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ABSTRACT.  Numerous studies have analyzed the movements of the S&P 500 Index using 

several methodologies such as technical analysis, econometric modeling, time series techniques 

and theories from behavioral finance.  In this paper we take a novel approach.  We use daily 

closing prices for the S&P 500 Index for a very long period from 1/3/1950 to 7/19/2011 for a 

total of 15,488 daily observations.  We then investigate the up and down movements and their 

combinations for 1 to 7 days giving us multiple possible patterns for over six decades.  Some 

patterns of each type are more dominant across decades.  We split the data into training and 

validation sets and then select the dominant patterns to build conditional forecasts in several 

ways, including using a decision tree methodology. The best model is correct 51% of the time on 

the validation set when forecasting a down day, and 61% when forecasting an up day.  We show 

that certain conditional forecasts outperform the unconditional random walk model.  
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1  Introduction 

 

A variety of different models are used in predicting returns on the S&P 500 stock index. These 

models use significantly different methods for determining buy and sell signals on either 

individual stocks or market index futures. The signals are typically either technical indicators 

such as a moving average, or momentum, or micro market or macro specific fundamental 

indicators, such as dividend yield, interest rates, (for market specific indicators) or economic 

growth (macro specific). 

 The aim of this paper is to investigate sequences of Up and Down movements of the S&P 

500 Index using a novel approach. To study the daily movements of the Index and its patterns for 

1 up to 5 days, we carefully record all actual such sequences obtained from a portion of our total 

sample and the frequency of each pattern is calculated.  Then these results are translated into a 

decision-making strategy in an attempt to apply the patterns obtained to new data from a 

validation set and derive conditional forecasts. 

 In section 2, we offer a selective review of the related literature and in section 3 we 

discuss our sample and how it is divided into nonoverlapping training and validation sets. Then 

we collect the results and analysis from the training set and present them in section 4 in the form 

of tables for ease of understanding.  The decision making strategy is presented in section 5 and 

the forecasting performance along with its analysis are given in section 6.  A summary concludes 

the paper in section 7. 

 

2  Review of the literature 

 

From the early 1970s, a major dichotomy has persisted in the literature on the behavior of stock 

prices between market efficiency theorists and active portfolio management advocates.  The 

theory of market efficiency has argued that because information is valuable it is not wasted or 

ignored and market participants move rapidly to evaluate and trade using all available 

information, thus contributing to the formation of prices that fully reflect such information.  As 

new information becomes available, sometimes positive, others negative, often significant while 

at other times only mildly important, it also becomes quickly incorporated into prices. Prices 



then follow random walks in view of the randomness of information. It is well known that the 

market efficiency hypothesis is the most empirically tested theory in finance and these tests have 

extended significant support. An immediate corollary of market efficiency and the random walk 

behavior of prices is that prices cannot be predicted, since they are driven by the arrival of new  

public information. 

 In contrast to the teachings of market efficiency about the futility of searching for 

methods to beat the market, a large number of individual investors and fund managers tirelessly 

try to outperform the market.  There is no doubt that such a task is very difficult and there are 

only few superstars, such as George Soros or Warren Buffett, who have outperformed the market 

over few decades. Thus, while market efficiency remains the dominant theory about financial 

markets, considerable effort is exerted daily by professionals to outperform the market. These 

efforts have also been extended to academics that almost simultaneously with the early 

developments of market efficiency have been searching for active management strategies. The 

dichotomy then continues today between market efficiency that remains the ordained theory, yet 

to be replaced, and a collection of methods and strategies that search for ways to outperform the 

market or simply to demonstrate that markets deviate from perfect efficiency and rationality. 

There are several groupings of this research such as technical analysis, econometric methods  

and behavioral finance each with an enormous set of papers and a large variety of conclusions.  

