
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

1989

Randomized Routing on Fat-Trees
Ronald I. Greenberg
Loyola University Chicago, Rgreen@luc.edu

Charles E. Leiserson

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
© 1989 Ronald Greenberg

Recommended Citation
Randomized routing on fat-trees. In Silvio Micali, editor, Randomness and Computation. Volume 5 of Advances in Computing
Research, pages 345-374, JAI Press, 1989.

http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Randomized Routing on Fat-Trees

Ronald I. Greenberg

Charles E. Leiserson

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

July 1987 version later appearing in volume 5 of Advances in Computing
Research, pp. 345–374 JAI Press, 1989

Earlier versions appeared in 26th Annual Symposium on Foundations of
Computer Science and MIT/LCS/TM-307 technical report

Abstract

Fat-trees are a class of routing networks for hardware-efficient parallel computa-
tion. This paper presents a randomized algorithm for routing messages on a fat-tree.
The quality of the algorithm is measured in terms of the load factor of a set of
messages to be routed, which is a lower bound on the time required to deliver the
messages. We show that if a set of messages has load factor λ on a fat-tree with n
processors, the number of delivery cycles (routing attempts) that the algorithm re-
quires is O(λ+lg n lg lg n) with probability 1−O(1/n). The best previous bound was
O(λ lg n) for the off-line problem in which the set of messages is known in advance.
In the context of a VLSI model that equates hardware cost with physical volume,
the routing algorithm can be used to demonstrate that fat-trees are universal routing
networks. Specifically, we prove that any routing network can be efficiently simulated
by a fat-tree of comparable hardware cost.

1 Introduction

Fat-trees constitute a class of routing networks for general-purpose parallel computation.
This paper presents a randomized algorithm for routing a set of messages on a fat-tree.
The routing algorithm and its analysis generalize an earlier universality result by showing,
in a three-dimensional VLSI model, that any network can be efficiently simulated by a
fat-tree of comparable volume. The result had been proved only for off-line simulations

This research was supported in part by the Defense Advanced Research Projects Agency under Con-
tract N00014–80–C–0622 and in part by the Office of Naval Research under Contract N00014–86–K–0593.
Ron Greenberg is supported in part by a Fannie and John Hertz Foundation Fellowship. Charles Leiserson
is supported in part by an NSF Presidential Young Investigator Award.

1

f f
f f

f f
f f

f f
f f

f f
f f

� processor

� switching node

PPPi 2 channels

���
external interface

Figure 1: The organization of a fat-tree. Processors are located at the leaves, and the
internal nodes contain concentrator switches. The channels between internal nodes consist
of bundles of wires.

[12], where the communication pattern is known in advance; this paper extends it to the
more interesting on-line case, where messages are spontaneously generated by processors.

As is illustrated in Figure 1, a fat-tree is a routing network based on Leighton’s tree-
of-meshes graph [8]. A set of n processors are located at the leaves of a complete binary
tree. Each edge of the underlying tree corresponds to two channels of the fat-tree: one
from parent to child, the other from child to parent. Unlike a normal tree which is “skinny
all over,” in a fat-tree, each channel consists of a bundle of wires. The number of wires
in a channel c is called its capacity, denoted by cap(c). Each internal node of the fat-tree
contains circuitry that switches messages from incoming to outgoing channels.

The channel capacities of a fat-tree determine the amount of hardware required to build
it. The greater the capacities of the channels, the greater the communication potential,
and also, the greater the hardware cost of an implementation of the network. The idea of
fat-trees is to take advantage of a principle of locality in much the same way as does the
telephone network: by using only slightly more hardware than that required to support fast
nonlocal communication among a set of processors, much additional local communication
among a larger set of processors can be supported.

An issue that any routing algorithm for a fat-tree must face is that some communication
patterns among the processors are harder than others. For example, suppose the channel
capacity between the two halves of a fat-tree is Θ(n2/3), where n is the number of processors,
and suppose each processor sends a message to a processor in the other half. Since the
number of messages that must pass through the root is n and the capacity is Θ(n2/3), the
time required by the network to deliver all the messages is Ω(n1/3) because of congestion.
In contrast, there are many communication patterns among n processors with less nonlocal
communication that can be implemented in subpolynomial time.

The routing algorithm for fat-trees presented in this paper is a randomized algorithm
which we analyze in terms of a measure of congestion called the load factor. The load factor
of a set of messages is the largest ratio over all channels in the fat-tree of the number of
messages that must pass through the channel divided by the capacity of the channel. The
load factor of a set of messages is thus a lower bound on the time to deliver the messages.

We show in this paper that our routing algorithm can deliver a set of messages with load

2

factor λ in O(λ+ lg n lg lg n) delivery cycles (routing attempts) with high probability. The
best previous bound for a problem of this nature was an O(λ lg n) bound for the off-line
situation where the set of messages is known in advance [12] and the problem is to schedule
their delivery. The analysis of our randomized routing algorithm makes no assumptions
about the statistical distribution of messages, except insofar as it affects the load factor.
Moreover, the algorithm is not restricted to permutation routing or situations where each
processor can only send or receive a constant number of messages, as is common in the
literature. We consider the general situation where each processor can send and receive
polynomially many messages.

Our routing algorithm also differs from others in the literature in the way randomization
is used. Unlike the algorithms of Valiant [18], Valiant and Brebner [19], Aleliunas [2], Upfal
[17] and Pippenger [14], for example, it does not randomize with respect to paths taken
by messages. For example, Valiant’s classic scheme for routing on a hypercube sends
each message to a randomly chosen intermediate destination and, from there, to its true
destination. On a fat-tree, such a technique would likely convert communication patterns
with good locality into ones with much global communication. Instead of choosing random
paths for messages to traverse, our algorithm repeatedly attempts to deliver a randomly
chosen subset of the messages. A by-product of this strategy is that our algorithm requires
no intermediate buffering of messages.

The remainder of this paper is organized as follows. Section 2 describes fat-trees in more
detail. Section 3 presents the randomized algorithm for efficiently routing messages on the
fat-tree network, and Section 4 contains the full analysis of the algorithm. Section 5 proves
that fat-trees are universal in VLSI models. Specifically, we use the randomized routing
algorithm to show that a fat-tree with properly chosen channel capacities can efficiently
simulate any other network of comparable hardware cost, where cost is measured as the
area or volume of the circuitry. Section 6 gives an existential lower bound for a class of
naive greedy routing algorithms which shows that the greedy strategy is inferior to our
randomized algorithm for worst case inputs. Section 7 contains several additional results.
These include a modification of the routing algorithm that achieves better bounds when
each channel has capacity Ω(lg n), a new, simpler fat-tree design, and results on off-line
routing. Finally, Section 8 contains some concluding remarks.

