit similar mutant defects and are both

expressed in the SGPs, we explored the possibility these proteins may cooperate to regulate

gonad morphogenesis through genetic interaction studies. Gonad development was examined

in embryos heterozygous for both rib and lola alleles. Stage 15 embryonic gonads were scored

as wild-type, or as having fusion or compaction defects. The frequency of defects in double

heterozygotes was compared to control embryos, as well as to embryos heterozygous for either

rib or lola (lola46.38/+, rib35.14/+, lola22.05/+, and rib55.25/+) (Fig 4). The percentage of defective

gonads ranged from 8–17% in the controls (Fig 4). In the case of embryos heterozygous for

both rib and lola (lola46.38/+, rib55.25/+ and lola22.05/+, rib35.14/+), the frequency of gonad defects

increased significantly to between 65–85% (Fig 4), demonstrating a synergistic effect and sug-

gesting that rib and lola cooperate to regulate gonad morphogenesis. In addition, heteroallelic

mutants for rib or lola were examined that were also heterozygous for lola or rib, respectively

(lola22.05/+, rib35.14/55.25 and lola46.38/22.05, rib55.25/+). These mutants showed a dramatic increase
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in gonad defects relative to rib and lola mutants alone with more than 85% of the gonads

exhibiting fusion and compaction defects, compared to ~50% in rib and ~40% in lola heteroal-

lelic combinations (Fig 4). These results suggest that Rib and Lola function cooperatively in

the same pathway or in parallel pathways to regulate embryonic gonad development.

Rib and Lola do not regulate expression of each other

The genetic interaction of rib and lola led us to hypothesize that Rib and Lola could function

(1) in a stepwise fashion in a single pathway; (2) in parallel pathways to impinge on a common

set of downstream targets; or (3) as part of a complex to regulate a common set of target genes

to promote gonad morphogenesis. Therefore, we first explored the possibility that Rib and

Lola regulate expression of one another in a stepwise fashion by examining expression of Lola

in rib mutants and expression of Rib in lola mutants. Expression of Lola in rib heterozygotes

versus rib heteroallelic mutants revealed no difference in Lola expression, suggesting that Rib

does not regulate Lola expression levels (Fig 5A and 5B). Similarly, Rib expression was com-

pared in lola heterozygotes and lola heteroallelic mutants, and Rib expression was unchanged

(Fig 5C and 5D). These results suggest that Rib and Lola are not regulating expression of each

other, but rather function in parallel pathways or as a complex to regulate gene expression dur-

ing embryonic gonad development.

Rib and Lola physically interact via their BTB domains

Given the observations that rib and lola show a strong genetic interaction, co-localize in the

SGPs, and both contain a BTB domain, we next tested the possibility that these proteins may

physically interact to regulate embryonic gonad development. Homology modeling and

molecular dynamics simulations were used to predict the potential interaction between Lola

and Rib BTB domains (Fig 6). Interaction energy calculations (Table 1) suggest that Rib and

Lola have the ability to heterodimerize as well as homodimerize.

Therefore, we tested the ability of the Lola and Rib BTB domains to interact physically by

performing a yeast two-hybrid assay. The Rib and Lola BTB domains were each fused to the

yeast GAL4 DNA binding domain (BD) and the GAL4 activation domain (AD). Positive and

negative controls, as well as strains expressing BD-RIB and AD-Lola, AD-Rib and BD-Lola,

AD-Rib and BD-Rib, and AD-Lola and BD-Lola were successfully mated and found to be via-

ble when carrying all fusion protein combinations (Fig 7A and 7A’). The ability of AD and BD

fusion proteins to interact were tested using four reporters under the control of the GAL4

upstream activating sequence: His3, Ade2, LacZ, and the AUR1-C gene, which confers resis-

tance to Aureobasidin A (Fig 7B and 7B’). The positive control (Fig 7B #1) exhibited activation

of all reporters, while the negative control (Fig 7B #2) failed to grow on the selection plates.

Fig 2. Expression of Rib and Lola in the embryonic gonad. (A-A”‘) Expression of Lola in an Oregon-R stage 13 gonad.