An eclectic sample of studies that investigate the effectiveness of technical analysis and 

active management strategies includes: Fama and Blume (1966), Jensen and Benington (1970), 

Brown and Jennings (1989), Brock, Lakonishok and LeBaron (1992), Blume, Easley and O’Hara 

(1994), Gencay (1998), Allen and Karjalainen (1999), Lo, Mamaysky and Wang (2000).  Some 

of these papers are critical of simple technical rules and demonstrate than even simple random 

walks often generate trading rules that may temporarily give successful trading signals that 

appear to predict well; other papers show that once transactions costs are included the predictive 

advantage of trading rules is diminished or completely eliminated; and finally, some find 

evidence that some technical indicators have significant predictive ability. 

More recently, Schulmeister (2007) looks at technical trading strategies on the S&P500 

futures and their ability at predicting returns. This paper finds that in the 1960s and 1970s the use 

of daily stock data was profitable among strategies generating a buy-sell decision based on the 

futures price relative to its moving average Specifically in the paper, the author uses a short run 



and long run moving average, and going long when the short term moving average goes above 

the long run moving average, and short selling when the opposite occurs. However, testing the 

same indicators from 2000-2006 saw diminishing results for those strategies. One possible 

explanation given by the author is that there is likely a trend to higher frequency in trading on 

technical indicators and that now, 30 minute data is insufficient to produce a profitable strategy. 

Other papers focus more on fundamental aspects of stocks or the S&P index, as well as 

macroeconomic data when developing econometric return forecasting model. Doran, Ronn, 

Goldberg (2005) (DRG) examine return predictability using more fundamental variables. In 

developing their model, the authors utilize two equations used to estimate required return; a 

dividend growth rate model and the Sharpe security market line. Since they were working with 

the S&P Index and not with individual stocks, the authors used the VIX as a proxy for stock 

volatility. The results of their study were that short term expected returns were highly volatile, 

largely due to changes in VIX. One of the inherent issues in their model, which they address, is 

the estimation of market risk premium in their model. The market risk premium did go negative 

on two occasions. The two occasions were in 1987, right before the crash, and in 2000 during the 

tech bubble. As a result, they determine that those levels of market risk premium could be 

attributed to irrational exuberance.  

 Other studies, such as Avramov and Chordia (2002) examine work done with regard to 

how firm specific factors are used to predict return. Notable factors that could be applied to S&P 

returns are the Treasury yield, and dividend yield. They also find that there are many other firm 

specific factors that hold up to out of sample testing of return predictability. However, this 

predictability holds best for small-cap stocks, growth stocks, and momentum stocks, and not the 

broader market. Other findings of the paper are that using the equity risk premium allows for 

negligible out of sample predictability, causing the authors to conclude that firm specific factors 

such as dividend yield and treasury yields are more useful at predicting returns. 

Beyond technical and econometric analysis behavioral finance has emerged the last 30 

years as a flourishing collection of theories that challenge market efficiency.  Behavioral finance 

accepts minor deviations from rationality and perfect arbitrage, introduces asymmetric utility 

describing gains versus losses, explains overvaluation, herding, momentum, feedback and 

various other characteristics of trading activities and thus encourages the search for a realistic 

understanding of asset pricing. A detailed survey of the leading contributions is presented in 



Hirshleifer and Subrahmanyan (1998) and contributions by Barberis, Shleifer and Vishny (1998), 

Hong and Stein (1999).  

DeLong, Shleifer, Summers and Waldman (1990) study the impact of noisy traders and 

show that if they follow positive feedback strategies, that is, if noisy traders buy when prices rise 

and sell when prices fall, then it may pay for traders to buy ahead of noise demand and to also 

sell before noise traders. Further examining the behavior of noise traders, Cutler, Poterba and 

Summers (1991) demonstrate that returns are positively serially correlated at high frequency and 

negatively correlated over long horizons. McInish and Wood (1992) examine high frequency 

minute-by-minute data and confirm the presence of certain consistent patterns. Intraday patterns 

are also investigated by Chan and Karolyi who find evidence of strong intermarket dependence 

in the volatility of the stock market index and the stock index futures.  

Recently, Baur, Dimpfl and Jung (2012) revisit return autocorrelations and find for daily 

data over thirty years that lower quantiles autoregressions exhibit positive dependence on past 

returns in contrast to upper quantiles are marked by negative dependence. 

