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Are Foreign Currency Markets Interdependent?  

 

Evidence From Data Mining Technologies 
 

 

1. Introduction 

 

 Currency trading predates both bond and stock trading as a financial innovation. However, the past 50 

years of globalization have seen a marked increase in the amount of currency trading. Today, the daily 

volume of currency transactions in currency futures, forwards, swaps and options dominates all other 

types of trading volumes. This volume is driven by globalization that includes both trade and foreign 

direct investments, by portfolio diversification and by hedging and speculation, among other factors.  For 

a discussion of financial globalization in the past few years, see Lane and Milesi-Ferretti (2001, 2006), 

Devereux and Sutherland (2007), and Campbell, Madeiros and Viceira (2007).   

 Financial globalization is a process driven both by global trade and global finance.  Global trade 

existed throughout history, but has been more emphasized since the second world war.  The primary 

reason for such an emphasis was the political motivation to employ global trade as an engine of global 

economic growth.  Countries were encouraged to promote their comparative advantage and produce 

goods and services that could be traded for products that they were not able to produce as efficiently.  

This process encouraged global specialization and strengthened the interdependence of nations.  

Simultaneously, capital moved to finance investments in countries that exhibited such comparative 

advantages and as a result, global banking was accelerated.  Global trade and global finance generated a 

large volume of currency trading with national central banks coordinating their policies to reduce 

potential risks of currency fluctuations.  Furthermore, sovereign nations extended their borrowing from 

domestic markets to global markets and thus individuals, firms, and sovereign governments all 

participated in the supply and demand of global currencies.  Thus, both global trade and finance 

intensified the interrelationships among foreign currencies.  These fluctuations need to be explained both 

in the short run and in the long run. 

 In contrast to econometric approaches, a data-driven modeling approach used in data mining 

makes no prior assumptions about data distributions or types of relationships.  There are no parameters to 

be estimated nor is there an assumed model form.  Instead, this non-parametric approach searches a large 



data set to see whether any patterns are exhibited in that set.  If the patterns found meet certain minimum 

requirements, then the pattern is recorded for further inspection.  The usefulness of the methodology is 

judged by looking at new data sets to see whether or not these patterns also occur there in about the same 

percent.  If so, we say that the data mining model is robust and has found a pattern that holds over time.  

This study uses two data mining methodologies:  a decision tree methodology named Classification and 

Regression Trees (C&RT), and an association analysis methodology called Generalized Rule Induction 

(GRI) to uncover patterns among daily cash closing prices of eight currency markets.   Data from 2000 

through 2009 is used, with the last year held out to test the robustness of the rules found in the previous 

nine years.  Results from the two methodologies are contrasted.  A number of rules which perform well in 

both the training and testing years are discussed as empirical evidence of interdependence among foreign 

currency markets.   

 In section 2 of this paper we give a review of various dimensions of currency interdependencies 

and formulate our fundamental hypothesis. Then in section 3 we describe the novel methodological 

approach used in this paper to search for interdependencies, discuss the data used in section 4 and the 

results obtained that confirm the hypothesis stated in section 5.  Conclusions are presented in the last 

section.  In particular, we find that to optimize being correct on directional movements in currency market 

prediction, one would follow association analysis rules for the European markets, and decision tree rules 

for the American ones.  For example, GRI indicates that when Australia and Japan move in the same 

direction on one day, then the European markets also move in that direction.  These rules affect the euro, 

the British Pound and the Swiss franc and are correct between 76 and 87 percent of the time.  For the 

American markets, specific mixed combinations of movement in Asia and Europe are precursors of 

movement in the Americas.  For example, the C&RT decision tree indicates that when Australia and the 

British Pound are both down, but the Yen is up, then the Mexican Peso is down over 83% of the time. 