2 Fat-trees

This section describes fat-trees in more detail. We give more specific implementation
details on our routing strategy and the hardware required to support it. We precisely
define the load factor of a set of messages on a general network in terms of cuts of the
network, and we prove that it suffices in a fat-tree to consider only the load factors on
channels.

The implementation of fat-trees described here follows that of [12]. We consider com-
munication through the fat-tree network to be synchronous, bit serial, and batched. By
synchronous, we mean that the system is globally clocked. By bit serial, we mean that
the messages can be thought of as bit streams. Each message snakes its way through the
wires and switches of the fat-tree, with leading bits of the message setting switches and
establishing a path for the remainder to follow. By batched, we mean the messages are

3

grouped into delivery cycles. During a delivery cycle, the processors send messages through
the network. Each message attempts to establish a path from its source to its destination.
Since some messages may be unable to establish connections during a delivery cycle, each
successfully delivered message is acknowledged through its communication path at the end
of the cycle. Rather than buffering undelivered messages, we simply allow them to try
again in a subsequent delivery cycle. The routing algorithm is responsible for grouping
the messages into delivery cycles so that all the messages are delivered in as few cycles as
possible.

The mechanics of routing messages in a fat-tree are similar to routing in an ordinary
tree. For each message, there is a unique path from its source processor to its destination
processor in the underlying complete binary tree, which can be specified by a relative ad-
dress consisting of at most 2 lg n bits telling whether the message turns left or right at each
internal node. Within each node of the fat-tree, the messages destined for a given output
channel are concentrated onto the available wires of that channel. This concentration may
result in “lost” messages if the number of messages destined for the output channel exceeds
the capacity of the channel. We assume, however, that the concentrators within the node
are ideal in the sense that no messages are lost if the number of messages destined for
a channel is less than or equal to the capacity of the channel. Such a concentrator can
be built, for example, with a logarithmic-depth sorting network [1]. A somewhat more
practical logarithmic-depth circuit can be built by combining a parallel prefix circuit [7]
with a butterfly (i.e., FFT, Omega) network. With switches of logarithmic depth, the
time to run each delivery cycle is O(lg2 n) bit times, making the natural assumption that
messages are O(lg n) bits long.1 (Section 7 contains another fat-tree design where the time
to run a delivery cycle is O(lg n) bit times.)

The performance of any routing algorithm for a fat-tree depends on the locality of
communication inherent in a set of messages. The locality of communication for a message
set M can be summarized by a measure λ(M) called the load factor , which we define in a
more general network setting.

Definition: Let R be a routing network. A set S of wires in R is a (directed)
cut if it partitions the network into two sets of processors A and B such that
every path from a processor in A to a processor in B contains a wire in S. The
capacity cap(S) is the number of wires in the cut. For a set of messages M ,
define the load load(M,S) of M on a cut S to be the number of messages in
M from a processor in A to a processor in B. The load factor of M on S is

λ(M,S) =
load(M,S)

cap(S)
,

and the load factor of M on the entire network R is

λ(M) = max
S

λ(M,S) .

1In this paper, we measure time in terms of bit operations, rather than word operations, to better
reflect actual costs.

4

The load factor of a set of messages on a given network provides a lower bound on the
time required to deliver all messages in the set.

For fat-trees, only cuts corresponding to channels need be considered to determine the
load factor, as is shown by the following lemma.

Lemma 1 The load factor of a set M of messages on a fat-tree is

λ(M) = max
c
λ(M, c) ,

where c ranges over all channels of the fat-tree.

Proof. Any cut S must entirely contain at least one channel. Let us partition the wires
in S into S = c1 ∪ · · · ∪ cl ∪ w, where c1, . . . , cl are the complete channels in S and w is
the set of remaining wires in S. For convenience, let xi = load(M, ci) and yi = cap(ci).
Assume without loss of generality that λ(M, c1) ≥ λ(M, ci) for i = 1, . . . , l, which implies
x1yi − xiy1 ≥ 0 for all i. The load factor of M on S is therefore

λ(M,S) =
x1 + · · ·+ xl

y1 + · · ·+ yl + |w|

=
x1
y1
− (x1y2 − x2y1) + · · ·+ (x1yl − xly1) + (x1 |w|)

y1(y1 + · · ·+ yl + |w|)
(1)

≤ x1
y1

= λ(M, c1)

since each term in the numerator of the second term of (1) is nonnegative.

3 The routing algorithm

This section gives our randomized algorithm for routing a set M of messages on a fat-tree.
The algorithm RANDOM, which is based on routing random subsets of the messages in
M , is shown in Figure 2. It uses the subroutine TRY-GUESS shown in Figure 3. Section 4
provides a proof that on an n-processor fat-tree, the probability is at least 1−O(1/n) that
RANDOM delivers all messages in M within O(λ(M) + lg n lg lg n) delivery cycles, if the
two constants k1 and k2 appearing in the algorithm are properly chosen.

The basic idea of RANDOM is to pick a random subset of messages to send in each
delivery cycle by independently choosing each message with some probability p. This type
of message set merits a formal definition.

Definition: A p-subset of M is a subset of M formed by independently choos-
ing each message of M with probability p.

We will show in Section 4 that if p is sufficiently small, a substantial portion of the messages
in a p-subset are delivered because they encounter no congestion during routing. On the
other hand, if p is too small, few messages are sent. RANDOM varies the probability p
from cycle to cycle, seeking random subsets of M that contain a substantial portion of the
messages in M , but that do not cause congestion.