The main conclusion of this rapid review of selected studies searching for stock index patterns 

demonstrates that this is an area of active and challenging research.  In this paper we take a novel 

approach.  We use daily closing prices for the S&P 500 Index for a very long period from 

1/3/1950 to 7/19/2011 for a total of 15,488 daily observations.  We then search and record UP 

(U) and DOWN (D) movements for 1 day, combinations of U and Down movements (UU, UD, 

DU and DD) for 2 days.  Similarly, patterns were tabulated for 3, 4, 5, and 6 day strings.  

Following a discussion of patterns over six decades, we divide the data set into training and 

validation sets, then proceed to use this information to develop and compare a variety of 

forecasts.  Section 3 details and discusses the some of these patterns.  In section 4, we develop 

and compare forecasts from the patterns themselves, with the random walk, and using a data 

mining decision tree algorithm.  Section 5 contains conclusions from the approaches, and 

recommendations for future research. 

 

3 Multi-decade patterns 

 

Patterns of up and down movement were tallied in two ways.  In the first set of charts, we look at 

the individual string patterns of Up and Down for one, two, three, and four days.  Though we 

also track the five and six day pattern strings, their graphs are too complex to display here.  



Multi-day strings are calculated by concatenating single day strings.  Thus, if we have, for a 

single week, the following single day movements:  U, D, D, U, U, we would have the three-day 

pattern UDD associated with Wednesday, DDU with Thursday, and DUU with Friday.   

We then reconfigure this information by counting only the number of Up days.  Thus, for 

example, UD and DU each have 1 Up day and are collapsed into one category.  This second way 

of counting allows us to focus on the number of positive movements that occur in strings of a 

specific length while suppressing exactly where those occur.  Looking at the following figures 

showing up and down movement, we see the following result that, contrary to the random walk 

hypothesis where stocks move randomly, our first tabulation of actual up and down movements 

across six decades confirms that the S&P 500 consistently moves up in the long term, as seen in 

Figure 1.  In these figures, each type of string is displayed as a bar, with the decade shown below 

the set of bars.  Pattern occurrence is shown on the y-axis as the percent of times it appeared in 

that decade.  The last decade contains data only from years 2010 and 2011, but the percent 

display allows us to easily compare what is happening at the beginning of this decade with the 

other decades. 

 

Fig 1  Percent of Up [U] and Down [D] movements per decade, 1950 through 2011 

 

 
 

The second result of two-day strings, shown in Figure 2, indicates that from 1950 until 2000, up-

up was the most dominant pattern in two-day movements.  We also notice that, in the single 

decade from 2000 to 2009, it is no longer the case that up-up dominates.  The two center 



columns (up-down and down-up) dominate in this period, emphasizing the frequent day to day 

change in movement of the S&P during that decade.   

 

Fig 2  The four two-day strings of Up and Down across decades 

 

 
 

When it comes to three and four day strings of Up and Down patterns, all ups dominate in most, 

but not all, of the decades.  Figure 3 shows these three-day patterns as percent of occurrence.  

UUU, the grey bar at the right side of each group, is highest in the 1950s, then decreases across 

the decades, with a low during the decade from 2000 through 2009.  As we move from 1950 to 

2010, we see that fewer patterns dominate and there is more even distribution across possible 

patterns.  Then, during 2010 and 2011, we see the initial part of this last decade returning to a 

greater emphasis on up movement.  There is more stability in DDU and UDD across decades.   

 

Fig 3  Three-day strings of Up and Down movement across decades 

 



 
 

 

In Figure 4, we have a total of 16 possible patterns, and each one of them occurs in the dataset.  

Notice that the percent of times that UUUU occurs is highest early on, then decreases over the 

decades.   UDUU and UUDU occur about the same amount of time.  In the 50s, 60s, and 70s, 

DUDU and UDUD were the least occurring patterns.  This set of patterns changes in the 80s 

where the daily change becomes more likely, and remains true.  We also notice that the leftmost 

bar, representing the string of four down days in a row, decreases over time as a percent of 

occurrence.  As the number of days in the pattern increases, these charts become more congested, 

so we will not display the bar charts for five and six day patterns.  Instead, we will switch to 

looking at this data in a slightly altered fashion. 

