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Abstract

Multilayer routing is an important problem in the physical design of integrated cir-
cuits as technology evolves towards several layers of metallization. MulCh is a channel
router accepting specification of an arbitrary number of routing layers. Though sev-
eral other channel routers for three layers of interconnect have been proposed, the
only previously reported practical implementation for an arbitrary number of layers
was that of Chameleon [4]. Chameleon is based on a strategy of decomposing the
multilayer problem into two and three layer problems in which one of the layers is
reserved primarily for vertical wire runs and the other layer(s) for horizontal runs.
In some situations, however, it is advantageous to consider also layers that allow the
routing of entire nets, using both horizontal and vertical wires. Hence, MulCh incor-
porates layers permitting this more general type of wiring. MulCh can route channels
with any number of layers and automatically chooses a good assignment of wiring
strategies to the different layers. The algorithms have been devised so that MulCh is
expected to always perform at least as well as Chameleon in terms of area occupied
by the routing. In test cases, MulCh shows significant improvement over Chameleon
in terms of channel width, net length, and number of vias.

1 Introduction

Throughout this paper, we discuss the standard grid-based, channel routing problem. Ter-
minals lie on grid points along two horizontal line segments which delimit the channel. Each
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N00014–87–K–0825 and N00039–87–C–0182. Ron Greenberg was supported in part by a Fannie and John
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Research Corporation.
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Figure 1: A representative channel routing problem in two layers. The horizontal wires
(solid) are in one layer and the vertical (dashed) in the other layer. The vias are represented
by squares and the terminals by circles.

terminal is labeled with a net number, and the problem is to connect terminals belonging
to the same net, using horizontal and vertical wire segments in a grid of a specified number
of layers. (Additionally, some nets may be required to be routed out the left and/or right
side of the channel at an unspecified position.) Nets can connect from one layer to another
by way of a contact cut or via; nets cannot intersect one another on the same layer. The
primary goal in channel routing is to minimize the channel area. If as is frequently assumed,
we cannot extend the channel in the horizontal direction, the objective is to minimize the
channel width, the vertical separation between the two lines of terminals. (Variations of the
problem, allowing for horizontal shifting of terminals are not considered here.) Secondary
goals are to minimize net length and the number of vias. Achieving these secondary goals
reduces the time required for signal transmission and increases the probability of fault-free
fabrication.

Figure 1 shows a channel routing problem and a solution in two layers, where each
layer has been reserved for wires running in one direction (referred to as reserved layer
or Manhattan routing). We refer to each of the vertical grid lines as a column, while the
horizontal grid lines are referred to as rows or tracks. We assume here that wires must stay
unit distance away from the channel boundaries except when connecting vertically to pins.
Thus, the routing shown in Figure 1 achieves the minimum possible channel width when
the layers are reserved to individual wiring directions. This optimality follows from the fact
that there exist columns which must be crossed by four nets. The convention in this paper
is to refer to a routing such as the one in Figure 1 as being of width four, i.e., we count the
number of tracks strictly between the lines of terminals.

The lower bound on channel width mentioned in the previous paragraph is one of a few
important measures of channel routing difficulty. The bound already alluded to is referred
to as the density and is generally denoted d. It is the maximum over all columns of the
number of nets which must cross the column. A natural variation on this bound will be used
in the upcoming discussion of multilayer routing. Another lower bound on channel width
in the two-layer Manhattan model is the flux, denoted f , which was introduced by Baker,
Bhatt, and Leighton [1]. These authors show that any two-layer channel routing problem
can be solved in width 2d+O(f) (or d+O(f) if all nets have two terminals), and they note
that flux appears to be bounded by a small constant for practical problems. This paper will
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not make use of flux as a measure of channel routing difficulty; instead it will use an easier to
compute measure that has less theoretical justification but is useful in practice. This latter
measure is the length of the longest path in the vertical constraint graph (VCG). The VCG
is formed by using a node to represent each net and including an edge from net A to net B
if a pin for net A appears above a pin for net B in some column of the channel. The length
of the longest VCG path is a lower bound on channel width under the Manhattan model
with the additional restriction that each net includes only one horizontal wiring segment,
i,e., “doglegs” are not allowed. In fact, MulCh does make some use of doglegs, but VCG
path length will still be useful as a rough indicator of routing difficulty.

