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ABSTRACT

Mechanisms for transcription factor recognition of
specific DNA base sequences are well characterized
and recent studies demonstrate that the shape of
these cognate binding sites is also important. Here,
we uncover a new mechanism where the transcrip-
tion factor GabR simultaneously recognizes two cog-
nate binding sites and the shape of a 29 bp DNA se-
quence that bridges these sites. Small-angle X-ray
scattering and multi-angle laser light scattering are
consistent with a model where the DNA undergoes a
conformational change to bend around GabR dur-
ing binding. In silico predictions suggest that the
bridging DNA sequence is likely to be bendable in
one direction and kinetic analysis of mutant DNA se-
quences with biolayer interferometry, allowed the in-
dependent quantification of the relative contribution
of DNA base and shape recognition in the GabR–
DNA interaction. These indicate that the two cognate
binding sites as well as the bendability of the DNA se-
quence in between these sites are required to form a
stable complex. The mechanism of GabR–DNA inter-
action provides an example where the correct shape
of DNA, at a clearly distinct location from the cognate
binding site, is required for transcription factor bind-
ing and has implications for bioinformatics searches
for novel binding sites.

INTRODUCTION

Transcription factor recognition of specific DNA binding
sites is fundamentally important for mediating gene ex-
pression and repression in different cellular contexts. These
proteins recognize target nucleotide sequences via hydro-
gen bonds and hydrophobic contacts between amino acid
side chains and DNA bases. The structural details of this
‘base readout’ mechanism have been well established for
multiple DNA binding motifs including the zinc-finger (1),
helix-turn-helix (HTH) (2), leucine zipper (3) and transcrip-
tion activator-like effector (TALE) domains (4,5). However,
transcription factor site selection involves additional levels
of complexity. For example, transcription factors can dis-
tinguish between several similar binding sequences within
the same cell in a context-dependent manner (6). To achieve
this specificity, transcription factors also recognize the lo-
cal three-dimensional (3D) shape of the DNA at the protein
binding site (7) including sequence-dependent narrowing of
the DNA minor groove (8). These ‘shape readout’ mecha-
nisms can operate independently of base readout (9) and are
well described in eukaryotic (8) and prokaryotic organisms
(10,11)

The transcription factor GabR from Bacillus subtilis is a
member of the GntR family of metabolite-responsive regu-
lators that have evolved by fusion of an N-terminal HTH
DNA-binding domain with a C-terminal domain that is
homologous to type I aminotransferases and associated
with a pyridoxal phosphate (PLP) cofactor (12). GabR
regulates the expression of enzymes in the gabTD operon
that are directly involved in glutamate production from � -
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aminobutyric acid (GABA), a nitrogen source in many bac-
teria. GabR binds to DNA with high affinity (Kd = ∼1
nM), via two direct repeat sequences (ATACCA) within a
47 bp region that overlaps with the promoter regions of the
gabTD operon and its own divergently expressed gabR gene
(Figure 1A) (13,14). Binding of GABA to the aminotrans-
ferase domain switches the regulator from being a repres-
sor to an activator of the gabTD operon (14). The crystal
structure of GabR revealed a head-to-tail domain swapped
dimer: the C-terminal aminotransferase-like domains form
the dimeric core of the structure, and are connected via a
long linking peptide to the N-terminal winged helix-turn
helix (wHTH) domains whereby each wHTH domain binds
to the aminotransferase domain of its dimeric partner (12).
The binding of GabR to DNA is thought to occur via an
interaction between the wHTH domain and the repeated
ATACCA sequence. How two wHTH domains, which are
located on opposing ends of the GabR dimer can simulta-
neously contact both ATACCA sequences in the promoter
region is an unresolved question. Two binding models have
been proposed on the basis of the crystal structure (12): in
the first, two GabR dimers bind at the promoter, whereby
only one wHTH domain of each dimer contacts one of the
two ATACCA repeats. In the second model a single GabR
dimer binds to its recognition site, but at least one wHTH
domain dissociates from the aminotransferase core allow-
ing one dimer to simultaneously occupy both repeated AT-
ACCA binding sites (Supplementary Figure S1).

Here we probe the shape of GabR and its complex with
DNA in solution with small-angle X-ray scattering (SAXS)
to investigate the DNA binding mechanism. These data sug-
gest that the DNA bends and wraps around a positive elec-
trostatic ridge on the dimeric core of GabR. This allows
both wHTH domains to interact with their cognate DNA
binding sites simultaneously without requiring a conforma-
tional rearrangement of the protein. Analysis of the DNA
sequence of the 29 bp bridging sequence that separates the
two repeat cognate binding sites, revealed a propensity of
the DNA to bend in the direction required for complex for-
mation. The physical separation between base pairs dictat-
ing DNA shape from the cognate DNA binding sites al-
lowed us to independently probe the importance of base and
shape recognition for the GabR–DNA interaction. DNA
mutations in the cognate binding site as well as those de-
signed to disrupt the intrinsic curvature of the bridging se-
quence reduce or abrogate the affinity between GabR and
DNA. GabR therefore provides an example of a mechanism
where both DNA base sequence and shape recognition are
required for the protein–DNA interaction to occur. More-
over, our data reinforce the importance of considering shape
information for predicting DNA–protein interactions and
suggest that sequences in between or surrounding putative
cognate binding sites may also play an important role in
DNA site-specific recognition.