(A) Anti-Lola (green). (A’) Anti-Traffic jam (TJ) marks somatic gonadal precursors (SGPs; red). (A”) Anti-Vasa marks

primordial germ cells (PGCs; blue). (A”‘) Merged image with anti-Lola (green), anti-TJ (SGPs; red), and anti-Vasa (PGCs;

blue). (B-B”‘) Expression of Lola in an Oregon-R stage 15 gonad. (B) Anti-Lola (green). (B’) Anti-TJ (SGPs; red). (B”) Anti-

Vasa (PGCs; blue). (B”‘) Merged image with anti-Lola (green), anti-TJ (SGPs; red), and anti-Vasa (PGCs; blue). (C-C”‘)

Expression of Rib in an Oregon-R stage 13 gonad. (C) Anti-Rib (green). (C’) Anti-TJ (SGPs; red). (C”) Anti-Vasa (PGCs;

blue). (C”‘) Merged image with anti-Rib (green), anti-TJ (SGPs; red), anti-Vasa (PGCs; blue). Same scale as (A). (D-D”‘)

Expression of Rib in an Oregon-R stage 15 gonad. Same scale as (B). (D) Anti-Rib (green). (D’) Anti-TJ (SGPs; red). (D”)

Anti-Vasa (PGCs; blue). (D”‘) Merged image with anti-Rib (green), anti-TJ (SGPs; red), anti-Vasa (PGCs; blue). (E-E”‘)

Colocalization of Rib and Lola in an Oregon-R stage 13 gonad. Same scale as (A). (E) Anti-Rib (green). (E’) Anti-Lola

(red). (E”) Anti-TJ (SGPs; blue). (E”‘) Merge of anti-Rib (green) and anti-Lola (red). (F-F”‘) Colocalization of Rib and Lola in

an Oregon-R stage 15 gonad. Same scale as (B). (F) Anti-Rib (green). (F’) Anti-Lola (red). (F”) Anti-TJ (SGPs; blue). (F”‘)

Merge of anti-Rib (green) and anti-Lola (red). Gonads are outlined by dotted lines. Areas of high Rib-Lola colocalization

are indicated by arrows. For all images posterior is to the right. Scale bars: 10μm.

doi:10.1371/journal.pone.0167283.g002
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Lola-BD and Rib-BD fusions were tested with the GAL4-AD alone and failed to activate

reporters (Fig 7B’ #7–8), demonstrating that Rib and Lola BTB domains do not autoactivate

reporters. Additionally, Lola-AD and Rib-AD fusions were also tested in combination with the

GAL4-BD alone and failed to activate reporters (Fig 7B’ #9–10), demonstrating that the Lola

and Rib BTB domains do not bind to the reporters or the GAL4-BD nonspecifically. Mating of

BD-Lola with AD-Rib and BD-Rib with AD-Lola resulted in activation of all reporters (Fig 7B’

#5–6). In addition, we tested the ability of the Rib and Lola BTB domains to form homodimers,

and observed homodimerization of both Rib and Lola BTB domains, with a more robust

Fig 3. Mesoderm develops normally in rib and lola mutants. (A) Oregon-R wild-type (WT) control (n = 10), (B)

lola46.38/22.05 (n = 9), and (C) rib35.14/55.25 (n = 5) stage 12 embryos immunostained for the visceral mesodermal

marker Fasciclin 3. For all images posterior is to the right. Scale bar: 50 μm.

doi:10.1371/journal.pone.0167283.g003
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interaction for Lola than for Rib (Fig 7B #3–4). These results are consistent with molecular

modeling, which predicted stronger interactions for Lola-Lola homodimers than for Rib-Rib

homodimers (Table 1). These results demonstrate that Rib and Lola BTB domains are capable

of homo- and heterodimerization, and suggest that Rib and Lola form a complex to coopera-

tively regulate gene expression during gonad morphogenesis rather than simply functioning in

parallel.

Rib and Lola are transcriptional activators and repressors

While earlier studies suggested that Rib and Lola function as transcriptional repressors, more

recently it has been suggested that Rib and Lola also function in transcriptional activation [19,

36, 42]. In order to further examine the roles of Rib and Lola as transcriptional activators and/

or repressors, we examined the localization of the Rib and Lola protein with marks of tran-

scriptional activation and repression on polytene chromosomes. First, Rib and Lola expression

were examined in combination with immunostaining for H3K27me3, a mark of transcrip-

tional repression. Results demonstrated that Lola colocalized with H3K27me3 on numerous

sites on the chromosome (Fig 8A). As the Rib antibody did not exhibit strong staining on poly-

tene chromosomes, we expressed a 3xHA-tagged Rib in salivary glands using forkhead-Gal4.