 

 

Fig 4  Four day strings of Up and Down movement across decades 



 

  

Another way to display this data is by focusing on only the number of up movements in 

strings of a given length.  For example, as seen earlier when we look at only one day across 

decades, up occurs more than down every decade.  Looking at two-day strings, whereas we 

originally had four patterns, this revised focus gives us only three.  That is, we can have 0, 1 or 2 

possible ups.  When we have a string of DD, this yields 0 Ups; strings of the form DU or UD are 

both examples of exactly 1 Up; and UU gives us 2 Ups.  Figure 5 displays these counts.  As with 

the previous graphs, all numbers are displayed as the percent of occurrence during the decade.  

We see that having a single up in a string of two days is most likely in any decade.  The 

frequency of two ups in any two-day string decreases across decades until the current one where 

it is showing an upward trend.    We also see that, in every decade, two Ups occurred more than 

zero Ups in each time block. 

 

 

 

 

 

Fig 5  Percent of 0, 1, and 2 Up movements in 2 days 



 

 

For three and four day strings, you are most likely to have exactly two Ups.  Figure 6 shows that, 

for three-day strings, there are more 2s in every decade, fewer 0s than 3s, and fewer 1s than 2s.   

 

Fig 6  Percent of 0, 1, 2, and 3 Up movements in 3 days 

 

 

In Figure 7, for 4-day strings, we see the peak for most decades comes with exactly 2 days out of 

4 having Up movements. However, in every case, there are more 3s than 1s, and more 4s than 0s.  

So, when we extend our view to four days at a time, there are very few strings of four Down 

days.    

Fig 7  Percent of 0, 1, 2, 3 and 4 Up movements in four days 



 

 

In the last chart that we will display, we shown the percent count of the number of times that Up 

occurred in the five-day strings.  Figure 8 indicates that, in every decade, we see the following:  

More 3s (shown as the darkest bar in the center) than 2s, more 4s than 1s, and more 5s than 0s. 

 

Fig 8  Percent of 0, 1, 2, 3, 4, and 5 Up movements in 5 day strings 

 



This series of figures illustrates that some patterns typically occur more across every decade, 

even though there are shifts over time.  In the next section, we investigate whether or not we can 

use the similarities over time to develop useful forecasts. 

 

4  Forecasting 

 To translate this analysis into a decision-making strategy to attempt to predict up or down 

movement tomorrow conditional on the past patterns from 1 to 7 days, we separated the total 

sample into two parts, a training set and a validation set.  The training set comprised all data 

from January 1950 through December 2009 [15,087 rows].  The validation set used the data from 

January 2010 through July 2011 [387 rows].  The training set was used to determine the most 

dominant patterns with all strings of a given length.  These dominant patterns were then used to 

determine the direction of the forecasts for each day in the validation set.   

With the training data set, we calculated the number of times each one to seven-day 

pattern of Ups and Downs occurred.  A sample of the patterns and the number of times each 

sample occurred in the set of 15,087 rows from January 1950 through December 2009 is shown 

in Table 1.   We investigated patterns up to length 10, but past seven days, every possible pattern 

does not occur in the data set, making the comparison of pairs of patterns differing only in the 

last day un-doable.  Thus, we used only string patterns of 1 to seven days. 