MATERIALS AND METHODS

Protein expression and purification

GabR with C-terminal His6-tag was expressed using a
pETite vector in Escherichia coli strain BL21 (DE3) Hi-
Control cells (Lucigen). Transformed cells were grown in

1 L LB medium containing kanamycin (50 �g = /ml) at
37◦C in a shaking incubator (250 rpm) until the cell den-
sity reached OD600 = 0.5–0.6. The temperature was then
reduced to 25◦C and protein expression induced with 0.5
mM isopropyl-�-D-thiogalactopyranoside. Cells were har-
vested by centrifugation and resuspended in 10–15 ml of
wash buffer pH 7.5 consisting of 2× phosphate buffered
saline (PBS), 5 mM imidazole, 5% glycerol and Complete
protease inhibitor EDTA-free cocktail (Roche). The cells
were lysed by sonication and the cell debris was removed
by centrifugation. The His6-tagged GabR protein was puri-
fied using immobilized metal affinity chromatography on a
5 ml Ni-NTA column (GE Healthcare). Peak fractions were
pooled and concentrated using a centrifugal filtration de-
vice (Millipore) and the protein was further purified by gel
filtration using a Superdex 200 Tricorn 10/300GL column
equilibrated in 2× PBS, 375 mM imidazole, 5% glycerol, 0.1
mM PLP.

DNA duplex formation

Complementary DNA oligonucleotides (Sigma) (100 �M
in 10 mM Tris pH 7.5, 100 mM NaCl) were mixed at
equimolar concentration and hybridized by heating to 95◦C
followed by cooling to 25◦C.

Analytical size exclusion chromatography (SEC) and multi-
angle laser light scattering (MALLS)

Analytical size exclusion chromatography (SEC)-MALLS
was performed with a Superdex 200 Tricorn 10/300GL
column (GE Healthcare). For SEC-MALLS experiments,
the column was connected upstream of the flow cell of a
multi angle laser light scattering instrument (Viscotek SEC-
MALS, Malvern, UK). The system was equilibrated in 2×
PBS, 375 mM imidazole, 5% glycerol, 0.1 mM PLP, before
injection of 50 �l of sample containing GabR, DNA or mix-
tures of GabR and DNA (1:1, 2:1 or 4:1 molar ratio) incu-
bated at room temperature for 10–15 min before injection
onto the SEC column.

Small-angle X-ray scattering experiments

X-ray scattering data were collected immediately after elu-
tion from an SEC column at the Australian Synchrotron.
GabR, DNA or GabR + DNA samples at 10 mg/ml were
injected into a 23 ml sephacryl S-200 SEC column (GE
Healthcare) at a flow rate of 0.5 ml min−1. The outflow
was piped directly into a temperature controlled 1.5 mm
quartz capillary at 20◦C through which monochromatic X-
rays were passed at a flux of 4 × 1012 photons per second.
SAXS data was collected with exposure times of five sec-
onds on a Pilatus 1M photon counting detector (Dectris,
Baden Switzerland), which was set at a distance of 1.48 m
from the sample capillary.

Data reduction was performed using a beamline spe-
cific software package known as scatterbrain (Australian
Synchrotron, Clayton Australia, https://www.synchrotron.
org.au/aussyncbeamlines/saxswaxs/software-saxswaxs).
Software for data processing were from the ATSAS suite
of programs for SAXS data processing (22) including

https://www.synchrotron.org.au/aussyncbeamlines/saxswaxs/software-saxswaxs
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Figure 1. The DNA recognition sequence that binds to GabR. (A) Genetic map of the gabRTD region (top) and sequence of the regulatory/promoter
regions between the divergently transcribed gabR gene and gabTD operon (bottom). The transcription start sites (arrows) and −10 and −35 promoter
regions (black lines) of the gabR and gabT genes are indicated. (B) 3D model of the DNA sequence shown in A generated using the ‘consensus’ scale for an
anisotropic bendability model in an online DNA curvature analysis tool (www.lfd.uci.edu/∼gohlke/dnacurve/). The direct repeat sequences (purple) and
regions of high (cyan) and low (orange) bendability are highlighted.

DATOP, PRIMUS, DATAVER, DAMMIN, DAMAVER,
DATPOROD and CRYSOL. Custom software was written
to generate plots of average intensity of binned wavelength-
independent scattering angles (Q) across all q-ranges. This
was used to visualize the elution profile from SEC and select
appropriate frames (20–50 frames) containing buffer only
to subtract from scattering data. Averaged buffer scattering
profiles were then subtracted from each acquisition frame
using the program DATOP. The radius of gyration was
then calculated using AUTORG for each buffer-subtracted
frame and plotted over the average scattering at low q,
which allowed the identification of frames consisting of
monodispersed protein (Supplementary Figure S2). Sub-
tracted data from monodispersed protein was then scaled
and averaged Initial Gunier plots and probability atom
distance distribution functions (P(r)) were plotted using
the program PRIMUS. These data were used to generate
P(r) plots, which were subsequently used to generate ab
initio shape restorations using the program DAMMIN
and. To allow a direct comparison all P(r) plots were scaled
to have an area under the curve of 1. At least 20 ab initio
dummy-atom shape restorations were performed for each
dataset, which were aligned with the software DAMMIN.