We observed colocalization of 3xHA-Rib and H3K27me3 at numerous sites on polytene chro-

mosomes (Fig 8C). While Lola and Rib colocalize with H3K27me3 at a number of loci on poly-

tene chromosomes, the presence of Lola and Rib at other distinct sites suggests that Rib and

Lola may also localize at sites of transcriptional activation. In order to determine if Lola and

Rib may function in transcriptional activation, we examined Rib and Lola colocalization with

Fig 4. rib and lola genetically interact. Graph of phenotypic frequency for stage 15 embryonic gonads. The

following gonad phenotypes were scored: fusion (red), compaction (blue) and wild-type (green). Gonads were

scored by staining somatic gonadal precursor cells for the 68-77-lacZ enhancer trap. A chi-square test was

performed to test the null hypothesis that the phenotype ratios would be the same across all genotypes. Results

allow us to reject the null hypothesis: Χ2
22, 0.05 = 313.31, p<0.001.

doi:10.1371/journal.pone.0167283.g004
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sites of RNA Polymerase II phosphoserine 5 (PolIIser5). Lola and Rib also colocalized with

PolIIser5 at many sites on polytene chromsomes (Fig 8B and 8D). These results suggest that

Fig 5. Lola and Rib do not regulate expression of each other. (A-B”) Lola expression in rib heterozygous and

homozygous mutant stage 15 gonads, posterior to the right. Anti-Lola (green) and anti-Traffic jam (TJ) marks SGPs

(red). (A-A”) rib+/- gonad (rib35.14/+ or rib55.25/+) (n = 16). (B-B”) rib35.14/55.25 gonad (n = 11). (C-D”) Rib expression in

lola heterozygous and homozygous mutant stage 15 gonads, posterior to the right. Anti-Rib (green) and anti-TJ

marks SGPs (red). (C-C”) lola+/- gonad (lola46.38/+ or lola22.05/+) (n = 11). (D-D”) lola46.38/22.05 gonad (n = 11). The

gonad is outlined with a dotted line. Scale bar: 10μm.

doi:10.1371/journal.pone.0167283.g005
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Rib and Lola have dual functions as transcriptional activators and repressors. As our earlier

results suggest that Rib and Lola may coregulate transcription of target genes, we examined

colocalization of 3xHA-Rib and Lola on polytene chromosomes. While Lola and Rib colocalize

at some loci, Lola staining on polytene chromosomes is significantly reduced upon overexpres-

sion of 3xHA-Rib, and there are a number of loci to which only Rib localizes (Fig 8E). These

results suggest that Rib does not require Lola to localize to polytene chromosomes. In addition,

as Lola staining was present at more sites on the polytene chromosomes when endogenous Rib

was not observed, it does not appear that Rib is required to recruit Lola. The reduction of Lola

staining on chromosomes upon overexpression of 3xHA-Rib suggests that the 3xHA tag

may affect the ability of Rib to dimerize or that overexpressed Rib may result in an increased

population of Rib homodimers at the expense of Rib-Lola heterodimers. The continued colo-

calization of Rib and Lola at some sites suggests that Rib and Lola cooperate to regulate tran-

scription of a subset of target genes, while functioning independently of each other to regulate

other targets.

Expression analysis of Rib and Lola transcriptional targets

Previous studies have resulted in the identification of a number of Rib and Lola downstream

targets in other tissues. Expression profiling and genetic analysis has demonstrated that Lola

Fig 6. Protein modeling of Rib and Lola BTB domain interactions predicts heterodimerization and

homodimerization. (A) Lola (red)-Rib (blue) BTB domain heterodimer. (B) Lola-Lola BTB domain

homodimer. (C) Rib-Rib BTB domain homodimer.

doi:10.1371/journal.pone.0167283.g006

Fig 7. Rib and Lola physically interact via their BTB domains by yeast two-hybrid analysis. (A-A’) Growth on SD-Leu-Trp plates

illustrates successful yeast mating. (B-B’) SD-Leu-Trp-His-Ade plates with X-α-gal and Aureobasidin A were used to test for interaction of

activation domain (AD) and DNA binding domain (BD) fusion proteins.