5

Algorithm RANDOM
1 send M
2 U ←M − {messages delivered}
3 λguess ← 2
4 while k1λguess < k2 lg n and U 6= ∅ do
5 TRY-GUESS(λguess)
6 λguess ← λ2guess
7 endwhile
8 λguess ← (k2/k1) lg n lg lg n
9 while U 6= ∅ do

10 TRY-GUESS(λguess)
11 λguess ← 2λguess
12 endwhile

Figure 2: The randomized algorithm RANDOM for delivering a message set M on a
fat-tree with n processors. This algorithm achieves the running times in Figure 4 with
high probability if the constants k1 and k2 are appropriately chosen. Since the load factor
λ(M) is not known in advance, RANDOM makes guesses, each one being tried out by the
subroutine TRY-GUESS.

procedure TRY-GUESS(λguess)
1 λ← λguess
2 while λ > 1 do
3 for i← 1 to max {k1λ, k2 lg n} do
4 independently send each message of U with probability 1/rλ
5 U ← U − {messages delivered}
6 endfor
7 λ← λ/2
8 endwhile
9 send U

10 U ← U − {messages delivered}

Figure 3: The subroutine TRY-GUESS used by the algorithm RANDOM which tries to
deliver the set U of currently undelivered messages. When λguess ≥ λ(U), this attempt will
be successful with high probability, if the constants k1 and k2 are appropriately chosen.
(The value r is the congestion parameter of the fat-tree defined in Section 4, which is
typically a small constant.) In that case, λ is always an upper bound on λ(U), which is at
least halved in each iteration of the while loop. When the loop is finished, λ(U) ≤ 1, so
all the remaining messages can be sent.

6

load factor delivery cycles
0 ≤ λ(M) ≤ 1 1
1 ≤ λ(M) ≤ 2 O(lg n)
2 ≤ λ(M) ≤ lg n lg lg n O(lg n lg(λ(M)))

lg n lg lg n ≤ λ(M) ≤ nO(1) O(λ(M))

Figure 4: The number of delivery cycles required to deliver a message set M on a fat-tree
with n processors. All bounds are achieved with probability 1 − O(1/n). The bounds on
the number of delivery cycles can be summarized as O(λ(M) + lg n lg lg n).

The algorithm RANDOM varies the probability p because the load factor λ(M) is not
known. The overall structure of RANDOM is to guess the load factor and call the subrou-
tine TRY-GUESS for each one. The subroutine TRY-GUESS determines the probability
p based on RANDOM’s guess λguess and a parameter r, called the congestion parameter of
the fat-tree, which is independent of the message set and which will be defined in Section 4.
If λguess is an upper bound on the true load factor λ(M), then with high probability, each
iteration of the while loop in TRY-GUESS halves the upper bound on the load factor
λ(U) of the set U of undelivered messages, as will be shown in Section 4. When the
loop is finished, we have λ(U) ≤ 1, and all the remaining messages can be delivered in
one cycle. The number of delivery cycles performed by TRY-GUESS is O(lg λguess lg n) if
2 ≤ λguess ≤ Θ(lg n), and the number of cycles is O(λguess + lg n lg lg n) if λguess = Ω(lg n).

RANDOM must make judicious guesses for the load factor because TRY-GUESS may
not be effective if the guess is smaller than the true load factor. Conversely, if the guess
is too large, too many delivery cycles will be performed. Since the amount of work done
by TRY-GUESS grows as lg λguess when λguess is small, and as λguess when λguess is large,
there are two main phases to RANDOM’s guessing. (These phases follow the handling of
very small load factors, i. e., λ(M) ≤ 2.)

In the first phase, the guesses are squared from one trial to the next. Once λguess is
sufficiently large, we move into the second phase, and the guesses are doubled from one
trial to the next. In each phase, the number of delivery cycles run by TRY-GUESS from
one call to the next forms a geometric series. Thus, the work done in any call to TRY-
GUESS is only a constant factor times all the work done prior to the call. With this
guessing strategy, we can deliver a message set using only a constant factor more delivery
cycles than would be required if we knew the load factor in advance.

4 Analysis of the routing algorithm

This section contains the analysis of RANDOM, the routing algorithm for fat-trees pre-
sented in Section 3. We shall show that the probability is 1−O(1/n) that RANDOM de-
livers a set M of messages on a universal fat-tree with n processors in O(λ(M)+lg n lg lg n)
delivery cycles. Figure 4 gives the tighter bounds that we actually prove.

We begin by stating two technical lemmas concerning basic probability. One is a
combinatorial bound on the tail of the binomial distribution of the kind attributed to
Chernoff [4], and the other is a general, but weak, bound on the probability that a random

7

variable takes on values smaller than the expectation.
The first lemma is the Chernoff bound. Consider t independent Bernoulli trials, each

with probability p of success. It is well known [5] that the probability that there are at
least s successes out of the t trials is

B(s, t, p) =
t∑

k=s

(
t

k

)
pk(1− p)t−k .

The lemma bounds the probability that the number of successes is larger than the expec-
tation pt.

Lemma 2

B(s, t, p) ≤
(
ept

s

)s
.

Proof. The lemma follows from [18, p. 354].

The second technical lemma bounds the probability that a bounded random variable
takes on values smaller than the expectation.

Lemma 3 Let X ≤ b be a random variable with expectation µ. Then for any
w < µ, we have

Pr {X ≤ w} ≤ 1− µ− w
b− w

.

Proof. The definition of expectation gives us

µ ≤ wPr {X ≤ w}+ b(1− Pr {X ≤ w}) ,

from which the lemma follows.

We now analyze the routing of a p-subset M ′ of a set M of messages. If the number
load(M ′, c) of messages in M ′ that must pass through c is no more than the capacity
cap(c), then no messages are lost by concentrating the messages into c. We shall say that
c is congested by M ′ if load(M ′, c) > cap(c). The next lemma shows that the likelihood
of channel congestion decreases exponentially with channel capacity if the probability of
choosing a given message in M is sufficiently small.

Lemma 4 Let M be a set of messages on a fat-tree, let λ(M) be the load factor
on the fat-tree due to M , let M ′ be a p-subset of messages from M , and let
c be a channel through which a given message m ∈ M ′ must pass. Then the
probability is at most (epλ(M))cap(c) that channel c is congested by M ′.

Proof. Channel c is congested by M ′ if load(M ′, c) > cap(c). There is already one message
from the set M ′ going through channel c, so we must determine a bound on the probability
that at least cap(c) other messages go through c. Using Lemma 2 with s = cap(c) and
t = load(M, c), the probability that the number of messages sent through channel c is
greater than the capacity cap(c) is less than

B(cap(c), load(M, c), p) ≤
(
ep load(M, c)

cap(c)

)cap(c)

≤ (epλ(M))cap(c) .