Sequence analysis and modeling of DNA

Bendability profiles for wild-type and mutant sequences
were calculated using the sequence-dependent anisotropic
bendability model with the consensus scale (26). 3D struc-
tural models were generated using the DNA curvature anal-
ysis tool DNAcurve (C. Gohlke, http://www.lfd.uci.edu/∼
gohlke/dnacurve/).

Biolayer interferometry

The kinetics of GabR association and dissociation with
DNA was monitored using biolayer interferometry (BLItz,
fortèBIO Inc.). Super streptavidin biosensors (fortèBIO
Inc.) were hydrated in 2× PBS, 375 mM imidazole, 5% glyc-
erol, 0.1 mM PLP containing 1% BSA at 25◦C for at least 15
min. After recording an initial baseline, the sensors were im-
mersed in a solution of biotinylated DNA duplexes (60 nM

in 2× PBS, 375 mM imidazole, 5% glycerol, 0.1 mM PLP)
formed from oligonucleotides (Integrated DNA Technolo-
gies, see Supplementary Figure S8 for sequences) for 120 s.
Sensors were then washed before monitoring protein associ-
ation (1.1 nM–10 �M GabR) followed by dissociation. The
on-rate constant was determined from local fits of a Lang-
muir model to the association phase of biolayer interferom-
etry traces measured at a range of GabR concentrations.
The off-rate was determined from local fits of a single ex-
ponential decay with a y-offset to the dissociation phase of
biolayer interferometry traces measured at a range of GabR
concentrations.

Structural modeling

Bent DNA models were generated using the webserver 3D
DART (15) (http://haddock.science.uu.nl/dna/dna.php).
Periodicities were specified at 10.5 bp per turn and DNA
was bent ‘globally’ over the DNA bases that bridge the AT-
ACCA repeat sequence. This resulted in an even curvature
across this bridging sequence. To compare different DNA
models, these were structurally superimposed using the
program Coot (16). Electrostatic potentials were calculated
using PDB2PQR (17) and the Adaptive Poisson Boltzmann
Solver software package (18). All structures and surfaces
were rendered using The PyMOL Molecular Graphics
System, (Schrödinger, LLC).

RESULTS

GabR binds to DNA as a dimer

To distinguish between the two proposed GabR–DNA
binding models (Supplementary Figure S1), we determined
the stoichiometry of the GabR–DNA complex with SEC
(Figure 2) and multi-angle laser light scattering (MALLS)
(Supplementary Figure S2) to distinguish between different
models for transcriptional regulation. The molecular weight
of PLP-bound GabR determined by SEC-MALLS (109.9
± 0.7 kDa) was consistent with sedimentation velocity ex-
periments (12) and confirmed that GabR is a dimer in so-
lution. Incubation of GabR with a 53 bp DNA fragment

http://www.lfd.uci.edu/~gohlke/dnacurve/
http://www.lfd.uci.edu/~gohlke/dnacurve/
http://haddock.science.uu.nl/dna/dna.php
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Figure 2. One GabR dimer binds to DNA to form the activating and re-
pressing complex. Size exclusion chromatography elution profiles moni-
tored by absorbance at 280 nm of GabR, DNA and of samples containing
GabR + DNA pre-incubated at molar ratios of 1:1, 2:1 and 4:1. (A) and
(B) show the elution profiles in the absence and presence of the cofactor
GABA, respectively.

(MW 31.1 ± 1.5 kDa) encompassing the GabR binding se-
quence (Figure 1) in increasing molar ratios of GabR:DNA,
demonstrates that a 2:1 molar ratio was required to com-
pletely shift all DNA into a GabR–DNA complex that had
lower retention volume than either DNA or GabR alone.
Higher molar ratios of GabR:DNA had no additive effect
(Figure 2A). The molecular weight of the complex deter-
mined by MALLS (137.6 ± 3.3 kDa) was consistent with
a 2:1 binding stoichiometry of GabR to DNA. SEC ex-
periments were also conducted in the presence of GABA,
which induces a change in the complex leading to tran-
scriptional activation (14). Binding of GABA had no ef-
fect on the stoichiometry of the DNA–GabR complex (Fig-
ure 2B). Taken together, these MALLS and SEC data show
that one PLP-bound GabR dimer interacts with one DNA
binding fragment containing two wHTH binding sequences
and that this stoichiometry was unchanged in the presence
of GABA. These observations are consistent with recent
isothermal calorimetry measurements (19) and exclude the
model for transcriptional regulation that involves the bind-
ing of a two dimers (12).