doi:10.1371/journal.pone.0167283.g007
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promotes expression of Slit and Robo in the developing central nervous system and inhibits

expression of the cytoskeletal regulator Spire (Spir). Both Slit and Robo have been demon-

strated to function in gonad morphogenesis; however, only Robo has been localized to the

gonad by immunostaining [37]. Therefore, we examined expression of Robo and Spir in lola
null homozygotes, and compared expression to lola heterozygotes. Immunostaining for Robo

revealed that mutation of lola does not alter Robo expression in the gonad (S5A and S5B Fig).

These results are consistent with previous observations that Lola does not regulate Robo

expression in the gonad [38]. Next we examined expression of Spir in the gonad. Antibody

staining reveals little enrichment of Spir in the developing gonad, and its expression does not

appear to be altered in Lola homozygotes, as compared to heterozygous controls (S5C and

S5D Fig). These results suggest that Lola regulates different targets in a tissue-specific manner.

In the case of Rib, chromatin immunoprecipitation and gene expression analysis have

resulted in the identification of more than a dozen Rib transcriptional targets in the salivary

gland, including crb, which encodes an apical membrane protein involved in epithelial polar-

ity. In addition, Moesin (Moe), the sole Ezrin-Radixin-Moesin protein in Drosophila, was also

found to exhibit increased phosphorylation upon rib mutation. Therefore, expression of crb
and activation phospho-Moesin (pMoe) were examined in rib mutant embryos. Analysis of

crb expression in the gonad reveals that crb is not highly expressed in the developing gonad,

and its expression levels do not change in rib homozygotes relative to heterozygous controls

(S6A and S6B Fig). While pMoe is present in the gonad at the PGC membrane, it does not

appear in the SGPs and its expression also remains unchanged upon rib mutation (S6C and

S6D Fig). These results suggest that Rib functions through different downstream targets in the

gonad as compared to the salivary gland.

Discussion

In this study we demonstrated the requirement for two BTB family transcription factors, Rib

and Lola, for embryonic gonad morphogenesis. Both rib and lola are expressed in the SGPs of

the gonad, and rib and lola mutants exhibit defects in SGP cluster fusion and gonad compac-

tion. Genetic analysis revealed that these genes interact with each other in the context of gonad

development, while molecular modeling and yeast two-hybrid studies demonstrate the ability

of these proteins to interact physically via their BTB domains. We show that Rib and Lola colo-

calize with marks of transcriptional activation and repression, suggesting that these proteins

act as dual-function transcriptional regulators to promote tissue morphogenesis. Finally, we

find that Rib and Lola do not regulate the same downstream targets in the gonad as those pre-

viously identified in other developmental contexts.

Rib and Lola were identified in screens for mutations that affect embryonic gonad morpho-

genesis [37, 38]. The defects in SGP cluster fusion and gonad compaction that we and others

Fig 8. Colocalization of Rib and Lola with marks of transcriptional activation and repression. Immunofluorescence

staining of polytene chromosomes of third instar larval salivary gland. (A-A”‘) Oregon-R polytene chromosomes stained with

anti-Lola (green) and anti-H3K27me3 (red), with the merge showing areas of colocalization. (A”‘) Zoomed images of (A-A”).

(B-B”‘) Oregon-R polytene chromosomes stained with anti-Lola (green) and anti-PolIIser5 (red), with the merge showing

areas of colocalization. (B”‘) Zoomed images of (B-B”). (C-C”‘) forkhead-Gal4; UAS-3xHA-Rib polytene chromosomes

stained with anti-HA (Rib; green) and anti-H3K27me3 (red), with the merge showing areas of colocalization. (C”‘) Zoomed

images of (C-C”). (D-D”‘) forkhead-Gal4; UAS-3xHA-Rib polytene chromosomes stained with anti-HA (Rib; green) and anti-

PolIIser5 (red), with the merge showing areas of colocalization. (D”‘) Zoomed images of (D-D”). (E-E”‘) forkhead-Gal4; UAS-