8

The next lemma will analyze the probability that a given message of a p-subset of M
gets delivered. In order to do the analysis, however, we must select p small enough so that
it is likely that the message passes exclusively through uncongested channels. The choice
of p depends on the capacities of channels in the fat-tree. For convenience, we define a
parameter of the capacities that will enable us to choose a suitable upper bound for p.

Definition: The congestion parameter of a fat-tree is the smallest positive
value r such that for each simple path c1, c2, . . . , cl of channels in the fat-tree,
we have

l∑
k=1

(
e

r

)cap(ck)

≤ 1

2
.

The congestion parameter is generally quite small. For any fat-tree based on a complete
binary tree, the longest simple path is at most 2 lg n, where n is the number of processors,
and thus we have r ≤ 4e lg n. For universal fat-trees (discussed in Section 5), the congestion
parameter is a constant because the capacities of channels grow exponentially as we go
up the tree. (All we really need is arithmetic growth in the channel capacities.) The
congestion parameter is also constant for any fat-tree based on a complete binary tree if
all the channels have capacity Ω(lg lg n). Our analysis of RANDOM treats the congestion
parameter r as a constant, but the analysis does not change substantially for other cases.

We now present the lemma that analyzes the probability that a given message gets
delivered.

Lemma 5 Let M be a set of messages on a fat-tree that has congestion param-
eter r, let λ(M) be the load factor on the fat-tree due to M , and let m be an
arbitrary message in M . Suppose M ′ is a p-subset of M , where p ≤ 1/rλ(M).
Then if M ′ is sent, the probability that m gets delivered is at least 1

2
p.

Proof. The probability that m ∈ M is delivered is at least the probability that m ∈
M ′ times the probability that m passes exclusively through uncongested channels. The
probability that m ∈ M ′ is p, and thus we need only show that, given m ∈ M ′, the
probability is at least 1

2
that every channel through which m must pass is uncongested. Let

c1, c2, . . . , cl be the channels in the fat-tree through which m must pass. The probability
that channel ck is congested is less than (e/r)cap(ck) by Lemma 4. The probability that at
least one of the channels is congested is, therefore, less than

l∑
k=1

(
e

r

)cap(ck)

≤ 1

2
,

by definition of the congestion parameter. Thus, the probability that none of the channels
are congested is at least 1

2
.

We now focus our attention on RANDOM itself. The next lemma analyzes the in-
nermost loop (lines 3–6) of RANDOM ’s subroutine TRY-GUESS. At this point in the
algorithm, there is a set U of undelivered messages and a value for λ. The lemma shows

9

that if λ is indeed an upper bound on the load factor λ(U) of the undelivered messages
when the loop begins, then λ/2 is an upper bound after the loop terminates. This lemma
is the crucial step in showing that RANDOM works.

Lemma 6 Let U be a set of messages on an n-processor fat-tree with conges-
tion parameter r, and assume λ(U) ≤ λ. Then after lines 3–6 of RANDOM’s
subroutine TRY-GUESS, the probability is at most O(1/n2) that λ(U) > 1

2
λ.

Proof. The idea is to show that the load factor of an arbitrary channel c remains larger
than 1

2
λ with probability O(1/n3). Since the channel c is chosen arbitrarily out of the

4n−2 channels in the fat-tree, the probability is at most O(1/n2) that any of the channels
is left with a load factor larger than 1

2
λ.

For convenience, let C be the subset of messages that must pass through channel c and
are undelivered at the beginning of the innermost loop in RANDOM. Let C0 = C, and for
i ≥ 1, let Ci ⊂ Ci−1 denote the set of undelivered messages at the end of the ith iteration
of the loop. Notice that we have λ(Ci, c) = |Ci| /cap(c), since we have |Ci| = load(Ci, c)
by definition.

We now show there exist values for the constants k1 and k2 in line 3 of TRY-GUESS
such that for z = max {k1λ, k2 lg n}, the probability is O(1/n3) that λ(Cz, c) >

1
2
λ, or

equivalently, that

|Cz| >
1

2
λcap(c) . (2)

It suffices to prove that the probability is O(1/n3) that fewer than 1
2
|C| messages from

C are delivered during the z cycles under the assumption that |Ci| > 1
2
λcap(c) for i = 0, 1,

. . . , z − 1. The intuition behind the assumption |Ci| > 1
2
λcap(c) is that otherwise, the

load factor on channel c is already at most 1
2
λ at this step of the iteration. The reason we

need only bound the probability that fewer than 1
2
|C| messages are delivered during the

z cycles is that inequality (2) implies that the number of messages delivered is fewer than
|C| − 1

2
λcap(c) ≤ |C| − 1

2
λ(C, c)cap(c) ≤ 1

2
|C|.

We shall establish the O(1/n3) bound on the probability that at most 1
2
|C| messages

are delivered in two steps. For convenience, we shall call a cycle good if at least cap(c)/8r
messages are delivered, and bad otherwise. In the first step, we bound the probability
that a given cycle is bad. The expected number of messages delivered in any given cycle
is the product of the number of messages that remain to be delivered and the probability
that any of these messages is successfully delivered. Using Lemma 5 with p = 1/rλ ≤
1/rλ(U) ≤ 1/rλ(Ci) in conjunction with the assumption that |Ci| > 1

2
λcap(c), we can

conclude that the expected number of messages delivered in any given cycle is greater
than 1

2rλ
1
2
λcap(c) ≥ cap(c)/4r. Then by Lemma 3, the probability that a given cycle is

bad is at most 1− 1/(8r − 1) < 1− 1/8r.2

The second step bounds the probability that a substantial fraction of the z delivery
cycles are bad. Specifically, we show that the probability is 1−O(1/n3) that at least some

2We use the weak bound of Lemma 3 because we cannot assume that the probability that a message
is delivered in a given cycle is independent of the probabilities for other messages. In practice, one would
anticipate that the dependencies between messages are weak, and that the algorithm would be effective
with much smaller values for the constants k1 and k2 than we prove here.

10

small constant fraction q of the z cycles are good. By picking k1 = 4r/q, which implies
z ≥ 4rλ/q, at least qzcap(c)/8r ≥ 1

2
|C| messages are delivered.