The shape of the GabR dimer in solution is consistent with
the crystal structure

Mutations in DNA bases within either of the two direct re-
peat sequences substantially reduced the binding affinity be-
tween GabR and DNA in vitro (13). This observation to-
gether with the 2:1 stoichiometry of the complex described
above, point to a mode of binding where each wHTH do-
mains on the GabR dimer binds to a different ATACCA
sequence on a single 53 bp DNA strand. However, in the
dimeric GabR crystal structure the wHTH domains are not
located in a position that would allow their simultaneous in-

Figure 3. Comparison between the small-angle X-ray scattering data and
the crystal structure of GabR. (A) Buffer subtracted X-ray scattering data
from the GabR protein is shown as white triangles with errors depicted as
twice the standard error of the mean. The theoretical scattering calculated
from the dimeric GabR crystal structure (PDBID:4NOB) is shown as a
blue line. (B) Plot of the interatomic distance distributions calculated from
scattering profiles in (A). (C) Average shape (purple) and aligned shapes
(white) from 20 independent ab initio shape restorations. The crystal struc-
ture of the GabR dimer depicted in cartoon representation is docked into
the average shape restoration. The dimeric core is colored in purple and
the DNA binding HTH domains are highlighted in yellow.

teraction with a linear strand of DNA. Given that there is a
long unstructured linking peptide and a small interface be-
tween the dimeric core of the structure and the wHTH do-
mains (∼400 Å2), it has been postulated that the wHTH do-
mains may readily dissociate from the dimeric core to facili-
tate simultaneous binding of both wHTH domains to DNA
(12). This spontaneous dissociation of the wHTH domains
would lead to a substantially different shape of the dimer in
solution.

To investigate this further, we determined the shape of the
PLP-bound GabR dimer in solution by collecting SAXS
data (Supplementary Figure S3) directly from the elution
of a SEC column (SEC-SAXS) to exclude the possibility
of aggregates (20,21). Data were processed with the AT-
SAS suite according to the materials and methods (22). Es-
timated molecular weights from SAXS data were consistent
with a dimeric protein (Supplementary Table S1) and the ra-
dius of gyration (Rg) of GabR in solution was 34.6 ± 0.1 Å,
which is similar to that calculated from the crystal structure
(Rg = 33.3 Å). The theoretical scattering and interatomic
distance distribution (P(r)) plots calculated from the crys-
tal structure of the GabR dimer (PDBID: 4N0B) (12) us-
ing the program crysol, (23) was also similar to the exper-
imental scattering data (Figure 3A and B). The maximum
dimensions (Dmax) from SAXS data were also consistent
with the crystal structure, indicating that extended confor-
mations, which would result from the dissociation of wHTH
domains from the dimeric core, were not detectable in so-
lution. A total of 20 ab initio shape restorations, indepen-
dently produced very similar shapes as indicated by a low
normalized spatial distribution (NSD = 0.517 ± 0.004) (24)
and averaged aligned models were consistent with the shape
of the dimeric GabR crystal structure (Figure 3C). These
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data indicate that the shape of GabR in solution is consis-
tent with the crystal structure and there is no evidence for
the spontaneous dissociation of wHTH domains that were
proposed as a requirement for DNA binding.

DNA undergoes a conformational change to facilitate binding
to the GabR dimer

We next analyzed the shapes of the 53 bp DNA fragment
and the GabR–DNA complex in solution to obtain further
clues for the mode of interaction. The DNA alone had a
Rg of 49.7 ± 0.3 Å. This was significantly smaller than the
Rg calculated from a 3D model of an ideal 53 bp DNA du-
plex, with a periodicity of 10.5 bp per turn (Rg ≈ 52 Å).
Differences can also been seen in a P(r) plots and theo-
retical scattering and calculated from the idealized model
of DNA, which systematically deviates from experiment at
higher diffraction angles (Figure 4A and B). This suggests
that the GabR DNA binding sequence in solution samples
conformational states that are more compact than an ideal
straight DNA duplex of the same length.

Surprisingly, the GabR–DNA complex was more com-
pact than the DNA alone with a substantially smaller Rg
of 41.2 ± 0.2 Å and a reduction in the maximal dimensions
by around 30 Å, (Supplementary Table S1 and Supplemen-
tary Figure S4). This suggests that GabR induces a confor-
mational change in DNA that results in the DNA becoming
more compact. Short DNA duplexes can be highly bendable
(25) and the propensity of DNA to be bent on average is se-
quence dependent (26). Inspection of the GabR binding re-
gion reveals the presence of three repeated adenine-thymine
tracts (A-tracts) that are in phase with each other and be-
tween the repeated wHTH binding sites (Figure 1). This ar-
rangement of A-tracts is known to produce curvature (27).
Further analysis of the sequence with an anisotropic bend-
ability model (26) reveals that these tracts correspond to
rigid segments that alternate with regions of high bendabil-
ity (Figure 1). The DNA conformation predicted on the ba-
sis of this sequence (Figure 1B) shows a slight bend that
brings the wHTH binding sequences toward each other. Al-
ternative models generate 3D structures curve in the same
direction albeit to different extents, supporting the general
model of a curved DNA with wHTH binding sequences fac-
ing each other in the correct orientation for GabR binding
(Supplementary Figure S5). Thus, one possibility is that the
GabR DNA binding sequence bends upon interaction with
GabR.