3xHA-Rib polytene chromosomes stained with anti-Lola (green) and anti-HA (Rib; red), with the merge showing areas of

colocalization. (E”‘) Zoomed images of (E-E”). Arrowheads indicate region with Rib lacking Lola. Scale bars in unzoomed

images: 10μm. Scale bars in zoomed images: 2μm. Arrows indicate colocalization. For each experiment a minimum of 10

polytene chromosomes were examined.

doi:10.1371/journal.pone.0167283.g008
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have observed, as well as previous work demonstrating SGP cluster fusion and compaction do

not require PGCs, suggest that Rib and Lola function specifically in the SGPs to regulate gonad

development [1, 37, 38, 64]. Consistent with the mutant phenotypes, both proteins are strongly

expressed in the SGPs; however, they are also expressed strongly in the surrounding mesoderm

and in the case of Lola, weakly in the PGCs (Fig 2). The proper specification of other mesoder-

mally derived tissues, like the visceral mesoderm (Fig 4), suggests that the gonad defects

observed in rib and lola mutants are due to a specific requirement for these proteins in the

SGPs. Supporting this hypothesis, previous work demonstrated that overexpression of lola in

the mesoderm can rescue the lola mutant phenotype [38], and we find that overexpression of

Rib in the mesoderm can rescue the rib mutant phenotype (S4 Fig). Interestingly, extragonadal

PGCs were also observed in many rib and lola mutant embryos (S2 Fig), suggesting that Rib

and Lola may regulate the migration of PGCs and/or their ability to interact with SGPs cell

autonomously or non-autonomously. As Rib expression is not observed in PGCs (Fig 2C and

2D), and Lola rescue experiments indicated that Lola mesodermal expression is sufficient to

rescue the lola mutant phenotype [38], we favor the hypothesis that regulation of PGC migra-

tion by Rib and Lola must be cell non-autonomous.

Identification of the downstream targets through which Rib and Lola function to regulate

cell-cell interactions is critical for understanding how these proteins regulate tissue morpho-

genesis. Both Rib and Lola contain DNA binding domains, with Rib containing a PSQ motif,

and many Lola isoforms containing at least one zinc finger domain. Earlier studies predicted

Lola and Rib to function as transcriptional regulators [15, 16, 28], which has subsequently

been confirmed [19, 36]. In the case of Lola, numerous putative targets of Lola have been iden-

tified in the central nervous system, including the cytoskeletal regulator Spir, as well as mem-

bers of the Slit/Robo signaling pathway [33, 43]. Consistent with a previous study, we observe

that robo expression does not appear to be regulated by Lola in the gonad [37, 38] (S5A and

S5B Fig). In addition, our results also demonstrate that Lola does not regulate spir expression

to promote gonad morphogenesis (S5C and S5D Fig). These results suggest that Lola is likely

to regulate different target genes in different tissues. In the case of the only confirmed direct

transcriptional target of Lola, the copia retrotransposon, Lola appears to repress copia expres-

sion in the central nervous system, while activating its expression copia in the gonad [19]. These

results suggesting that a single Lola isoform may have dual functions or that different Lola iso-

forms regulate copia expression in different tissues. The ability of Lola isoforms to function as

transcriptional activators and repressors is supported by the localization of Lola with both active

and repressive marks of transcription on polytene chromosomes (Fig 8A and 8B).

The existence of at least 20 different Lola protein isoforms, 17 of which contain one or two

zinc fingers that lack sequence conservation and exhibit different binding specificities, suggests

that the different Lola isoforms regulate distinct cohorts of genes and may function in a tissue-

specific manner [22, 27–30]. Consistent with this prediction, we and others have found that dif-

ferent isoforms are expressed and function in different tissues [22, 28, 38]. In the embryo we

find that Lola-T, which is specifically mutated by the lola46.38 allele, is required for gonad mor-

phogenesis, consistent with a previous study (Fig 1) [38]. However, we also observe defects in

gonad morphogenesis with a Lola-K isoform-specific mutant allele, lolaORC4 (Fig 1). Compari-

son of the T and K isoforms reveals significant sequence similarity in their zinc finger regions

[28], as well as similarity in their predicted DNA consensus binding sequences [30], suggesting

that these isoforms may regulate transcription of a common set of target genes. Expression anal-

ysis of Lola-K and Lola-T GFP fusion proteins in the gonad revealed that Lola-T is expressed in