We bound the probability that at least (1 − q)z of the z cycles are bad by using a

counting argument. There are
(

z
(1−q)z

)
ways of picking the bad cycles, and the probability

that a cycle is bad is at most 1− 1/8r. Thus, the probability that at most 1
2
|C| messages

are delivered is

Pr
{
≤ 1

2
|C| messages delivered

}
≤

(
z

(1− q)z

)(
1− 1

8r

)(1−q)z

≤
(
qq(1− q)1−q

)−z (
1− 1

8r

)(1−q)z
(3)

≤ 2−z/12r , (4)

where (3) follows from Stirling’s approximation (for sufficiently large z), and (4) fol-
lows from choosing q = 1/100r ln r and performing algebraic manipulations. Since z =
max {k1λ, k2 lg n}, if we choose k2 = 36r, the probability that fewer than 1

2
|C| messages

are delivered is at most 1/n3.

Now we can analyze RANDOM as a whole.

Theorem 7 For any message set M on an n-processor fat-tree, the probability
is at least 1−O(1/n) that RANDOM delivers all the messages of M within the
number of delivery cycles specified by Figure 4.

Proof. First, we will show that if λguess ≥ λ(M), the probability is at most O(1/n) that the
loop in lines 2 through 8 of TRY-GUESS fails to yield λ(U) ≤ 1. Initially, λ ≥ λ(U), and
we know from Lemma 6 that the probability is at most O(1/n2) that any given iteration
of the loop fails to restore this condition as λ is halved. Since there are lg λguess iterations
of the loop, we need only make the reasonable assumption that λguess is polynomial in n
to obtain a probability of at most O(1/n) that λ(U) remains greater than 1 after all the
iterations of the loop.

Now we just need to count the number of delivery cycles that have been completed by
the time we call TRY-GUESS with a λguess such that λ(M) ≤ λguess . Let us denote by
λ∗guess the first λguess that satisfies this condition, and then break the analysis down into
cases according to the value of λ(M).

For λ(M) ≤ 1, we do not actually even call TRY-GUESS. We need only count the one
delivery cycle executed in line 1 of RANDOM.

For 1 < λ(M) ≤ 2, we need add only the k2 lg n cycles executed when we call
TRY-GUESS(2).

For 2 < λ(M) < (k2/k1) lg n, the number of delivery cycles involved in each execution
of TRY-GUESS is O(lg λguessk2 lg n), since we perform O(lg λguess) iterations of the loop
in lines 2–8 of TRY-GUESS, each containing k2 lg n iterations of the loop in lines 3–6. The
value of λ∗guess is at most (λ(M))2, so the number of delivery cycles is O(lg n lg(λ(M))2)

for the last guess, O(lg n lg λ(M)) for the second-to-last guess, O(lg n lg
√
λ(M)) for the

11

third-to-last guess, and so on. The total number of delivery cycles is, therefore,∑
0≤i≤1+lg lg λ(M)

O(lg n lg(λ(M))2
1−i

) =
∑

0≤i≤1+lg lg λ(M)

O(21−i lg n lg(λ(M)))

= O(lg n lg λ(M)),

since the series is geometric.
For λ(M) > (k2/k1) lg n, the number of delivery cycles executed by the time we reach

line 8 of RANDOM is O(lg n lg lg n) according to the preceding analysis, and then we
must continue in the quest to reach λ∗guess . If λ(M) ≤ (k2/k1) lg n lg lg n, then we need
only add the O(lg n lg lg n) = O(lg n lg λ(M)) delivery cycles involved in the single call
TRY-GUESS((k2/k1) lg n lg lg n).

If λ(M) > (k2/k1) lg n lg lg n, the number of delivery cycles executed before reaching
line 8 is O(lg n lg lg n) as before, which is O(λ(M)). We must then add O(λguess) cycles for
each call of TRY-GUESS in line 10. Since λ∗guess is at most 2λ(M), the total additional
number of delivery cycles is ∑

0≤i≤t
O(21−iλ(M)) = O(λ(M)),

where t = 1 + lg(k1λ(M)/k2 lg n lg lg n). The total number of delivery cycles is thus
O(λ(M)).

The 1−O(1/n) bound on the probability that RANDOM delivers all the messages can
be improved to 1−O(1/nk) for any constant k by choosing k2 = 12(k + 2)r, or by simply
running the algorithm through more choices of λguess .

We can also use RANDOM to obtain a routing algorithm that guarantees to deliver
all the messages in finite time, and whose expected number of delivery cycles is as given in
Figure 4. We simply interleave RANDOM with any routing strategy that guarantees to
deliver at least one message in each delivery cycle. If the number of messages is bounded
by some polynomial nk, then we choose k2 such that RANDOM works with probability
1−O(1/nk).

5 Universality

The performance of the routing algorithm RANDOM allows us to generalize the universal-
ity theorem from [12] which states that a universal fat-tree of a given volume can simulate
any other routing network of equal volume with only a polylogarithmic factor increase in
the time required. The original proof assumed the simulation of the routing network was
off-line. In this section we show that the simulation can be carried out in the more interest-
ing on-line context. We first discuss VLSI models briefly and state how channel capacities
can be chosen for area and volume-universal fat-trees. We then give a simple universality
result that requires no routing algorithm. Finally, we give a stronger universality theorem
based on RANDOM.

VLSI models provide a means of measuring hardware costs quantitatively in terms of
area or volume [8, 10, 11, 12, 16]. These models are interesting from an engineering point
of view because “pin-boundedness” is modeled directly as the limitation on communication

12

imposed by the perimeter of a two-dimensional region or by the surface area of a three-
dimensional region. In VLSI models, the processors and wires of a network are the vertices
and edges of a graph. The graph must be embedded in a two or three-dimensional grid such
that vertices are mapped to gridpoints and edges are mapped to disjoint paths in the grid.
The area or volume of the network is the number of gridpoints occupied by either vertices
or edge segments. These assumptions implicitly restricts the number of connections to a
processor to at most 4 in two dimensions and 6 in three dimensions, but generalizations
to larger processors are straightforward.