   

2. Literature Review and Hypothesis 

Interrelationships between and among foreign currencies have been investigated along four main 

dimensions.  The first dimension involves the covered interest rate parity. This approach argues that a 

trader has at any moment two alternative investment strategies involving two foreign currencies.  For 

clarity of argument suppose that we consider the euro and the U.S. dollar.  One strategy is to invest for 

one year, say $1, in the U.S. and earn the U.S. interest rate, or to convert the $1 into Euros using today’s 

exchange rate and invest the exchanged Euros at the European Central Bank interest rate and concurrently 

buy a one year euro forward euro contract so the investor could convert at the end of the year the invested 

euro and its earned interest into U.S. dollars. In equilibrium these two strategies should yield the same 

return. Numerous papers test and extend this theory.  For example, Coffey, Hrung and Sarkar (2009) 



show that the theory works well during certain times but not at other times.  They document that during 

the early months of the global financial crisis of 2007, the interest rate parity did not hold and 

interrelationships among global currencies were interrupted.  The interest rate parity is thus used to 

explain interrelationships among foreign currencies in the short run. This theory is discussed in detail in 

most international finance and international economics textbooks such as Krugman and Obstfeld (2009) 

and recently exposited in Lee and Malliaris (2011).  This theory associates changes in currencies to 

changes in the corresponding short-term interest rates of the national central banks and sets the 

foundations for foreign currency interdependencies attributed to interest rates.  Naturally, economists are 

curious to know if there are additional reasons that may explain currency interdependencies.   

 The second dimension attributes currency interrelationships to macroeconomic variables such as 

prices, GDP. Schneller and Vanstone (2010) analyze how the release of various macroeconomic news 

affects the exchange rate behavior.  Interestingly enough they perform numerous tests and conclude that 

“no exploitable trading patterns were found” 

 The third dimension of currency interrelationships covers the much broader area of portfolio 

management. Within this category, issues of portfolio diversification, hedging and speculation are 

investigated. Kroencke, Schindler and Schrimpf (2011) offer a comprehensive analysis of international 

diversifications benefits that result from various foreign exchange investment styles. They find that there 

are significant diversification benefits that can be obtained from foreign currencies.  Campbell, Medeiros 

and Viceira (2007) and more recently Schmittmann (2010) examine the benefits from hedging the 

currency exposure of international investments in both single and multi-country portfolios.  

 The last approach involves the extension of behavioral finance to foreign currencies.  For 

example Menkhoff, Sarno, Schmeling and Schrimpf (2011) apply currency momentum strategies in 

foreign currencies and find that significant cross-sectional spreads between past winner and loser 

currencies. 

 In the long run, however, currency interrelationships are influenced by each countries’ economic 

fundamentals.  These fundamentals include the growth of domestic GDP, rate of inflation, technological 

advances, labor resources, institutional and political frameworks.   Global trade and finance, with their 

impact on foreign currency markets, have been researched extensively using a variety of methodologies.  

For example, Elyasiani and Kocagil (2001) study the interdependence and dynamics in the currency 

futures markets.  A different approach to studying the behavior of currency markets is used in Elyasiani, 

Kocagil, and Mansur (2007) who employ a generalized variance decomposition analysis.  A large 

segment of currency markets research utilizes time series methodologies such as Orlov (2009).  In 

addition, authors such as Nikkinen, Sahlstrom, and Vahamaa (2006) employ derivative markets 

methodologies to explain linkages among major currencies.   



 In view of the existing literature that searches for interdependencies among foreign currencies 

using primarily time series methods and financial reasoning we hypothesize that foreign currency data 

contain such relationships and employ data mining methodologies described in the next section to 

discover exact interrelationships.  

 

 

3. Data Mining Methodologies 

 

Changes in information and communication technologies have accelerated the processing and 

transmission of data and ideas to a level far beyond our capabilities of a decade or two ago.  This ability 

to collect considerable amounts of data quickly and easily has led to the rise of a set of investigative 

techniques designed to efficiently analyze large, often sparse, data sets.  These collective techniques are 

known as data mining.   Data mining is a set of exploratory methodologies designed to uncover patterns 

in large data sets.  Though a researcher may have some question driving the search for patterns, the 

process does not make any assumptions about the distribution of the data, nor are hypotheses stated and 

tested.  Rather, it looks at a large body of data and simply attempts to find patterns.  The most interesting 

and useful patterns are those that remain stable on new data from later sets.  Thus one common method 

for testing any data mining methodology is to feed a new data set, not used for building the model, 

through the trained model to see whether the discovered patterns are still valid. 