We therefore generated a model of bent DNA bound to
the GabR dimer. To achieve this, we utilized a structure
of a homologous wHTH binding domain from the acyl-
CoA-responsive transcription factor FadR in complex with
a short strand of DNA (RCSB ID:1H9T) (28). This struc-
ture was superimposed onto both of the wHTH domains
of the dimeric GabR crystal structure (Figure 4C––insets).
We then structurally superimposed the ATACCA sequence
from the ideal linear model of the 53-base GabR DNA
binding fragment onto the short DNA strands on one of
the FadR–DNA crystal structures. This provided a model
defining the orientation of the GabR binding fragment rel-
ative to the first wHTH domain. We then bent the DNA
model evenly over the base pairs in between two ATACCA

Figure 4. Small-angle X-ray scattering data and model showing a confor-
mational change in DNA upon binding to GabR. (A) Buffer subtracted
X-ray scattering data from the 53 bp DNA fragment (white triangles) over-
layed with theoretical scattering curves calculated from an atomic model
of the DNA fragment as an ideal rigid rod with a periodicity of 10.5 bp
per turn (red line) or in a highly bent conformation as shown in (C) (blue
line). (B) Interatomic distance distribution profiles from the data and mod-
els shown in (A). (C) Top: structural model of the GabR–DNA complex.
The bent DNA is shown in black with the tandem cytosine bases that are
necessary for binding to the HTH highlighted in blue. The dimeric core of
GabR is shown in purple and the wHTH domains are shown in yellow. The
insets show the crystal structures of the HTH domain of FadR in complex
with a short strand of DNA (PDBID:1H9T) (red) superimposed on the
HTH domains of GabR. Bottom: electrostatic potential surface map of the
protein rotated by 90◦ around the X-axis; positive potentials are shown in
blue and negative potentials are shown in red. (D) Buffer subtracted X-ray
scattering data from the GabR–DNA complex (white triangles) overlayed
with the theoretical scattering curve (red line) calculated from an atomic
model of the GabR–DNA shown in (C). (E) Interatomic distance distribu-
tion profiles calculated from (D). Errors are depicted as twice the standard
error of the mean.

repeat sequences toward the second FadR–DNA crystal
structure until the bent DNA model aligned with both
FadR–DNA crystal structures. Remarkably, the bent DNA
model aligned well with the short strands of DNA on both
FadR crystal structures with the second wHTH around
3 bp from the second ATACCA repeat sequence (Figure
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4C––top and Supplementary Figure S6). This indicates that
the distance between the GabR binding motifs and the bent
DNA model is complementary with the location of the
wHTH domains on the dimeric GabR crystal structure. To
determine whether this model was consistent with experi-
mental scattering data, we used the model coordinates to
calculate a theoretical X-ray scattering profile. The Rg of
the model (Rg = 39.7 Å) is similar to the Rg from SAXS
data of the GabR–DNA complex and the theoretical and
experimental scattering profiles overlayed reasonably well
up to mid q scattering angles (q < 0.2 Å−1) (Figure 4D) and
the corresponding interatomic distance distribution profiles
are also similar (Figure 4E), indicating that our theoretical
model is a reasonable description of the shape of the GabR–
DNA complex in solution. Interestingly, a comparison of
P(r) plots calculated from the model of bent DNA alone
and SAXS data, indicate that the 53 bp DNA fragment is
not already highly bent in the absence of GabR (Figure 4B).
Combined, these data suggest that GabR stabilizes DNA
in a bent conformation, and point to an alternative mech-
anism of interaction between the GabR dimer and DNA
that allows for binding without a dramatic conformational
change in the protein. Notably however, since the ATACCA
repeat sequences run in the same direction, if the wHTH do-
mains are oriented symmetrically as in the crystal structure,
one of the wHTH domains will be in the opposite direction
to its corresponding direct repeat sequence.

The bendability of the bridging sequence between the AT-
ACCA repeats is a determinant of complex stability

To test the structural model described above, we next in-
vestigated whether the sequence-dependent bendability of
the bridging DNA sequence between the repeated wHTH
binding sites, affects the binding strength between GabR
and DNA. We used biolayer interferometry to obtain es-
timates of the dissociation constant (KD) for the complex
formed between GabR in solution and wild-type or mutant
DNA duplexes immobilized on the sensor surface (Figure
5 and Supplementary Figure S7). This allowed us to deter-
mine whether mutations in the bridging DNA sequence that
alter the predicted bendability, would affect the KD of the
interaction. The dissociation constant for the complex with
wild-type DNA (KD = 27.4 ± 8.5 nM with respect to the
concentration of the GabR dimer) was similar to the val-
ues determined previously using a fluorescence polarization
assay (KD = 70.2 ± 3.7 nM with respect to the concentra-
tion of the GabR monomer) (12) and isothermal titration
calorimetry (KD = 36.4 ± 21.6 nM) (19). In the presence of
GABA the complex appeared to be more stable than in its
absence (KD = 13 ± 0.9 nM).