The channel routing problem was first introduced by Hashimoto and Stevens [14] in
1971 and has accumulated an extensive history in the literature. A recent survey has been
produced by LaPaugh and Pinter [18]. One of the most important lines of classification for
existing channel routing algorithms is the distinction between “provably good” algorithms
and “practically good” algorithms. That is, an algorithm that produces excellent results
in practice may have a terrible worst-case performance in theory due to pathological in-
stances of the problem unlikely to occur in the real world. On the other hand, an algorithm
which has a provably good worst-case performance may virtually always perform worse
than a good practical algorithm on “real” problems. The ideal combination of provably
and practically excellent performance is unlikely to be attained since most variations of the
channel routing problem are generally believed to be NP-complete, and, in fact, rigorous
NP-completeness proofs have been provided for various two-layer routing styles [17, 24].
This paper concentrates on a practical, heuristic approach to multilayer channel routing.

Limited results have been presented for multilayer channel routing. The additional
layers of interconnect provide more degrees of freedom, but using this freedom effectively
is difficult. Chen and Liu [6] proposed an extension to three layers of the algorithm of
Yoshimura and Kuh [25]. Bruell and Sun [5] provided a three layer router based on the
greedy algorithm of Rivest and Fiduccia [23]. A three layer algorithm of Heyns [15] actually
included a departure from the approach of reserving each layer to a single routing direction;
such a departure is an important feature of MulCh. Three and four layer routing algorithms
have also been provided by Cong, Wong, and Liu [7]. Enbody and Du [10] have proposed
a multilayer algorithm which has been implemented and tested in the three and five layer
cases. Additional works on multilayer routing have considered more restrictive models of
allowable wiring than are considered here or have been geared more towards the goal of
theoretical efficacy rather than practical efficacy [2, 3, 13].1

Recently, a multilayer channel router, Chameleon [4], was developed to handle any num-
ber of interconnection layers. On various sample problems, Chameleon obtains performance
generally superior to the preexisting routers. It can handle channel routing problems with
cyclic vertical constraints, with different design rules on different layers and with constraints
on the contact locations, i.e., stacked vias can be permitted or disallowed.

The basic approach of Chameleon is to divide the original multilayer problem into essen-
tially independent subproblems which are assigned at most three layers each. Chameleon

1There are also many other references we have omitted which deal with the “knock-knee” model of
routing, in which essentially no overlap of wires on different layers is allowed. For example, see [16].
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requires that each layer be reserved primarily for either horizontal wire runs (an H layer)
or vertical wire runs (a V layer). The original problem is decomposed by assigning the
nets to subproblems, or groups, each of which is assigned either one H and one V layer
(an HV or VH group) or two H layers and one V layer (an HVH group). Only in the late
stages of detailed routing is it possible that wires will digress from this cast. This strategy
was inspired by the implicit assumption that the density of the channel is in general much
larger than the number of interconnection layers. However, there are situations especially
in printed-circuit boards and hybrid circuits where better area utilization can be achieved
if sets of nets are routed entirely on one layer.

MulCh is a multilayer channel router that optimizes area utilization by allowing a third
type of group, which is assigned a single layer on which wire runs in both the horizontal
and vertical directions are permitted (a B layer). This creates obvious complications in that
nets assigned to a B layer must not cross if the group is to be routed independently. Use
of B layers does, however, give more flexibility and thus may enable a reduction in the area
of the route. Possible reductions in total net length and the number of vias are additional
benefits.

Like Chameleon, MulCh is composed of two major parts, the partitioner and the detailed
router. The partitioner determines the group types used (e.g. HV, HVH, and B) and assigns
nets to each of them. The detailed router actually places all the wires in the channel as
required to connect pins lying on the same nets. Sections 2 and 3 of this paper describe the
partitioner and detailed router as implemented in MulCh. Section 4 provides experimental
results, and section 5 contains concluding remarks.

2 Partitioning the Problem

The partitioner has two basic tasks. It must choose the group types (e.g., HVH, HV,
and B), and it must assign the nets to the groups. In Chameleon, these two tasks are
totally separated; the choice of group types depends only on the number of layers (and for
nonuniform technology, the mask information). In MulCh, complete separation of these
tasks is not possible since the use of B layers introduces uncontrovertible constraints on net
assignment. MulCh seeks a good partition by performing a small number of iterations of
the two-part process of first choosing group types and then assigning nets. Thus, the choice
of group types can be discussed without delving into the details of net assignment, which
will be covered afterwards.