In order for a fat-tree to be universal for area or volume, the channel capacities must be
picked properly. Let us consider area, instead of volume, for simplicity. Intuitively, we wish
the processors to be densely packed in the region required by the network, The bandwidth
of communication to a region is constrained by the perimeter of the region, however, and
thus if the channel capacity to a subtree is too large relative to the number of processors
in the subtree, the processors will not be densely packed. On the other hand, if we choose
the channel capacities too small, the processors will indeed be densely packed, but we will
not take maximal advantage of the available communication bandwidth. Consequently, we
choose the capacity of a given channel to be proportional to the perimeter of the square
region the processors rooted at that channel would occupy if there were no wires, that
is Θ(

√
n) if the subtree has n processors. It turns out that the additional area required

by the wires in the channels does not greatly increase the area beyond that required by
the processors alone: the area for n processors is Θ(n lg2 n), the same as that required by
Leighton’s tree of meshes graph [8].

Following this intuition, an area-universal fat-tree can be constructed by giving each
leaf channel a constant capacity, and then growing the channel capacities by

√
2 at each

level as we go up the tree, rounding off to integer capacities. Another scheme that avoids
rounding is to double the channel capacities every two levels, as is done in the fat-tree of
Figure 1. Either of these methods yields a Θ(n lg2 n)-area layout for n processors, and a
root capacity of Θ(

√
n). Volume-universal fat-trees can be constructed in a similar fashion

by picking a growth rate of 3
√

4, or equivalently, by quadrupling the capacity every three
levels. The volume of an n-processor fat-tree constructed by these methods is Θ(n lg3/2 n),
and the root capacity is Θ(n2/3), as can be shown with the arguments in [10] or [12].

Even without a good routing algorithm for fat-trees, it is possible to prove a simple
universality property. The theorem is presented for area-universal fat-trees—a similar
theorem holds for volume-universal ones.

Theorem 8 Let R be a interconnection network occupying a square of area n
such that all connections are point-to-point between processors with no inter-
vening switches. Then an area-universal fat-tree of area O(n lg2 n) can simulate
every step of network R with at most O(lg2 n) switching delay.

Proof. We use an area-universal fat-tree such as that shown in Figure 1, where the channel
capacity to leaves is 4 and the root capacity is 4

√
n. Network R lies in a square with side

length
√
n. Each processor of R is mapped to the corresponding processor of the fat-tree

in the natural geometric fashion. This mapping satisfies the property that the capacity of
any channel of the fat-tree is at least as great as the perimeter of the corresponding region

13

of the layout of network R. Therefore, any communication step performed by R induces
at most a load factor of 1 on the fat-tree and thus can be routed in one delivery cycle.
Since each delivery cycle requires only O(lg2 n) bit times, the theorem follows.

This universality result is weak in several ways. For example, the fat-tree network
occupies slightly more area than the simulated network R. It seems reasonable to compare
networks of exactly equal cost. Another weakness in the result is that it forbids networks
with intermediate switches that buffer messages for several time steps. We could model
switches as processors, but in some contexts, processors might be considerably more expen-
sive than switches. Since we can directly route messages sets with large load factors using
RANDOM, we can prove a stronger universality result that addresses these concerns. The
next theorem, a generalization of that in [12], is presented for volume-universal fat-trees.
One can prove an analogous theorem for area-universal fat-trees.

Theorem 9 Let FT be a volume-universal fat-tree of volume v, and let R be
an arbitrary routing network also of volume v on a set of n = O(v/ lg3/2 v)
processors. Then the processors of R can be mapped to processors of FT such
that any message set M that can be delivered in time t by R can be delivered
by FT in time O((t+ lg lg n) lg3 n) with probability 1−O(1/n).

Proof. The proof parallels that of [12]. The reader is referred to that paper for details. The
routing network R of volume v is mapped to FT in such a way that any message set M that
can be delivered in time t by R puts a load factor of at most O(t lg(n/v2/3)) on FT . By
Theorem 7, the message setM can be delivered by RANDOM inO(t lg(n/v2/3)+lg n lg lg n)
delivery cycles with high probability. Since each delivery cycle takes at most O(lg2 n) time,
the result follows.

6 Greedy strategies

It is natural to wonder whether a simple greedy strategy of sending all undelivered messages
on each delivery cycle, and letting them battle their ways through the switches, might be
as effective as RANDOM, which we have shown to work well on every message set. As a
practical matter, a greedy strategy may be a good choice, but it seems difficult to obtain
tight bounds on the running time of greedy strategies. In fact, we show in this section that
no naive greedy strategy works as well as RANDOM in terms of asymptotic running times.
For simplicity, we restrict our proof to deterministic strategies and comment later on the
extension to probabilistic ones. Specifically, we show that for a wide class of deterministic
greedy strategies, there exist n-processor fat-trees and message sets with load factor λ such
that Ω(λ lg n) delivery cycles are required. Thus, if λ is asymptotically larger than lg lg n,
the greedy strategy is worse than RANDOM, which essentially guarantees O(λ+lg n lg lg n)
delivery cycles for any set of messages. The lower-bound proof for greedy routing is based
on an idea due to F. M. Maley [13].

Figure 5 shows the greedy algorithm. The code for GREEDY does not completely
specify the behavior of message routing on a fat-tree because the switches have a choice as
to which messages to drop when there is congestion. (The processors also have this choice,
but we shall think of them as being switches as well.) In the analysis of RANDOM, we

14

1 while M 6= ∅ do
2 send M
3 M ←M − {messages delivered}
4 endwhile

Figure 5: The algorithm GREEDY for delivering a message set M . This algorithm repeat-
edly sends all undelivered messages. The performance is highly dependent on the behavior
of the switches.

presumed that all messages in a channel are lost if the channel is congested. To completely
specify the behavior of GREEDY, we must define the behavior of switches when channels
are congested.

The lower bound for GREEDY covers a wide range of switch behaviors. Specifically,
we assume the switches have the two properties below.

1. Each switch is greedy in that it only drops messages if a channel is congested, and
then only the minimum number necessary.

2. Each switch is oblivious in that decisions on which messages to drop are not based
on any knowledge of the message set other than the presence or absence of messages
on the switch’s input lines.

We define the switches of a fat-tree to be admissible if they have these two properties.
The conditions are satisfied, for example, by switches that drop excess messages at random,
or by switches that favor one input channel over another. An admissible switch can even
base its decisions on previous decisions, but it cannot predict the future or make decisions
based on knowing what (or how many) messages it or other switches have dropped. (The
definition of oblivious in property 2 can be weakened to include an even wider range of
switch behaviors without substantially affecting our results.)

At this point, we restrict attention to deterministic greedy strategies and present the
lower-bound theorem for GREEDY operating on an area-universal fat-tree. The theorem
can be extended to a variety of other fat-trees. A discussion of the extension to probabilistic
greedy strategies follows the proof of the theorem.