 In this study, we begin with data from eight currency markets that reflect the price of 1 US Dollar 

in each of the currencies at the closing time of the local market.  The question driving the data mining is a 

broad one of “does movement in one market influence movement in another market?”  We apply two data 

mining techniques to uncover common patterns in various markets.  These patterns are tested against a 

validation set comprised of a year’s worth of data following the time of the training set.   

 This study uses two data mining methodologies:  Classification and Regression Trees (C&RT) 

and Generalized Rule Induction (GRI).   Unlike many methods from statistics, C&RT did not exist before 

machine learning methods were available.  C&RT is a decision tree methodology that uses recursive 

partitioning to divide the training data set into groups with the same value of a target variable (Loh, 

2011).  It begins with all the target values in one large bucket, called the root of the decision tree.  The 

methodology then looks at each input variable one at a time.   A measure of impurity is calculated for 

each variable.  Impurity refers to the amount of non-equal target values that would result in the two new 

child buckets if we were to divide the original target set on the basis of an input variable’s values.   The 

input variable that yields the minimum amount of impurity is used to split the original data set.  The data 

set is said to branch on this variable and the branching results in two buckets.  Now, the same technique is 

applied to each of these two child buckets and another split may result in a further decrease of impurity.  



The split at each child bucket does not have to be on the same variable.  This process continues until no 

further possible split on an input variable value will decrease the impurity.  In C&RT, all splits are binary 

(unlike some other decision tree methodologies).  A bucket, or node, is labeled as “pure” if it contains 

only one value of the target variable.  The overall goal of any decision tree methodology is to minimize 

impurity and maximize purity.   The final result of C&RT is often represented graphically in a tree 

structure.  This visual representation is easy to read.  One simply follows the path from the root of the tree 

to a branches’ end, using the decision made at each split.   New data can be fed through a trained tree by 

following the set of step-wise binary splits to a final leaf of the tree.  The forecasted value will be the 

predominating target value in this leaf. 

 There are simpler data mining techniques, however, which can be used to forecast in more limited 

areas with non-numeric data.  One of these techniques is association analysis.  Association analysis, also 

called market basket analysis, was designed to answer the question “what occurs together?” and has been 

used by marketing specialists to discover which products are likely to be purchased by the same customer.  

It was developed as a technique that would discover interesting rules on large sparse data sets.  The data 

typically used for association analysis is non-numeric and dichotomous.  It does not focus on the amount 

of product purchases, only whether or not some of that product appears in the shopping basket. 

 GRI is an association analysis technique that was created by Smyth and Goodman (1992) as an algorithm 

that could be used for the induction of rules from a large set of examples.  Rather than using an expert 

(common, but labor intensive, at that time) to obtain rules, they wanted to create an algorithm that could 

automatically acquire rules from data, where that data existed.  They also wanted their technique to 

generate rules relating not only two columns of data, but possibly multiple columns.   Their focus was 

thus on finding a set of rules within that data.  These rules would be of the form “If A then B” where A 

could be multiple products.  Unlike decision tree analysis, in which any row of data fits only one path in a 

tree, GRI may generate many accurate rules on a single row.  For example, “if bread then milk”, if 

“diapers then milk”, and “if strawberries and champagne then chocolate” may all apply to a single basket 

with many items.  Each rule is accompanied by two measures, support and confidence.  Support is the 

percent of times the “if” part of the rule occurs in the data set.  When the “if” part does occur, confidence 

is the percent of times that the “then” part of the rule if also true.  Acceptable levels of support and 

confidence are set by the researcher before running the model.  Lower values will allow more rules to be 

generated.  After a set of GRI rules is created, one then filters the rules for a specific target variable (say, 

milk), and uses the most accurate rules of the set.  For a more detailed discussion of association analysis 

techniques, see Hand et al (2001) or Berry and Linoff (2004).   

 In today’s digital environment, collecting clean data is much easier that when these techniques 

were first put into practice.  Thus the number of rule induction methods and problems for their application 



has increased.  These methods continue to be popular for approaching problems in finance.  See, for 

example, Batyrshin et al (2005, 2007) for applications in time series databases, Albanis and Batchelor 

(2007) for an example with stock selection, Wang et al (2009) applies rule induction to forecasting time 

series, Tseng (2007) discusses co-movement in international stocks and Bossomaier et al (2010) details a 

simulation of trust in wealth management.   