For simplicity, attention is restricted to the case of uniform technology with stacked vias
allowed. Other cases could be handled with little additional complication.

2.1 Choosing the Group Types

Chameleon is able to choose group types independently from net assignment, because the
best results are generally obtained with the largest possible number of H layers. That is, the
partitioning strategy and the detailed router are good enough that the resulting channel
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width is usually very close to the density divided by the number of H layers (the lower
bound under strict adherence to the H-V wiring model). Thus the strategy of Chameleon
is to use as many HVH groups as possible and up to two HV groups.

MulCh follows the same approach once the number of B layers is set, but it is not as easy
to determine how many B layers to use. Using more B layers reduces the standard lower
bound on channel width (density divided by the number of layers which permit horizontal
routing), but an excessive number of B layers may prevent us from coming as close to this
lower bound because of the additional constraints on net assignment and detailed routing.2

Taking these two competing considerations into account leads naturally to the following
strategy. We start with no B layers, assign nets to the groups, and estimate the area
required to complete the routing. Then we add the minimum number of B layers necessary
to increase the total number of layers which permit horizontal routing, and again assign
nets and estimate the area. We repeat this process as long as the area estimate shows
improvement3 and then settle on the number of B layers which yielded the best area estimate.
For example, if the number of layers is seven, we start with group types HVH, HV, HV.
Then we try HVH, HVH, B, which increases the number of layers permitting horizontal
routing from four to five. If the area has improved, we then try HVH, B, B, B, B, since any
intermediate number of B layers will not increase the number of layers permitting horizontal
routing. Finally, if the area has again improved, we try seven B layers.

In our experiments, we have almost never obtained improved channel width by deviating
from the layer assignment strategy just described. If one is willing to perform some extra
work in search of reduced net length or via count or a long-shot chance of reduced area, it
is reasonable to try also one and two B layers more than the best number obtained under
the scheme above. It should be noted that by starting with zero B layers, we replicate
the approach of Chameleon, so we expect that our results will be no worse than those of
Chameleon as long as we are reasonably good at estimating area once we have assigned the
nets to groups. (The area estimate used for B groups is the actual width as determined
by performing the complete route. For HV and HVH groups we base the estimate on
density, which is fairly accurate once we have paid attention to other concerns during net
assignment.) Also, by starting with few B layers and increasing the number, the running
time increases only as we obtain more and more improvement upon Chameleon.

2.2 Net Assignment

Once a tentative set of group types has been chosen, nets are assigned to groups one at a
time, starting with those nets belonging to cycles in the vertical constraint graph (VCG),

2It is interesting to note that if every net has at least one terminal on each of the top and bottom of
the channel, then an algorithm of Dagan, Golumbic, and Pinter [8] can be used to determine the number
of layers required if only B layers are allowed. But if nets with terminals on only one side of the channel
are allowed, the problem becomes NP-complete [20, Section V.2.2]. Furthermore, the algorithm of Dagan,
Golumbic, and Pinter does not provide any obvious insight on what to do when the number of layers
available is not sufficient to use only B layers, nor does it indicate how to assign nets to layers so as to
minimize channel width if the number of available layers is more than required to use only B layers.

3The actual requirement is that the new result be at least as good rather than strictly better.
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and then proceeding through the others in order of first appearance when moving across the
channel from left to right. Each net is initially added to all the groups, and a cost function
for each group is computed. Then the net is removed from all groups except the best.

Two factors prove to be of key importance in estimating the channel width required to
route an HV or HVH group. First, the density of the nets in the group divided by the
number of H layers in the group is a lower bound on the channel width. Secondly, and
less critically, the length of the longest path in the VCG of the group is a lower bound on
channel width in the absence of detailed routing strategies which use doglegs or go beyond
strict adherence to the H-V wiring model.

For B layers, the considerations are different. First and foremost we must be sure that
a proposed assignment of a net to a B layer does not yield a nonplanar collection of nets in
that group. This check is easy, because we can efficiently determine at the beginning of the
partitioning process what all the pairs of crossing nets are. Then when an assignment of
net A is proposed, we can look at each of the nets crossed by net A and see if any of them
have been assigned to the group under consideration.