 

Table 1  Example patterns and count of occurrence 

 

Pattern Count   Pattern Count   Pattern Count 

D 7009   DDDDDD 185   DDDDDDD 83 

U 8078   DDDDDU 215   DDDDDDU 102 

DD 3539   DDDDUD 179   DDDDDUD 91 

DU 3469   DDDDUU 247   DDDDDUU 124 

UD 3470   DDDUDD 220   DDDDUDD 104 

UU 4609   DDDUDU 168   DDDDUDU 75 

DDD 1730   DDDUUD 233   DDDDUUD 116 

DDU 1809   DDDUUU 283   DDDDUUU 131 

DUD 1441   DDUDDD 220   DDDUDDD 111 

DUU 2029   DDUDDU 209   DDDUDDU 109 

UDD 1809   DDUDUD 127   DDDUDUD 61 



UDU 1660   DDUDUU 204   DDDUDUU 107 

UUD 2029   DDUUDD 254   DDDUUDD 133 

UUU 2580   DDUUDU 203   DDDUUDU 100 

DDDD 826   DDUUUD 259   DDDUUUD 124 

DDDU 904   DDUUUU 334   DDDUUUU 159 

DDUD 760   DUDDDD 178   DDUDDDD 103 

DDUU 1050   DUDDDU 197   DDUDDDU 117 

DUDD 769   DUDDUD 158   DDUDDUD 75 

DUDU 671   DUDDUU 237   DDUDDUU 134 

DUUD 871   DUDUDD 133   DDUDUDD 66 

DUUU 1158   DUDUDU 140   DDUDUDU 61 

UDDD 904   DUDUUD 174   DDUDUUD 91 

UDDU 905   DUDUUU 224   DDUDUUU 113 

UDUD 681   DUUDDD 246   DDUUDDD 138 

UDUU 979   DUUDDU 212   DDUUDDU 116 

UUDD 1040   DUUDUD 181   DDUUDUD 82 

UUDU 989   DUUDUU 232   DDUUDUU 121 

UUUD 1158   DUUUDD 265   DDUUUDD 131 

UUUU 1422   DUUUDU 267   DDUUUDU 128 

DDDDD 400   DUUUUD 277   DDUUUUD 139 

DDDDU 426   DUUUUU 349   DDUUUUU 195 

DDDUD 388   UDDDDD 215   DUDDDDD 90 

 

For each pair of patterns that differed in only the last movement, the pattern that occurred 

most often was specified as the dominant one of the pair.  This pair-wise dominance formed the 

basis for forecasting on the validation set.  Specifically, in the validation set, we made a series of 

seven predictions in the following way:  For each of the patterns of days T-6 to T [i.e., seven day 

information], through T [one day information], a forecast for T+1 was generated based on the 

percent of time that pattern had occurred in the training set.     

For example, the first forecast, using only one day, would always predict Up tomorrow in 

the validation set because Up (8078 occurrences) dominated Down (7009 occurrences) in the 

training set in the one-day comparison of possible values.  In two day forecasts, we have two 

cases to consider, those beginning with U and those beginning with D.  The strings beginning 

with U include UD and UU.  Of these two, UD occurred in the training set 3470 times while UU 

occurred 4609 times.  Since UU happened more often than UD, when we have a single input of 

U in the validation set, we will forecast that the second day would also be U.  With the days 

where D occurred first in the string of two days, we could have either DD or DU.  The training 



set indicates that DD occurred 3539 times and DU occurred 3469 times.  In this case, since DD 

occurs more than DU, when D is the first day of a two-day string in the validation set, we will 

forecast that the second day in the string will also be D.  In one example of a three-day string in 

the validation set, suppose that we currently know the string DDU has occurred.  Data from the 

training set tells us that, of the two four-day possibilities that begin with DDU, we see that 

DDUU (that is, tomorrow Up) is more likely to occur than DDUD.  So, for tomorrow, we will 

forecast Up in the validation set when the three days before tomorrow have the pattern DDU.  

Table 2 illustrates this using 4 and 3 day patterns from the training and validation sets 

respectively. 

 

Table 2 Pattern examples for forecasting shows DDUU is more likely to occur than DDUD 

Training Set  

4-day pattern 

Training Set 

Count 

Validation Set  

3-day Pattern 

Validation Set 

Forecast for the 4
th

 day 

DDUD 760 DDU U 

DDUU 1050 DDU U 

 

Thus, for every pair of strings that differ in the last letter of the pattern, the pattern for the 

next day that occurred most often in the training set was selected as the most likely behavior in 

the validation set.  This method allowed us to generate seven forecasts for each row in the 

validation set.  The first forecast used only 1 day strings, while the last used only information 

from the training set seven-day strings. 