Theorem 10 Consider an n-processor area-universal fat-tree with determin-
istic admissible switches whose channel capacities are 1 nearest the processors
and double at every other level going up the tree. Then there exist message sets
with load factor λ for which GREEDY requires Ω(λ lg n) delivery cycles.

Proof. For any λ ≥ 12, we will construct a “bad” message set Mn on the n processors
of the fat-tree by induction on the subtrees. The message set Mn will consist entirely of
messages to be routed out of the root and will satisfy the following three properties:

1. The message set Mn has load factor at most λ.

2. The root channel of the fat-tree is full for the first 1
3
λ delivery cycles.

15

3. A total of at least 1
6
λ+ 1

12
λ lg n delivery cycles3 are required to deliver all the messages

in Mn.

For the base case we consider a subtree with 1 processor, that is, a leaf connected
to a channel of capacity 1. The bad message set M1 consists of λ messages to be sent
from the single processor. The properties are satisfied since the root channel is congested
throughout the first 1

3
λ delivery cycles, and at least 1

6
λ delivery cycles are needed to deliver

all the messages.
We next show that we can construct the bad message set Mn assuming that we can

construct a bad message set for a subtree of n/4 processors. The construction uses an
adversary argument. First, we specify the pattern of inputs seen by the root switch of
the fat-tree during certain delivery cycles, without giving any indication of how that input
pattern can be achieved. Then since we have given enough information to determine the
behavior of the root switch during these cycles, the root switch must announce which
messages it passes through to its output. Finally, we give a construction for a message set
that achieves the input pattern we called for in the first step. We take advantage of the
announced behavior of the root switch in order to ensure that the message set also satisfies
properties 1, 2, and 3.

We begin by calling for the input channels of the root switch of the fat-tree to be full for
t delivery cycles, where t is 1

3
λ. If this is achieved, the total number of messages removed

from the fat-tree during the first t delivery cycles is m = 1
3
λ
√
n, since the root capacity is√

n and the root switch is greedy. Also, as mentioned before, the specified input pattern
determines the behavior of the root switch because the switch is oblivious.

The behavior of the root switch determines how many of the m messages removed from
the fat-tree by delivery cycle t come from each of the four subtrees shown in Figure 6. At
least one of these subtrees provides no more than m/4 of the messages. We choose one
such subtree and refer to it as the unfavored subtree. The other subtrees are referred to
as the favored subtrees.

Having determined the unfavored subtree given the conditions specified so far, we can
complete the construction ofMn. The unfavored subtree contains a copy of the bad message
set Mn/4 for that subtree. Each of the other three subtrees contains 1

6
λ
√
n messages evenly

divided among the processors in the subtree. Now we must prove that Mn meets all of our
requirements.

First, we show that Mn is consistent with the input pattern specified for the root
switch. To show that the input channels of the root switch of the fat-tree are full through
the first t delivery cycles, it suffices to prove that the root channels of the four subtrees are
full through this time. The root channel of the unfavored subtree is full by the induction
hypothesis (property 2). The root channel of each favored subtree is also full for the first
t delivery cycles, since its messages are evenly distributed, its switches are greedy, and t
times its root capacity does not exceed the number of messages emanating from it.

We now prove that properties 1, 2, and 3 hold for Mn. The load factor in the favored
subtrees is less than λ by construction. The load factor is at most λ in the unfavored subtree
by the induction hypothesis (property 1), so the number of messages in the unfavored

3Without loss of generality, we assume henceforth that 1
12λ is integral, since we could otherwise use⌊

1
12λ
⌋

with only a constant factor change.

16

���
���

��XXXXXXXX

QQs

-
�
��
�HHHH�

��
�HHHH

�
�
�
�A
A
A
A �

�
�
�A
A
A
A �

�
�
�A
A
A
A�

�
�
�A
A
A
A

capacity
√
n/2

capacity
√
n

capacity
√
n

≤ λ
√
n/2

messages messages
λ
√
n/6 λ

√
n/6

messages messages
λ
√
n/6

subtree
unfavored

Figure 6: Construction of Mn for the proof of Theorem 10. The subtree from which the
fewest number of messages have been delivered by a certain time is loaded with the largest
number of messages.

subtree is at most 1
2
λ
√
n, and the total number of messages in Mn is at most

1

2
λ
√
n+ 3 · 1

6
λ
√
n = λ

√
n.

Thus, the load factor of Mn on the fat-tree is at most λ, and property 1 holds. Property 2
is satisfied for Mn because the root switch is greedy. We have already shown that the input
channels of the root switch are full through delivery cycle t, so the root channel is certainly
full for the required amount of time. Finally, property 3 holds because after running t = 1

3
λ

delivery cycles, only m/4 = 1
12
λ
√
n messages have been removed from the unfavored

subtree. If priority had been given to the unfavored subtree, only 1
6
λ delivery cycles

would have been required to remove the m/4 messages, So by the induction hypothesis
(property 3), an additional 1

6
λ+ 1

12
λ lg(n/4)− 1

6
λ cycles are required to empty the unfavored

subtree. If we include the original t cycles, the total number of cycles required to deliver
all the messages in Mn is at least 1

6
λ+ 1

12
λ lg n.

When probabilistic admissible switches are permitted, the proof of Theorem 10 can be
extended to show that the expected number of delivery cycles is Ω(λ lg n). The idea is that
at least one of the subtrees in Figure 6 must be unfavored with probability at least 1/4.
We call one such subtree the often-unfavored subtree. The construction of Mn proceeds
as before, with the often-unfavored subtrees playing the previous role of the unfavored
subtrees. In any particular run of GREEDY, we expect 1/4 of the often-unfavored subtrees
to be unfavored, so there is a Θ(1) probability that 1/8 of the often-unfavored subtrees
are unfavored (Lemma 3). Thus, the probability is Θ(1) that Ω(λ lg n) delivery cycles are
required, which means that the expected number of delivery cycles is Ω(λ lg n).