SGPs in stage 13 gonads, while Lola-K-GFP was strongly expressed in the SGPs and PGCs of

both stage 13 and 15 gonads (S3 Fig). These results suggest that both Lola-T and Lola-K func-

tion in the SGPs to regulate gonad morphogenesis. Expression of Lola-K in PGCs suggests that
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this isoform may be specifically required in the PGCs. Interestingly, it was previously reported

that overexpression of lola-T rescues the lola mutant gonad phenotype in mutants predicted to

lack all Lola isoforms [38]. This data suggests that different isoforms may be able to compensate

for each other if they share DNA binding similarities, as is the case for Lola-K and Lola-T. It is

also feasible that different Lola isoforms dimerize to cooperatively regulate gonad development,

which is supported by our molecular modeling and yeast-two hybrid analysis demonstrating

the ability of Drosophila BTB domains to homodimerize (Figs 6 and 7) [31, 32].

The transcriptional activity of Lola could also depend on its interaction with other BTB

and/or non-BTB domain-containing proteins, including Rib. Drosophila BTB domain-con-

taining proteins have been demonstrated to interact with each other in yeast-two hybrid analy-

sis [18]. In addition, BTB containing proteins, including Pipsqueak, Trithorax-like, Batman

and Bric-à-brac, function together to limit ovariole number in the Drosophila ovary [65]. In

the context of the salivary gland and the trachea, Rib interacts with another BTB family

protein, Lolal, to regulate development [42]. Molecular modeling of Lola-Rib BTB domain

interactions (Fig 6), suggested that Lola and Rib BTB domains are capable of forming heterodi-

mers, as well as homodimers. This hypothesis was supported by genetic interaction analysis of

rib and lola mutants and the physical interaction of their BTB domains (Figs 4 and 7). Coloca-

lization of Rib and Lola on polytene chromosomes reveals that Rib and Lola colocalize at

some, but not all sites on the chromosomes (Fig 8E). This data combined with molecular

modeling results suggests that Rib and Lola homodimers and heterodimers are likely to regu-

late transcription of different cohorts of genes to promote gonad morphogenesis.

Our understanding of how Rib functions to regulate tissue morphogenesis comes from

work examining its role in salivary gland and tracheal development. Previous studies revealed

that rib mutants exhibit defects in tube elongation that arise from decreased apical membrane

length and increased apical stiffness [15, 16, 41]. Consistent with these phenotypes, rib mutants

exhibit changes in apically-localized proteins, including decreased expression of crb, increased

levels of active of Moe, and decreased levels of the recycling endosomal protein Rab11 [42].

Further examination of the basis of the rib mutant phenotype showed that these defects arise

from a failure of rib mutants to execute the cell shape and volume changes needed for salivary

gland morphogenesis [36]. Recent Rib ChIP-seq analysis and expression profiling of rib
mutants resulted in the identification of 20 potential targets for transcriptional activation and

40 potential targets for transcriptional repression in the salivary gland [36], including genes

involved in cell migration, cell adhesion, and regulation of the cytoskeleton [36]. Similar to the

salivary gland and trachea, gonad morphogenesis depends on changes in SGP cell shape [64],

suggesting that Rib may function through some of the same downstream targets to promote

proper gonad formation. We have examined the ability of Rib to regulate expression of crb and

phosphorylation of Moe. In the case of Crb, low levels of Crb protein are observed in the gonad,

unlike the strong membrane expression observed in the salivary gland (S6A Fig), which is not

surprising giving that neither SGPs or PGCs have been observed to exhibit polarity. This expres-

sion is unchanged in rib homozygotes, demonstrating that crb does not appear to be a target of

Rib in the gonad (S6A and S6B Fig). While pMoe is strongly enriched at the PGC membrane,

levels of pMoe remain unchanged in rib homozygotes (Fig 6C and 6D). Therefore, it appears

that Rib regulates different downstream targets in a tissue-specific manner. This activity may

depend on its interaction partners, as Rib interacts with different binding partners in different

tissues, namely Lolal in the salivary gland and trachea and with Lola in the gonad [42].