In addition, a random number was generated for each day of the validation data set; if the 

value was less than .5 then Down was predicted, otherwise the forecast was Up.  We generated 

this random forecast to compare with the performance the  n-tuple forecasts.    

 Then, for each of these eight forecasts on the validation set, we compared the value 

predicted with the actual value that occurred on day T+1 and tallied the number of correct and 

incorrect calls.  The number of correct predictions and the percent of time they were correct are 

shown in Table 3.  We see that the most correct forecasts for tomorrow came from using the 

forecast from the current day.  This is the least complex of the forecasts because Up dominates 

every year, so a prediction of Up for each day will be more correct than a prediction of Down for 



each day.  However, this value with little information is very close to the prediction using six 

days of information, which does distinguish between the Up and Down days. 

 

Table 3  Percent of time the validation set forecast was correct using 1 to 7 day patterns 

 

T-6 to T T-5 to T T-4 to T T-3 to T T-2 to T T-1 to T T Random 

212 218 212 205 205 195 219 178 

54.8% 56.3% 54.8% 53.0% 53.0% 50.4% 56.6% 46.0% 

 

Drilling down to the direction of each correct and incorrect forecast (correct forecasts 

shown in bold) in Table 4, we see that the weakness in every prediction strategy comes in the 

Down forecasts.  Each D column lists the number of times Down was forecast when it was 

actually Down and when it was actually Up.  In each case, the number of incorrect Down 

forecasts is greater than the number of correct Down forecasts.  For the Up forecasts, the number 

of correct days is greater than the number of incorrect days for each method.  Thus, the simple 

forecast of predicting Up always will be greater than the simple random walk 50/50, but is 

always wrong on Down days.  The forecast using six day strings is correct on the Up days over 

58% of the time, and correct on the Down days half of the time, so overall it is a better choice. 

 

Table 4  Correct and Incorrect Up and Down forecasts 

 

 Predicted Movement for T+1 

Actual T+1 T-6 to T T-5 to T T-4 to T T-3 to T T-2 to T T-1 to T T Random 

Movement  D U D U D U D U D U D U D U D U 

D 48 120 40 128 45 123 41 127 41 127 72 96 0 168 75 93 

U 55 164 41 178 52 167 55 164 55 164 96 123 0 219 116 103 

Data as % Numbers are percent of column (predicted) total  

D 46.6 42.2 49.3 41.8 46.3 42.4 42.7 43.6 42.7 43.6 42.8 43.8 0.00 43.4 39.2 47.4 

U 53.4 57.7 50.6 58.1 53.6 57.5 57.2 56.3 57.2 56.3 57.1 56.1 0.00 56.5 60.7 52.5 

 

 Finally, we approached forecasting using a decision tree methodology.  A C5.0 Decision 

Tree was built using IBM’s SPSS Modeler 14 package.  The C5.0 algorithm is a technique often 

used in data mining for predicting or for classifying (Barry and Linoff, 2004).  It requires a target 

variable that is non-numeric, and a set of input variables that may be either numeric or non-

numeric.  In a step-wise process, the algorithm repeatedly separates the original data into smaller 



and smaller sets where each smaller set is more similar on the value of the target variable than 

was the immediately previous set.  At each step of the process, the decision tree must decide 

which of the input variables does the best job splitting that set into more similar subsets. The 

variable chosen to use for splitting the data at each point is the one that provides the maximum 

information gain (Patil et al 2010).   In other words, the algorithm checks each possible input 

variable at each step of the process.  The one which would create a split with the most 

homogeneous groups following is the variable selected at that step.  Various branches of the tree 

may use different splitting variables for their steps.  The end result is a tree with an associated set 

of rules that classify any row of input data as likely to have a specific target value. 

The decision tree for this problem was trained using the data up through December of 

2009.  We gave the decision tree the following inputs to use in building the tree:  the up-down 

patterns from one to seven days, the number of up days in 1 to five days, and the closing value 

today.  The resulting decision tree was wide and deep, and correct about 67% of the time.  The 

results of the decision tree’s accuracy for both the training and validation sets were calculated.  