The net crossings can be found by marching around the four boundaries of the channel
in a “circle” and utilizing a stack of nets (with some extra operations beyond the normal
stack abstraction). Actually we first march around one more time in a preprocessing step to
determine for each net where its first and last occurrence are in the marching order. Then
in the main pass around the channel, each time we arrive at a net whose current occurrence
is not its last, we push it on the stack. When we arrive at a net whose current occurrence
is not its first, we also scan down through the stack until we find the previous occurrence
of the current net and cut it out from the stack. Each of the nets we pass on the way
crosses the current net, and we can associate the crossing information we glean with each
of the relevant nets. This algorithm determines all of the net crossings in time linear in
the number of net crossings (multiple crossings of the same nets count) plus the number of
positions on the channel boundary.

The above discussion of net crossings has glossed over the ordering of the side terminals,
which is not fixed in the original input. There is, however, a readily determined ordering
(not necessarily unique) of the side terminals which leaves only those net crossings which
must exist regardless of the ordering of the side terminals. Such an ordering is determined
and fixed for the partitioner, but this will not be taken to impose any restrictions on the
detailed router beyond the restrictions imposed by the essential nature of the partition.

Once we know that a set of nets in a B group is planar, density is an important but
imperfect measure of channel width. It is still a lower bound on the width required to route
the group, but certain bad arrangements of nets may require much larger channel width.
For example, the arrangement shown in Figure 2 has density 2 but requires a channel width
of 4.

The length of the longest VCG path is of even less relevance to the width of a planar
group. The example in Figure 2 serves also as an illustration of large area with minimal
VCG path length. Conversely, it is possible to construct examples with arbitrarily long
VCG path length that can be routed in width two. (Performing such a route does require
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Figure 2: This example illustrates low density and VCG path length but high channel width.

doglegs, but the routines described in Section 3 can compute doglegs for planar routing in
polynomial time, in contrast to the NP-complete situation for multilayer groups [24].)

Positively determining the width of a planar group is not straightforward except by es-
sentially performing the complete route. (Section 5 discusses a more efficient method which
was not known when MulCh was implemented.) Though the routing can be performed in
polynomial time, experience shows that doing this to evaluate every proposed net assignment
causes a large increase in running time on large examples but rarely leads to a reduction
in area. In practice, density has proven to be a good estimate of the channel width, but
blindly holding to this assumption will cause us to obtain worse results than Chameleon
on some bad examples. Thus, density is used as the measure of channel width for planar
layers during net assignment, but after completing net assignment for a given number of B
layers, the B layers are fully routed in order to estimate channel width. This prevents us
from making a major gaffe but avoids doing work which is not usually cost-effective.

Another consideration for B groups is that we would like to avoid including nets which
will likely stop us from making many future assignments to B groups. MulCh uses a rather
crude penalization on assignment of a net to a B group based on the excess over average of
the number of nets it crosses.

Chameleon’s cost function for evaluating the assignment of a net to a particular partition
group involves variously weighted penalty terms based on the notions discussed for two and
three layer groups, but MulCh obtains good results using a substantially simpler synthesis
of the measures just described. Each HV and HVH group is assigned a cost equal to the
maximum of its density and its longest VCG path. Each B group is assigned cost equal to
the density plus a penalty of the excess number of nets crossed by the net being assigned.
More precisely, for any given group, let d and p denote the density and greatest VCG path
length for the group with inclusion of the net currently being assigned. Also, let c denote
the number of nets that would be forced to cross the current net if placed together with it
in a single-layer (where c is determined in advance independent of any assignment of nets to
groups). Then the cost for an HV or HVH group is max{d, p}, and the cost for a B group
is d + c− µ, where µ is the mean value of c over all nets. The net to be assigned is left in
the group which yields the best cost function; ties are broken first on the basis of density,
then longest VCG path length, then number of nets in the group.