In addition to identifying the downstream targets of Rib and Lola in the developing gonad,

it is also critical to characterize the molecular mechanisms regulating Rib and Lola expression

and activity. Rib has been suggested to function downstream of the Mitogen Activated Protein

Kinase (MAPK) signaling pathway based on the similarity of mutant phenotypes of rib and
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members of the Fibroblast Growth Factor-MAPK signaling pathway, as well as the presence of

seven MAPK consensus phosphorylation sites in Rib [16]. In contrast, the mechanisms regu-

lating Lola’s functions are unknown. Identification of signaling pathways with which rib and

lola genetically interact would provide insight into the mechanisms regulating expression and

function of these proteins and allow us to better understand how they are functioning within a

network to regulate tissue development.

Although there are no human orthologs of lola and rib, there are similar proteins to Lola in

vertebrates, which include Zfp131, Miz-1, and Leukemia-Related Factor (LRF) [66]. Zfp131

exhibits the most similar expression pattern to Lola, as it is expressed in the testes, adult brain

and the developing nervous system [66, 67]. In contrast, Rib does not have any similar verte-

brate proteins, as the BTB domain has not been observed in combination with the PSQ motif

in vertebrates. However, other BTB family proteins may functionally substitute for Rib in the

context of vertebrate gonad development. The characterization of the roles of Rib and Lola in

embryonic gonad development, their genetic and physical interaction, and their colocalization

with regions of active and inactive transcription on polytenes chromosomes suggests that

cooperative regulation of gene expression by BTB family proteins may be used in a variety of

developmental and disease contexts. The implication of Drosophila and mammalian BTB pro-

teins in lymphocyte, skeletal, gonad and neurological development, as well as in cancer, illus-

trates the importance of understanding the mechanisms by which these proteins cooperate to

regulate gene expression [21]. Identification of the direct downstream transcriptional targets

of these genes and the molecular pathways in which they function is critical for understanding

how these genes regulate development and contribute to disease.

Supporting Information

S1 Fig. lola and rib mutants exhibit defects in gonad morphogenesis. (A-A”‘) Control stage

15 embryo expressing the 68-77-lacZ enhancer trap. SGPs are labeled by anti-β-galactosidase

(βgal; green); anti-Neurotactin (Nrt) labels the cell surface of somatic cells (red); and anti-Vasa

labels the primordial germ cells (PGCs; blue). Arrows indicate SGP extensions ensheathing the

PGCs. Scale bar: 10μm. (B-B”‘) lola46.38/22.05 stage 15 embryonic gonad exhibiting compaction

defect. Cells are labeled with anti-βgal (SGPs; green), anti-Nrt (red), and anti-Vasa (PGCs;

blue). Arrows indicate SGP extensions ensheathing the PGCs. (C-C”‘) rib35.14/55.25 stage 15

embryonic gonad exhibiting fusion defect. Cells are labeled with anti-βgal (SGPs; green), anti-

Nrt (red), and anti-Vasa (PGCs; blue). Arrows indicate SGP extensions ensheathing the PGCs.

All images are to the same scale and are a Z-projection from a stack of confocal images.

(TIF)

S2 Fig. Mutation of rib and lola results in extragonadal germ cells. Stage 14 and 15 embryos

were scored for the number of germ cells that fail to coalesce with SGPs during gonad morpho-

genesis. Embryos were immunostained with anti-Vasa to label the primordial germ cells and

anti-GFP for genotyping. Representative embryos from the following genotypes are shown:

(A) Control (68-77-lacZ), (B) rib+/- (rib55.25/+ or rib35.14/+), (C) rib-/- (rib55.25/35.14), (D) lola+/-

(lola46.38/+ or lola22.05/+), and (E) lola-/- (lola46.38/22.05). (F) Quantification of the average number

of extragonadal germ cells in the genotypes described above. A two-tailed, unpaired student t-

test was performed to test the significance and results are noted as follows: � = p<0.01; �� =

p0.001.