 

 

4. Data Set 

 

We began with daily cash closing prices for the Australian Dollar, British Pound, Brazilian Real, 

Canadian Dollar, Euro, Japanese Yen, Mexican Peso, and Swiss Franc with respect to the US Dollar.  

That is, the data reflects the amount of each foreign currency that could be purchased with 1 US dollar 

that day.  Though the foreign exchange market is considered to be a 24-hour market, closing prices can be 

quoted for individual markets in pairs.  Thus, when the market in Tokyo closes, the value of the Yen to 

the Dollar can be established for that day.   All values in this data set are in these units of the foreign 

currency per US dollar.  The data sample covers the time period from January 2000 through July 2009 

and was downloaded from Bloomberg.    

 The relative movement in these currencies can be seen in Figure 1.  In order to view them all in a 

similar scale, the Mexican Peso has been multiplied by 10 and the Japanese Yen by 100 for the graph.  

There are a total of 2,491 observations for prices for each of the eight daily closing prices.  These prices 

were split into two disjoint sets for training and validation.  Data from January 1 2000 to June 30 2008 

was used as the training set (2215 rows), with the remainder, from July 1 2008 to July 21 2009, used as 

the validation set (276 rows) to judge the effectiveness of the data mining methods.   

 

 

FIGURE 1.  Currency Prices in units of 1 US Dollar, Peso & Yen scaled 

 



 
 

 

 To study the simultaneous directional market movements with non-numeric data, all data was 

transformed into “Up” or “Down” by comparing the value of the currency at time t with its value on the 

previous day.   The currency markets in this set group into three areas:  Asia (Aus. Dollar and Yen), 

Europe (Pound, Franc, and Euro), and Americas (Real, Can. Dollar, Peso).  Data from Asia was used to 

forecast movement in Europe.  Data from Asia and Europe was used to forecast movement in the 

Americas. 

 The decision tree tries to develop paths to leaves with a pure value of Up or Down on a single 

target.  One decision tree was created for each target in the data set.  The rules generated by this 

methodology give a path of Up and/or Down movements from various currencies to the target. 

For the association analysis technique, using a slight twist on the question of what is bought together, we 

can ask which major currency directional movements occur together, relative to the dollar, on the same 

day.  That is, when the price of 1 US Dollar in some foreign currency goes down or up, does the price of 

this dollar in other currencies move up or down on the same day?  This question does not look at the 

amount of change, only the directions in two or more markets.  The GRI methodology creates separate 

rules for up movement and down movement.  It can handle multiple targets at the same time.  The GRI 

methodology was run twice.  The first time, the Asian markets were possible antecedents, and the 

Brazil Real

Australian Dollar

Euro

Bristish Pound

Peso*10

Canadian Dollar

Swiss Franc

Yen*100



European markets possible consequents.  In the second run, the Asian and European markets were 

possible antecedents and the Americas were possible consequents. 

 

 

5. Results 

 

Each model developed a large number of rules.  In this section, we display one Up rule and one Down 

rule for each of the target markets.  Rules selected were those that did well not only on the training set, 

but also on the validation set.  Accuracy on the validation set is an indication that the pattern will be 

applicable on future data. 

 Table 1 shows results from the C&RT decision tree methodology and the best rules for each 

target market.  The first column of this table lists the target variable.  Column two displays the inputs that 

were used by C&RT in the rule, in the order that the methodology selected them.  The variables selected 

for a path to a target are those that the C&RT methodology found useful in splitting the data into more 

pure groups.  Variables not listed in a path were deemed as not useful by the C&RT methodology for the 

specific path to the target value.  For each target, there may have been several paths to a given value of 

the target.  For example, an Up value of a target may have had a half-dozen different paths that ended 

with Up.  The single path selected for display in the table was the one with the greatest stability from 

training to validation set.  For the training and validation sets, columns three and five display the percent 

of rows in which the inputs path occurred in the data set; columns four and six display the percent of time 

the target value matched the one listed in the row where the input path is as stated.  The results are listed 

with the European targets first, followed by the American targets. 