Several variations on the cost function have been tried. Most lead to improvement on
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some example problems and poorer results on other problems. One variant approach actu-
ally improves slightly more cases than it worsens but at the expense of some complication
in the cost function. In this approach, we include a severe penalty on density exceeding the
lower bound on channel width indicated by the number of H and B layers. For HV and
HVH groups, we add in the length of the longest VCG path, and this completes the cost
function for comparisons among HV and HVH groups. Then in order to make comparisons
between these groups and the B groups, we add density into the cost function for each group,
and we add the penalty on excess net crossings into the cost for the B groups. Though this
variation yields results which are on balance slightly better than those reported in Section 4,
there are still several cases which have been routed in less area by some other variation of
the program. Thus, the variant results may largely represent chance variations rather than
intrinsically superior approaches.

3 Detailed Routing

The detailed router in MulCh is an enhanced version of the detailed router used in Chame-
leon. The routing of nets in B groups is performed as a preprocessing step, which routes
nets using only their assigned layer. Once all nets in B groups have been routed, the HVH
and VH routing routines from Chameleon are used to route all remaining nets. Area on
a layer assigned to a B group that is not needed to route nets assigned to the group is
available for routing other nets.

Routing of nets assigned to B groups is accomplished with a data-structure called a
plane. A plane is simply a two-dimensional array, with a number of columns equal to the
number of columns in the channel, and a number of rows equal to the number of nets in the
B group it is used to route. Each entry corresponds to a 2-D grid point on the layer assigned
to the group, and thus a row represents a track which may be needed to route the nets in
the group. The assumption that the number of tracks needed is less than the number of
nets is valid, since the need for more tracks would imply that the nets in the group are not
planar.

While not optimal with respect to worst-case running time, the routines for routing B
groups are easy to implement and return optimal width routes for the chosen rectilinear
wiring model. Worst case running time is not a major concern, since the routing of B
groups is fast in comparison to other groups.

The algorithm for planar routing proceeds in a column-by-column sweep starting from
the left edge of an “empty” plane. Nets are routed straight across rows of the plane until a
change of course is forced by nets which enter or leave the channel at a given column. Nets
entering from the top of the channel are routed down the column as far as room permits,
while nets entering from the bottom of the channel may need to push other nets up out of
the way. When nets are pushed up, the effect is rippled back through previous columns in
order to maintain a valid routing. If, on the other hand, a net exits the plane, remaining nets
“fall” into the empty space in order to guarantee that the final route will be of minimum
width.
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One difficulty with the basic plane router is that it places all nets as far towards the
bottom of the channel as possible. This tends to generate nets with multiple-doglegs, as
well as unnecessary wire runs between the top and bottom of the channel. To alleviate these
problems, an optimizing routine is run on the plane after all nets in the B group have been
routed. This routine straightens unnecessary doglegs, and moves nets as close as possible
to their associated terminals. Figure 3 illustrates some of the operational features of the
single layer router.

Nets not assigned to B groups are routed by an amortized version of YACR2 [21] that
differs from that used in the original Chameleon only in that nets from other groups cannot
initially be placed on a layer assigned to a B group. This restriction is a pragmatic one,
based on a desire to avoid unnecessarily long computation times. In practice, the lack of an
associated vertical routing layer virtually guarantees that a net not in a particular B group
will be unroutable if placed on the group’s associated layer. In all other ways, however,
unused space on layers assigned to B groups is available for routing other nets.

While no experimental examples were in evidence, it is possible that the introduction
of B layers will increase the required channel width, while reducing the number of required
vias. A trade-off such as this is most likely to occur when the partitioner estimates that
a partition using B layers will have area identical to a partition without B layers. In such
cases, the inevitable reduction in available V layers makes the detailed routing more difficult,
and thus favors the partition without B layers for minimum area. If area is not the critical
parameter, however, the reliability advantages of fewer vias would speak in favor of the use
of B layers. In practice, the IC designer should run MulCh with and without the use of B
layers enabled, and choose the route that best matches the system design goals.

4 Experimental Results

This section describes experimental results obtained with MulCh as compared to results
obtained by Chameleon.4 Performance comparisons were made using a set of fourteen
benchmark examples described below. The most dramatic improvements were seen in the
four and seven-layer tests, where the mean reductions in channel width, total net length,
and total number of vias were about 8%, 4%, and 20%, respectively.5 MulCh routed several
of the sample channels in width not only less than that of Chameleon, but less than the
minimum theoretically possible without B layers.