Next we confirmed the importance of the base-readout
interactions between the wHTH domains and the two AT-
ACCA for complex formation. Mutations of the CC din-
ucleotide to GG in either of the two ATACCA sequences,
previously shown to be important for DNA binding (13), re-
sulted in a pronounced reduction of the GabR–DNA com-
plex stability (KD = 6.4 ± 0.9 �M and 7.1 ± 1.9 �M for mu-
tations in the first and second repeat, respectively). As ex-
pected, mutation of both direct repeat sequences abolished

Figure 5. Mutations in the repeat sequences or bridging region affect com-
plex stability. (A) Comparison of 3D models of wild-type and mutant
DNA sequences defined in Supplementary Figure S8 and used for bio-
layer interferometry. DNA structural models were ‘consensus’ scale for an
anisotropic bendability model in an online DNA curvature analysis tool
(www.lfd.uci.edu/∼gohlke/dnacurve/). The repeated wHTH binding sites
are rendered in purple (B) Dissociation constants obtained for wild type
and mutant DNA sequences from the biolayer interferometry traces. (C)
Kinetic scheme of GabR–DNA complex formation.

GabR binding in the concentration range used in the exper-
iment (up to 10 �M).

To quantify the contribution of shape recognition to
the stability of the GabR–DNA complex, we introduced
a range of DNA mutants in the region that bridges the
ATACCA sequences. These were designed to perturb the
bendability of the DNA according to a sequence-dependent
anisotropic bendability model (26). The predicted 3D struc-
tural models of the mutants are shown in Figure 5A (see
Supplementary Figure S8 for the sequence of all mutants
and S9 for the corresponding bendability plots). To test
for the possibility of base recognition in the bridging se-
quence, a control mutant with a GG to CC substitution
located in the middle of the linker preserves the sequence-
dependent DNA bendability and intrinsic curvature of the
wild-type sequence and is known to retain GabR binding
(13). Three other DNA mutants are predicted to alter bend-
ability by deviating from the curvature of the wild-type se-
quence by different degrees. First, single nucleotide muta-
tions that convert the four regions of high bendability to

http://www.lfd.uci.edu/~gohlke/dnacurve/
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regions of intermediate bendability were chosen to gener-
ate a structure that bends in the same direction as wild type
albeit to a lesser extent (‘rigid/curved’). Second, a highly
bendable bridging sequence that was designed by introduc-
ing mutations into the three rigid regions; this mutant linker
can bend equally well in all directions but is straight on av-
erage (‘bendable/straight’). Third, we created a mutant that
bends in the opposite direction to the wild type sequence
by shifting the register of the pattern of bendable and rigid
regions by four nucleotides with respect to ATACCA re-
peat sequences; this shift was achieved by moving the CATC
tetranucleotide sequence from the 3′ end of the bridging se-
quence to the 5′ end (‘inverted curvature’).

As expected the mutated control DNA showed essentially
the same affinity (KD = 44 ± 21 nM) as wild-type DNA. All
other mutants that were predicted to alter the bendability of
the DNA duplex reduced its affinity to GabR. The reduc-
tion in affinity of the ‘bendable/straight’ mutant compared
to the wild type sequence was pronounced (KD = 1.16 ±
0.65 �M) whereas the effect of the ‘rigid/curved’ mutations
was relatively mild (KD = 101 ± 16 nM). The affinity of the
‘inverted curvature’ mutant were similar to those observed
for DNA with mutations in either of the two direct repeat
sequences suggesting that the complex does not proceed be-
yond the singly-bound state (KD = 11.7 ± 5.9 �M). Thus,
a greater predicted deviation in DNA shape from wild-type
resulted in a greater reduction in affinity between GabR and
DNA. This supports the model of DNA bending to facili-
tate a stable interaction with GabR and indicates that shape
recognition is equally important to sequence recognition for
this interaction to occur.

The bridging sequence between the direct repeats consists
of the putative −35 region of the gabT promoter with the se-
quence TTTTCA, which contains one of the three rigid seg-
ments of the linker (Figure 1B). Restoring the −35 region
to its consensus sequence in B. subtilis (TTGACA) renders
this segment highly bendable with a concomitant reduction
of the predicted curvature (Supplementary Figure S9). The
dissociation constant of this mutant (KD = 114 ± 23 nM)
was ∼4× higher than of wild-type but considerably lower
than for the ‘bendable/straight’ mutant in line with its in-
termediate deviation from wild-type bendability and curva-
ture. Thus, the deviation from the consensus sequence may
be required to preserve the DNA shape for recognition by
the GabR dimer.

It has been shown that local DNA unwinding at nu-
cleotides between individual recognition elements provides
one mechanism for establishing the correct spatial orien-
tation for binding of multimeric transcription factors (29).
The bridging sequence between the ATACCA sites contains
an AT-rich region (TATAAT) that is prone to DNA un-
twisting and we asked whether untwisting at this sequence
was involved in GabR binding (30). The mutation of an AT
dinucleotide to CG removes the propensity of this stretch
of DNA to untwist while preserving the bendability and
curvature of the wild-type sequence (Supplementary Fig-
ure S9). This mutation had no discernible effect on GabR–
DNA complex formation (KD = 24.6 ± 11.9 nM) suggesting
that changes in the twist, at least in this sequence, are not
important for complex formation.