 For the six European target rules, only the Swiss Down rule used more than one input.  The rules 

for the Euro and the British Pound use same direction information from the Australian Dollar.  The Swiss 

Franc is more sensitive to same-direction movement in the Japanese Yen, followed by the Australian 

Dollar only when the movement is down.  The percent of the data sets with inputs matching those shown 

in each row of the table is similar from training to validation set, with the exception of days when both the 

Australian Dollar and the Japanese Yen moved down.  There was a drop of over 10% in the occurrence of 

this input pattern.  However, of more interest is whether or not the target value is correct when the input 

path is as stated.  The European targets show a nice robustness in these numbers.  Two of the up targets, 

the Euro and the British Pound, show even stronger performance on the validation set, while the others 

remain about the same. 

 For the targets in the Americas, we see that the input paths are generally more complex, and thus 

occur less frequently.  However, all paths remain strong in performance on the validation set.  In fact, the 

percent of times the target value is correct has increased in every validation set example.   



 

Table 1.  Selected rules generated by C&RT. 

 

Best Decision Tree Rules Training Set Validation Set 

Target Inputs %Rows %Correct %Rows %Correct 

Euro = Up Australia = Up  45.92 69.8 47.13 78.05 

Euro = Down Australia = Down 54.08 70.5 52.87 70.29 

Britain = Up Australia = Up  45.92 66.11 47.13 76.42 

Britain = Down Australia = Down 54.08 67.3 52.87 66.67 

Swiss = Up Japan = Up 50.67 66.64 46.74 63.11 

Swiss = Down 

Japan = Down and Australia = 

Down 32.42 80.22 21.84 80.70 

Brazil = Up 

Australia = Up and Japan = 

Down 16.91 58.62 31.42 74.39 

Brazil = Down 

Australia = Down and Euro = 

Down and Swiss = Down and 

Britain = Down 27.8 61.45 23.75 80.64 

Mexico = Up 

Australia = Up and Swiss = 

Down and Euro = Up 3.77 64.28 5.36 71.43 

Mexico = Down 

Australia = Down and Japan = 

Up and Britain = Down 11.53 63.03 18.77 83.67 

Canada = Up Australia = Up  45.92 65.72 47.13 78.05 

Canada = Down 

Australia = Down and Euro = 

Down 38.12 72.24 37.16 83.51 

 

 

 The results from the association analysis methodology, GRI, are shown in Table 2.  The order and 

interpretation of the columns is the same as in Table 1.  Of interest is the fact that, for most markets, the 

best rules generated by GRI do not exactly match those generated by C&RT.   In GRI, there is no 

ordering in a path as there is in C&RT, but the combination of inputs matches those selected by C&RT in 

only three rules:  Swiss = Down, Canada = Up, and Canada = Down.  The other nine rules are either more 

complex, or select different market movements as inputs.  For all the European markets, directional 

movement depends on both the Australian Dollar and the Japanese Yen.  All market movement is 

identical to that of Australia and Japan when both move the same way.  Because the input combination is 

more restrictive, we see that the percent of rows to which the rules apply is smaller.  The amount of time 

the rules are correct in essentially the same for the training and validation sets for down movements of the 

British Pound, but show an increase in the validation set over the training set for all other European 

market movements. 

 In the markets of the Americas, only up movements in Mexico ignore what happened in the 

Australian Dollar that day.  All other American market movements require the Australian Dollar to move 

the same direction.  However, this movement must be in combination with other markets.  Up movements 



in the Brazilian Real and the Mexican Peso look for mixed directions in other markets, especially a Down 

movement in the Swiss Franc.  Any of these market movements that take into account the Swiss Franc 

moves in an opposite way from the Franc that day.  We see that some of these rules have a small percent 

of data rows to which they apply, most notably those of the Mexican Peso.  However, when the rule does 

apply, the validation set shows a high percentage of correctness for the rule. 

 

 

Table 2.  Selected rules generated by GRI. 