These results are shown in the next three tables. Table 5 shows the overall results on the training 

data. 

 

Table 5  Decision Tree results on training data 

 

Result Count Percent 

Correct 10,165 67.38% 

Incorrect 4,922 32.62% 

Total 15,087  

 

The results on the validation data are shown in Table 6.  Here we see that the percent of 

correct forecasts for tomorrow’s direction has dropped from the training set, but is still higher 

than the best result in Table 3 using the simple pattern forecasts.  Thus, while the robustness 

from the training set shows a drop, the decision tree forecast remains a valuable model.  

 

Table 6  Decision Tree results on validation data 

 

Result Count Percent 

Correct 222 57.36% 

Incorrect 165 42.64% 

Total 387  



We break this validation set data up further into correctness on each direction in the 

validation set, as shown in Table 7.  This table shows both the number of times a forecast of up 

or down was made, and the percentage of times that the forecast was correct or incorrect.  We 

see that the decision tree does a better job on Up forecasts than on Down, as have all the models.  

However, it is the only one of the forecasting methods to do better than 50% on Down days.  Of 

the times that the decision tree predicted Up, it was correct 61% of the time, also a better 

performance than any of the simpler string methodologies. 

 

Table 7  Matrix of Up and Down forecasts vs. actual movement 

 

 Forecasted Down Forecasted Up 

Actual Down tomorrow 72 96 

 51.06% 39.02% 

Actual Up tomorrow 69 150 

 48.94% 60.98% 

 

In addition to supplying a forecast for future values, this Modeler technique also looks at 

each of the input variables and ranks them in terms of relative importance to the model, with 

more important variables occurring higher up on the tree.  The four variables ranked highest in 

importance to the forecast were the direction today, the closing value today, the 7-day pattern 

[for example UDUUDDU], and the number of Up movements in the last three days.  Comparing 

this with the performance of the simple pattern forecasting models, we see that the simple pattern 

models that did the best were based on one-day and six-day patterns.  The decision tree used one-

day, seven-day and three-day information.  So, both approaches took close and distant 

information into consideration. 

  

 

SUMMARY 

 

In this paper, we investigate the daily movement patterns from 1950 through 2011 for a total of 

61 years, over 15 thousand observations.  Our interest is in analyzing Up and Down movements 

independent of magnitude.  We first look at the patterns created in this data set in two ways, as 

strings of Ups and Downs over time, and then as the number of Ups occurring with strings of 

different lengths.  These values are tallied for each decade in order to discover whether or not 

specific patterns occur with the same frequency decade to decade.  We find that, in every decade, 



there are more Up days than Down days, and the counts clearly show that some specific string 

patterns continue in about the same percent across time. This robustness in patterns across 

several decades is a useful finding that supports the longterm “buy and hold” strategies.  

When we switch to counting the number of Up days within strings, regardless of where 

they occur, the patterns across decades become even more striking.  In particular, we can see that 

5-day combinations in every decade from 1950 on show that there are more strings with exactly 

3 Ups than 2 Ups, more with 4 Ups than 1 Up, and more with 5 Ups than no Ups. 

We use this pattern evidence to forecast future Up or Down movements in several ways, 

first by applying past pattern strings to future data, then by using the decision tree methodology.  

A C5.0 Decision Tree was built using IBM’s SPSS Modeler 14 package.  The C5.0 algorithm is 

a technique often used in data mining for prediction. 

We find that the simple pattern forecasts, using only strings of one specific length at a 

time, do best with either one-day or six-day information.  The decision tree outperforms these 

simple pattern forecasts by using information from multiple inputs with one-day, three-day, and 

seven-day patterns having the most influence.  The ability of some of these models to generate 

forecasts which outperform the random walk gives us an indication that further research could 

improve the performance of models using the decision tree methodology employed in this paper 

to produce conditional forecasts.  Further analysis needs to focus also on the optimal size of 

training and validation sets.      
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