Table 1 describes the example channels that were used to evaluate the performance of
MulCh. Example channels include 3a, 3b, and 3c from [25], the largest channel of the

4As stated earlier, MulCh was implemented by enhancing the Chameleon channel routing package.
The version of Chameleon used here is actually a sightly revised version of the package described in [4].
Performance of the revised version is broadly equivalent to the earlier package, with isolated examples
differing by at most a single row (generally in favor of the revised version). Since one purpose of the
presented results is to demonstrate the inherent benefits of B layers, all comparisons are to the version of
Chameleon that MulCh is based upon.

5These means are computed by first expressing the results of MulCh for each channel as a percentage of
the corresponding result for Chameleon. Then a geometric mean is computed and subtracted from 100%.
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After processing column 1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B B A C C D D E
A
A
A
A
A
D
D F F E E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Before adding/removing nets from column 4:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B B A C C D D E
A B B
A B B
A B B
A B B
A A A A
D D D D
D F F E E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

After adding/removing nets from column 4:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B B A C C D D E
A B B A
A B B A
A B B A
A A A A
A A D D
D D D F
D F F E E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
All columns routed:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B B A C C D D E
A B B A C C D D E
A B B A C C D D E
A B B A C C D D E
A A A A C C D D E
A A D D D D C C D D D E
D D D F F D D D D D E E E E
D F F E E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
After optimization:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B B A C C D D E
A B B A C C D D E
A A A A D D E
D D D D D D D D D D D D E
D F F E E E E
D F F E E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3: Shown is a plane as it appears at various points during the routing of the indicated
channel. The routing of column 4 is shown both before and after the nets for terminals at
the column are added or removed. Note the displacement of nets D, A and B that is caused
by the entrance of net F. In addition, note how the exit of net F in column 5 allows net
D to “drop” into the bottom row of the plane. The final optimization removes redundant
rows, unnecessary doglegs (nets A and D) and excess wire runs (net C).
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Example Density Number of Columns Number of Nets
3a 15 45 30
3b 17 62 47
3c 18 103 54
chris1 49 432 158
cycle.t 16 134 65
diff 19 157 52
ex1 16 417 235
ex2 15 421 282
ex3 11 421 291
ex4 19 421 270
r1 20 139 77
r2 20 117 77
r3 16 123 78
r4 15 150 74

Table 1: Benchmark channels

CMOS implementation of the SOAR microprocessor designed at Berkeley (chris1) [19],
the contrived cyclic-VCG example (cycle.t) from [4], the well-known Deutsch’s difficult
example [9] (diff), and four random problems (r1, r2, r3, and r4) generated by Rivest’s
program [22]. The examples ex1 through ex4 are difficult channels from an industrial
standard cell chip provided by C. P. Hsu.

Table 2 lists the performance of MulCh and its improvements over Chameleon. The
numbers enclosed in parentheses next to the channel width indicate the number of B layers
used on each example. The columns labeled ∆R, ∆NL, and ∆V give the differences
between the number of rows, total net length, and total number of vias needed by MulCh
and Chameleon to route a particular example. For convenience, entries under ∆NL and ∆V
are listed as percentage reductions in Chameleon’s results which were achieved by MulCh.
Though all fourteen of the examples were tested on two through seven layers, no B layers
were used by MulCh in the cases omitted from the table. In these cases results obtained with
MulCh are comparable, but not necessarily identical, to the results obtained by Chameleon.
The previously mentioned simplifications to the partitioner cost function are responsible for
the discrepancies.

The most interesting results are for four and seven layers, where the ability to easily
increase the number of layers available for horizontal routing encourages the use of B layers.
In the four-layer scenario, especially, MulCh often succeeded in simultaneously reducing the
number of rows and vias, as well as total net length. Reductions in total net length and
number of vias were also evident in cases where the number of rows was not reduced. The
four-layer table is particularly relevant, since it represents technology which is currently
becoming available. In the table for seven layers, fewer row number reductions appear than
in the four-layer table; savings came mostly as reductions in total-net-length and the number
of vias.