Kinetic analysis of the binding and dissociation traces
with a 1:1 interaction model yielded estimates of the asso-
ciation and dissociation rate constants, kon and koff (Sup-
plementary Table S2 and Supplementary Figure S10). The
association rate constants for all bendability mutants were
within a factor of two of wild-type (kon = 0.14 ± 0.04
�M−1 s−1). The differences in KD observed between con-
structs were therefore largely due to differences in koff. As
expected, control mutant and the ‘no untwisting’ mutant,
which had a bendability profile similar to that of wild-type
DNA had a koff within error of the wild-type value (koff =
0.0067 ± 0.0033 s−1) while the dissociation rate constants
for the ‘bendable/straight’ mutant (koff = 0.076 ± 0.018
s−1) was one order of magnitude higher and those for the
‘inverted curvature’ and both single repeat mutants were
two orders of magnitude higher (Supplementary Table S2)
than for wild-type DNA. These kinetic data are consistent
with the sequential binding of the GabR wHTH domains to
DNA, consisting of the rate limiting binding of one wHTH
domain followed the stabilization of the complex via a rapid
binding of the second wHTH domain.

GabR undergoes a conformational change during switch from
repressor to activator

GabR activates expression of the gabTD operon upon bind-
ing to its effector molecule GABA (14). To determine
whether GabR undergoes a structural rearrangement in re-
sponse to binding to GABA, we compared the shape of
GabR alone and in complex with DNA in solution, in the
presence and absence of GABA (Supplementary Figure S3
and Supplementary Table S1). There was a detectable in-
crease in the Rg of GabR in the presence of GABA (Rg
= 35.4 ± 0.1 Å) and differences in scattering at mid-Q an-
gles pointing to a redistribution of mass (Figure 6A). This
is also reflected in 24 independent ab initio shape restora-
tions, which were self consistent (NSD = 0.507 ± 0.03 Å),
and different to reconstructions generated from SAXS data
of GabR in the absence of GABA (Figure 6B). Similarly,
when bound to DNA, there was also a significant increase
in Rg in the presence of GABA (Rg = 42.6 ± 0.2 Å) and a
detectable difference in scattering (Figure 6C). These data
indicate that the GABA-induced transition to the activator
state may involve a conformational rearrangement of the
protein.

DISCUSSION

Our structural and mutational analysis of GabR–DNA
complex formation allows us to arrive at the following con-
clusions: (i) binding of one GabR dimer to a DNA frag-
ment from the gabRTD regulatory region containing the
two wHTH binding sequences separated by a 29 bp bridg-
ing sequence, leads to a compaction of the DNA fragment
that is consistent with a DNA structural change. (ii) Simul-
taneous binding of both wHTH domains to the ATACCA
repeat sequences is essential for complex stability because
the affinity of a single wHTH domain for the ATACCA
sequence is low. (iii) Mutations in the linker region pre-
dicted to alter its sequence-dependent bendability and in-
trinsic curvature lead to weaker complexes. We thus propose
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Figure 6. GABA induces a small conformational change in GabR. (A)
Buffer subtracted scattering of GabR in the absence (red) and presence
(blue) of GABA. (B) Average shape (purple) and aligned shapes (white)
from 20 independent ab initio shape restorations for GabR in the absence
(left) and presence (right) of GABA. (C) Buffer subtracted scattering of
the GabR–DNA complex also in the absence (red) and presence (blue) of
GABA. Errors are plotted as twice the standard error of the mean.

a structural model for the GabR–DNA complex, which
does not require large-scale rearrangements of the wHTH
domains. Instead, DNA bends around the dimeric core to
allow simultaneous contacts between the wHTH domains
located at opposing ends of the GabR dimer and the AT-
ACCA repeat sequences (Figure 4C).

Orientation of the wHTH domains

In this model the wHTH domains could either unusually
contact the ATACCA motif in different orientations (as
shown in Figure 4C) or in the same orientation if upon
DNA binding one of the wHTH domains flips around and
associates with the dimeric core in an alternative orientation
to that seen in the the crystal structure. Our data cannot dis-
tinguish between either of these possibilities. For the wHTH
domains to flip upon DNA binding, the binding energy be-
tween DNA and the second wHTH domain has to be larger
than the energy required to reorientate the wHTH domains.
The latter can be approximated by the interaction strength
between the wHTH domains and the linking peptide to the
GabR dimeric core. This interaction comprises of an inter-
face with a relatively small surface area (12) and hence may
well be disrupted by the formation of the second wHTH–
DNA interaction. This is because once the first ATACCA
repeat sequence is bound, the effective concentration of the
second ATACCA sequence at the second wHTH domain is
large and subsequently there binding energy between these
structures.