(TIF)

S3 Fig. Expression of Lola isoforms in the embryonic gonad. (A-A”) Expression of Lola-T in

a stage 13 gonad. Image is representative of 6/6 gonads. (A) Lola-T (anti-GFP; green). (A’)
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Anti-Eyes absent (Eya) marks somatic gonadal precursors (SGPs; red). (A”) Merged image

with anti-Lola (anti-GFP; green), anti-Eya (SGPs; red), and anti-Vasa (PGCs; blue). (B-B”)

Expression of Lola-T in a stage 15 gonad. Image is representative of 11/11 gonads. (B) Lola-T

(anti-GFP; green). (B’) Anti-Eya (SGPs; red). (B”) Merged image with anti-Lola (anti-GFP;

green), anti-Eya (SGPs; red), and anti-Vasa (PGCs; blue). (C-C”) Expression of Lola-K in a

stage 13 gonad. (C) Lola-K (anti-GFP; green). Image is representative of 13/13 gonads. (C’)

Anti- Eya (SGPs; red). (C”) Merged image with anti-Lola (anti-GFP; green), anti-Eya (SGPs;

red), and anti-Vasa (PGCs; blue). (D-D”) Expression of Lola-T in a stage 15 gonad. (D) Lola-T

(anti-GFP; green). (D’) Anti-Eyes absent (EYA) marks somatic gonadal precursors (SGPs;

red). Image is representative of 9/9 gonads. (D”) Merged image with anti-Lola (anti-GFP;

green), anti-EYA (SGPs; red), and anti-Vasa (PGCs; blue). The gonad is outlined with a dotted

line.

(TIF)

S4 Fig. Overexpression of rib in the mesoderm rescues the rib mutant phenotype. Graph of

phenotypic frequency for stage 15 embryonic gonads. The following gonad phenotypes were

scored: fusion (red), compaction (blue) and wild-type (green). Gonads were scored by staining

somatic gonadal precursor cells for the 68-77-lacZ enhancer trap. A Chi-square test was per-

formed to test the null hypothesis that the phenotype ratios will be the same for all genotypes.

Results allow us to reject the null hypothesis: Χ2
4, 0.05 = 29.836, p<0.001.

(TIF)

S5 Fig. Lola does not regulate Robo or Spir in the gonad. (A-B”‘) Roundabout (Robo)

expression in lola heterozygous and homozygous mutant stage 15 gonads, posterior to the

right. Anti-Traffic Jam (TJ) marks the SGPs (green); anti-Robo (red) and anti-Vasa marks the

PGCs (blue). (A-A”‘) lolaORE76/+ gonad. Nine stage 15/16 gonads were examined and a repre-

sentative result is shown. (B-B”‘) lolaORE76/ORE76 gonad. Ten stage 15/16 gonads were examined

and a representative result is shown. (C-D”‘) Spire (Spir) expression in lola heterozygous and

homozygous mutant stage 15 gonads, posterior to the right. Anti-TJ (SGPs; green); anti-Spir

(red), and anti-Vasa (PGCs; blue). (C-C”‘) lolaORE76/+ gonad. Seventeen stage 14/15 gonads

were examined and a representative result is shown. (D-D”‘) lolaORE76/ ORE76 gonad. Eighteen

stage 14/15 gonads were examined and a representative result is shown. Settings on the confo-

cal microscope were held constant for detection of Robo and Spir in all images. All images are

to the same scale. Scale bar: 10μm.

(TIF)

S6 Fig. Rib does not regulate Crb expression or Moe activation in the gonad. (A-B”‘)

Crumbs (Crb) expression in rib heterozygous and homozygous mutant stage 15 gonads, poste-

rior to the right. Anti-β-galactosidase (βgal) marks the SGPs due to the presence of the 68-
77-lacZ enhancer trap (green); anti-Crb (red) and anti-Vasa marks the PGCs (blue). (A-A”‘)

rib+/- gonad (rib35.14/+ or rib55.25/+). Twenty-one stage 14/15 gonads were examined and a rep-

resentative result is shown. (B-B”) rib35.14/55.25 gonad. Thirty-one stage 14/15 gonads were

examined and a representative result is shown. (C-D”‘) Phospho-Moesin (pMoe) levels in rib
heterozygous and homozygous mutant stage 15 gonads, posterior to the right. Anti-Traffic

Jam (TJ) marks the SGPs (green); anti-pMoe (red) and anti-Vasa (PGCs; blue). (C-C”‘) rib+/-

gonad (rib35.14/+ or rib55.25/+). Eight stage 14/15 gonads were examined and a representative

result is shown. (C-C”‘) rib35.14/55.25 gonad. Thirteen stage 14/15 gonads were examined and a

representative result is shown. Settings on the confocal microscope were held constant for

detection of Crb and pMoe in all images. All images are to the same scale. Scale bar: 10μm.

(TIF)
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