MulCh found only one opportunity for improvement when five and six layers were em-
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Ex. Width Net Length Vias

4 Lyr. New ∆R New ∆NL New ∆V
3a 6(1) 2* 744 9.9% 53 24.3%
3b 7(1) 2* 1227 6.5% 85 17.5%
3c 8(1) 1* 1903 5.6% 126 15.4%
chris1 23(1) 2* 17128 1.3% 346 16.0%
cycle.t 8(1) 1 2676 1.1% 217 4.0%
diff 9(1) 1 3129 1.2% 227 0.9%
ex1 8(1) 0 5342 3.1% 348 22.7%
ex2 7(1) 1* 5278 7.9% 349 31.7%
ex3 5(1) 1* 4363 7.5% 317 27.8%
ex4 9(1) 1* 5273 7.6% 316 29.0%
r1 10(1) 1 3285 4.0% 170 20.2%
r2 10(1) 0 2579 2.3% 124 23.5%
r3 8(1) 0 2248 2.6% 151 19.3%
r4 8(1) 0 2803 2.7% 199 18.4%

5 Lyr. New ∆R New ∆NL New ∆V
ex3 4(2) 0 4013 6.4% 192 56.3%

7 Lyr. New ∆R New ∆NL New ∆V
3a 4(1) 0 691 2.8% 57 16.2%
3b 4(1) 1* 1071 6.1% 83 19.4%
3c 5(1) 0 1670 1.8% 117 21.5%
chris1 12(1) 1* 15288 1.7% 345 16.3%
cycle.t 4(1)† 0 2203 3.8% 198 16.1%
diff 5(1) 0 2657 -0.9% 207 8.9%
ex1 4(1)† 0 4452 3.7% 321 28.3%
ex2 4(1) 0 4474 4.1% 337 32.2%
ex3 3(0)† 1 4030 5.0% 439 -0.5%
ex4 5(1) 0 4356 2.9% 338 24.7%
r1 5(1) 1 2858 3.3% 170 17.9%
r2 5(1) 0 2206 3.7% 128 21.0%
r3 4(1)† 1 1861 5.9% 150 20.2%
r4 4(1) 0 2431 3.8% 197 18.6%

Table 2: Results with MulCh
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ployed. For five and six layers, the number of layers available for horizontal routing does
not increase with the addition of only a single B layer, and consequently the partitioner
requires many coplanar nets to be successful.

Table 2 contains several entries worth noting. Of particular interest are the ∆R entries
marked with an asterisk, which indicate improvements over the optimal solutions obtainable
without the use of B layers. Also of interest is example ex3 for five layers, where a 56.3%
reduction in vias was realized.

In only a few of the cases shown in the table (as indicated by a dagger next to the width),
did MulCh achieve channel widths meeting the naive lower bound of density divided by the
number of H and B layers. This is to be expected, since the planarity requirement greatly
restricts the set of nets that can be placed in a B group.

While MulCh’s heuristic-search nature makes a complete analysis of running time im-
possible, it should be noted that all examples required less than eight minutes of time on
a Microvax III computer. Additional code optimizations should result in further running
time reductions.

5 Conclusion

The main conclusion to be drawn from our rsearch is that existing multilayer channel routers
can benefit from the incorporation of layers which are not dedicated to a single routing
direction. Application of this approach to Chameleon has yielded significant improvements
on example problems in terms of channel width, total net length, and total number of vias.

There are several further areas of research, including the use of more efficient or more
powerful algorithms for some of the subtasks performed by MulCh. As mentioned earlier, it
is actually possible to determine minimum required channel width for a single-layer problem
in a more efficient fashion than performing the complete routing. In fact, linear time suffices
to determine minimum channel width [12, 11]. Thus, it becomes feasible to determine the
true minimum width of B layers each time that a net assignment is considered, instead of
relying on the density estimate until the end of net assignment. This change could lead
to a better quality of net partitions. Improvements in the running time of MulCh might
be obtained by also incorporating incremental algorithms into the net assignment process.
For example, recomputing the density of a partition when a new net is added requires only
logarithmic time rather than the naive linear time [11].

An additional useful area of investigation would be to compare the channel router pre-
sented in this paper to the routing algorithm of Berger, Brady, Brown, and Leighton [2],
which has a “provably good” worst-case performance. Their algorithm applied to an L-layer

problem of density d will produce a routing of width d
L−2

+ O(
√
d/L + 1), which could be

quite attractive depending on the exact size of the additive term and the ability of the algo-
rithm to do better than the worst case on practical problems. It would be desirable to create
a practically oriented implementation of this algorithm and to ascertain its performance on
example problems.
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