Best Generalized Rule Induction Rules Training Set Validation Set 

Target Inputs %Rows %Correct %Rows %Correct 

Euro = Up Australia = Up and Japan = Up 28.94 78 17.39 85.42 

Euro = Down 

Australia = Down and Japan = 

Down 32.42 81.45 21.84 85.71 

Britain = Up Australia = Up and Japan = Up 28.94 72.07 17.39 77.08 

Britain = Down 

Australia = Down and Japan = 

Down 32.42 76.71 21.84 76.19 

Swiss = Up Australia = Up and Japan = Up 28.94 76.44 17.39 87.50 

Swiss = Down 

Australia= Down and Japan = 

Down 32.42 80.22 21.84 80.70 

Brazil = Up 

Australia = Up and Swiss = Down 

and Japan = Down 8.08 64.8 11.23 70.97 

Brazil = Down 

Australia= Down and Euro= 

Down 38.06 61.09 37.68 73.08 

Mexico = Up 

Euro = Up and Britain = Up and 

Swiss = Down 3.02 64.18 5.8 87.50 

Mexico = Down 

Australia = Down and Euro = 

Down and Swiss = Up 4.24 64.89 6.16 76.47 

Canada = Up Australia = Up 45.92 65.72 47.13 78.05 

Canada = Down 

Australia = Down and Euro = 

Down 38.12 72.24 37.16 83.51 

  

Table 3 shows, for each of the markets, the model that had the highest percent of correctness on the 

training set and on the validation set.  If we were basing our model choice on only the training set, we 

would use the GRI model in all but two cases.  These two, the Real down and the Peso up, each have a 

complex path to the target value.  However, in data mining, decisions are most often based on results 

from the validation set, an entirely new set of data not available to the methodology during training.  In 

the validation set, we see that, for the European group of targets, the GRI correctness is higher than or 

equal to the decision tree values in each rule.  For the Americas, however, the C&RT validation set 

correctness is higher than or equal to that of the GRI in 5 out of 6 rules.   In only one rule, for the 



Mexican Peso moving up, is GRI the best rule to follow.   Thus, to optimize being correct on directional 

movements, one would follow the GRI rules for the European markets, and C&RT for the American ones.   

 

Table 3.  Highest Training and Validation sets correctness per market. 

 

Target 

Best Training 

Model 

 

% Correct 

Best Validation 

Model % Correct 

Euro = Up GRI 78.00 GRI 85.42 

Euro = Down GRI 81.45 GRI 85.71 

Britain = Up GRI 72.07 GRI 77.08 

Britain = Down GRI 76.71 GRI 76.19 

Swiss = Up GRI 76.44 GRI 87.50 

Swiss = Down Equal 80.22 Equal 80.70 

Brazil = Up GRI 64.80 C&RT 74.39 

Brazil = Down C&RT 61.45 C&RT 80.64 

Mexico = Up C&RT 64.28 GRI 87.50 

Mexico = Down GRI 64.89 C&RT 83.67 

Canada = Up Equal 65.72 Equal 78.05 

Canada = Down Equal 72.24 Equal 83.51 

 

 

 

6. Conclusions 

 

This paper illustrates the application of two machine learning techniques, decision trees and association 

analysis, to ten years of currency movement data.  These two exploratory methods yield encouraging 

results for a trader wishing to diversify a basket of currency products.  Both methods are trained on nine 

years of data and validated on the tenth year.  The rules resulting from the models show robustness in 

their application to the validation set, an indication that the trading rules uncovered would be stable over 

time.   

 The robustness of the rules obtained from techniques that are unrelated to financial reasoning has 

useful implications for traders, portfolio managers and hedgers.  Currency traders have been very active 

during the past ten years in carry trades (Jain (2010), Jorda and Taylor (2009)). These trades involve 

selecting an appreciating currency that is bought and a depreciating currency that is sold to finance the 

long position.  Such positions are influenced also by domestic interest rates and growth prospect in the 

two countries. These trades have been successful for several years before the global financial crisis that 

reversed positive and negative momentum of several currencies.  The mechanical rules identified in this 

paper can usefully supplement financial modeling of carry trades. 



 Well diversified portfolios often invest a small portion of their capital in foreign currencies.  The 

selection of currencies and the amounts invested in each are guided by modern portfolio selection 

techniques.  These techniques can usefully be supplemented by the results of the methods applied in this 

paper. 

 Finally, global trade and its financing involve several risks with currency risks being on the top of 

the list.  Hedging such risks can be performed using the traditional currency hedging techniques of 

computing optimal hedge ratios for currencies trading in futures markets.  For currencies with lower 

trading volume and no futures contracts or options on these currencies, cross hedging techniques are used 

that can benefit from the methodologies applied in this paper. 
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