GabR binding mechanism and dissection of DNA base and
shape recognition

Specific protein–DNA interactions involve both base read-
out (the formation of hydrogen bonds between amino acid
side-chains and a specific sequence of DNA bases) and
shape readout mechanisms (recognition of local or global
DNA structure) but the relative contributions of these
mechanisms to binding are often difficult to dissect. Here
we used mutational analysis to separate the roles of these
mechanisms for GabR binding. Overall it was observed
that both the integrity of the ATACCA repeats as well as
preserving the bendability profile in between were critical
for complex formation. The energetics of shape recognition
were directly altered with mutations that are predicted to af-
fect the bendability of the gabRTD regulatory region. Mu-
tations that disfavor bending in the correct direction (‘in-
verted curvature’) are just as detrimental to complex sta-
bility as mutations in either of the two ATACCA repeats.
This suggests that the ‘inverted curvature’ mutant can bind
to only one wHTH domain at a time, presumably because
the energy required for bending at the rigid segments in the
direction required for double binding is too high. Interest-
ingly, mutants with high isotropic bendability also lead to
a decrease in complex stability. This is likely to be due to
a higher entropic cost associated with confining more flexi-
ble DNA to the conformation in the bound state. Thus, the
free energy of the complex formed with the bendable mu-
tants (‘bendable/straight’, ‘consensus restored’) is higher
than that for wild-type DNA. Taken together the observa-
tions suggest that GabR binding to DNA involves a com-
bination of base and shape readout mechanisms, which is
emerging as a general concept for protein–DNA interac-
tions (6).

We propose the following kinetic model for GabR bind-
ing to DNA (Figure 5C): the first step is governed by the
binding of one of the wHTH domains to one of the AT-
ACCA repeats in the DNA. This process is expected to
be independent of the properties of the bridging sequence,
which is reflected in the similarity of the association rate
constants between wild-type and all bendability mutants.
In the second step the DNA samples various conforma-
tions until the second repeat is oriented correctly to allow
binding of the second wHTH domain. With the wild-type
DNA sequence the second step is fast, because the effec-
tive concentration of the second ATACCA sequence rel-
ative to the unbound wHTH domain is high. But this is
dependent on the mechanical properties of the bridging
DNA sequence, which has evolved to readily form a shape
that is complementary to the structure of GabR. The fi-
nal complex is stable but possibly dynamic with brief ex-
cursions into the singly-bound intermediate. Electrostatic
interactions and local shape recognition mechanisms be-
tween residues on the positive ridge of GabR and the DNA
bridging region may further contribute to complex stability.
Analysis of the bridging sequence with DNAshape, a tool
for the prediction of DNA structural features (31), reveals
a narrowing of the minor groove in two locations (Supple-
mentary Figure S11). While our structural model does not
specify the precise alignment between DNA bases and sur-
face amino acids, it is possible that insertion of lysine or
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arginine residues into the narrow minor groove may con-
tribute to the shape readout of the bridging sequence (8).
Consistent with this speculation, weakly binding mutants
show a shift of the regions of minor groove narrowing away
from the positive ridge (‘inverted curvature’) or a reduction
in minor groove narrowing (‘bendable/straight’).

General implications for DNA shape recognition

These observations reinforce and extend previous discover-
ies that show the importance of DNA bending for protein
binding. For example, the papillomavirus E2 protein is a
dimeric protein that binds to two binding sites on DNA sep-
arated by a four-nucleotide linker with intrinsic curvature
(32). The crystal structure of this protein–DNA complex
shows that the DNA bends at the linker sequence to facili-
tate binding (33). Mutations in this four-nucleotide linker
sequence that abolish its intrinsic curvature also lead to
complexes with lower affinity (34). Here we provide muta-
tional analysis showing that shape readout is not restricted
to the cognate binding site and a few adjacent nucleotides.
Rather, this readout mode can involve regions of several
tens of base pairs, which instead of being inert, contribute
to the stability of the protein–DNA complex. This obser-
vation is consistent with recent computational analyses of
protein-binding microarrays or chromatin immunoprecipi-
tation data, suggesting that transcription factor binding to
E-box binding sites depends on the structural features of
flanking regions (35,36). Indeed, prediction of transcription
factor binding sites is improved when using binding data
that provides sequence information of the flanking regions
(37).

This discovery is likely to have broader relevance to other
DNA binding proteins including in eukaryotic systems. Re-
cent data shows that the mammalian transcription factor
GATA3 (38) and members of the FOXP subfamily of Fork-
head transcription factors (39,40) can bind to DNA in a
bridging mode whereby the DNA-binding domains of the
dimeric transcription factor contact two sites that are dis-
tal from each other. While this bridging mode is thought
to be involved in long-range regulation via DNA looping
or linking of chromosomes, these types of proteins could in
principle also bind to sites with a spacing similar to that ob-
served here. The contribution of DNA bendability in these
cases may be less pronounced than observed for GabR but
would nevertheless contribute to distinguishing sites of dif-
ferent affinity and thus impact on transcription factor site
searches. This finding has implications for the prediction of
TF binding sites whereby algorithms need to take into ac-
count not only the sequence and shape of the DNA at the
binding site but also properties of bridging regions between
TF binding sites.
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