Although we have shown an unfavorable comparison of GREEDY to RANDOM, it
should be noted that GREEDY does achieve the lower bound we proved for routing mes-
sages out the root. That is, routing of messages out the root or, more generally, up the
tree only, can be accomplished by GREEDY in O(λ lg n) delivery cycles. This can be seen
by observing that the highest congested channel (closest to the root) must drop at least

17

1 z ← 1
2 while M 6= ∅ do
3 for each message m ∈M , choose a random number im ∈ {1, 2, . . . , z}
4 for i← 1 to z do
5 send all messages m such that im = i
6 endfor
7 z ← 2z
8 endwhile

Figure 7: The algorithm RANDOM ′ for routing in a fat-tree with channels of capacity
Ω(lg n). This algorithm repeatedly doubles a guessed number of delivery cycles, z. For
each guess, each message is randomly sent in one of the delivery cycles.

one level every λ delivery cycles. If one could establish an upper bound of λ times a poly-
logarithmic factor for the overall problem of greedy routing, it would show that GREEDY
still has merit despite its inferior performance in comparison to RANDOM.

7 Further results

This section contains three additional results relevant to routing on fat-trees. The first is
a simple randomized algorithm for routing on fat-trees in which each channel has at least
logarithmic capacity. The second is a new class of fat-trees that have far simpler switches
than the ones thus far considered. The final result is an improvement to the off-line routing
result of [12].

Larger channel capacities

We can improve the results for on-line routing if each channel c in the fat-tree is sufficiently
large, that is if cap(c) = Ω(lg n) Specifically, we can deliver a message set M in O(λ(M))
delivery cycles with high probability, i. e., we can meet the lower bound to within a
constant factor. The better bound is achieved by the algorithm RANDOM ′ shown in
Figure 7.

Theorem 11 For any message set M on an n-processor fat-tree with channels
of capacity Ω(lg n), the probability is at least 1− O(1/n) that RANDOM ′ will
deliver all the messages of M in O(λ(M)) delivery cycles, if λ(M) is polyno-
mially bounded.

Proof. Let the lower bound on channel size be a lg n, and let nk be the polynomial bound
on the load factor λ(M). We consider only the pass of the algorithm when z first exceeds
e2(k+2)/aλ(M). We ignore previous cycles for the analysis of message routing, except to
note that the number of delivery cycles they require is O(λ(M)).

We first consider a single channel c within a single cycle i from among the z delivery
cycles in the pass. Since each message has probability 1/z of being sent in cycle i, we can

18

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

f f
f f

Figure 8: Another fat-tree design. The switches in this structure have constant size.

apply Lemma 4 with p = 1/z to conclude that the probability that channel c is congested
in cycle i is at most (

eλ(M)

z

)cap(c)

≤ 2−
k+2
a

cap(c)

≤ 2−(k+2) lgn

=
1

nk+2
.

Since there are O(n) channels, the probability that there exists a congested channel in
cycle i is O(1/nk+1). Finally, since there are z ≤ 2e2(k+2)/aλ(M) = O(λ(M)) = O(nk)
cycles, the probability is O(1/n) that there exists a congested channel in any delivery cycle
of the pass.

Another universal fat-tree

We have recently discovered a fat-tree design that uses simpler switches than the fat-tree
described in Section 1 and in [12]. Figure 8 illustrates the structure of a two-dimensional
universal fat-tree of this new type. Each of the switches in this fat-tree can switch messages
among four child switches and two parent switches. The area of the fat-tree is Θ(n lg2 n).4

In three dimensions, we can use switches with eight children and four parents to obtain a
fat-tree with volume Θ(n lg3/2 n).

The new fat-tree design satisfies the universality property of Theorem 9, except that
the degradation in time is O(lg4 n). The new fat-tree structure removes a factor of lg n

4Interestingly, a mesh-of-trees [8] can be directly embedded in this fat-tree. In fact, it can be shown
using sorting arguments that a mesh-of-trees is area-universal [9].

19

from the time to perform a delivery cycle since the switches have constant depth. The
number of delivery cycles needed to route a set M of messages is O(λ(M) lg2 n), however,
which yields O(λ(M) lg3 n) total time, as compared with O((λ(M) + lg n lg lg n) lg2 n) for
the original fat-tree.

The mechanics of routing on the new fat-tree are somewhat different than on the
original. The underlying channel structure for the two fat-trees is the same, but the new
fat-tree does not rely on concentrators to make efficient use of the available output wires.
Instead, each message sent through the fat-tree randomly chooses which parent to go to
next (based on random bits embedded in its address field) until it reaches the apex of
its path, and then it takes the unique path downward to its destination. This strategy
guarantees that for any given channel through which a message must pass, the message
has an equal likelihood of picking any wire in the channel.

The routing algorithm is a modification of the algorithm RANDOM ′. We simply
surround lines 3–6 with a loop that executes these lines (k + 1) lg n times, where |M | =
O(nk).

The proof that the algorithm works applies the analysis from Section 4 to individual
wires, treating them as channels of capacity 1. Consider a wire w traversed by a mes-
sage in a p-subset M ′ of M , and consider the channel c that contains the wire. For any
other message in M , the probability is p/cap(c) that the message is directed to wire w
when the message set M ′ is sent. Thus, the probability that w is congested is at most
B(1, load(M, c), p/cap(c)) ≤ epλ(M), and an analogue to Lemma 4 holds because the ca-
pacity of w is 1. Lemma 5, which says that the probability is 1

2
p that a given message of

M is delivered when a p-subset of M is sent, also holds if the congestion parameter r is
chosen to be Θ(lg n).

We can now prove a bound of O(λ(M) lg2 n) on the number of delivery cycles required
by the algorithm to deliver all the messages in M . It suffices to show that with high
probability, all the messages in M get routed when the variable z in the algorithm reaches
Θ(λ(M) lg n). When z ≥ rλ(M) = Θ(λ(M) lg n), any given message m is sent once during
a single pass through lines 3–6, and the probability that the message is not delivered
on that pass is at most 1

2
. Thus, the probability that m is not delivered on any of the

(k + 1) lg n passes through lines 3–6 is at most 1/nk+1. Since the number of messages in
M is O(nk), the probability is O(1/n) that a message exists which is not routed by the
time z reaches rλ(M).

Off-line routing

Our analysis for RANDOM has ramifications for the off-line routing problem. We have
shown that with high probability, the number of delivery cycles given by Figure 4 suffices to
deliver a message set with load factor λ. Consequently, there must exist off-line schedules
using only this many delivery cycles, which improves the bound of O(λ lg n) given in
[12]. The previous off-line bound was proved by giving a deterministic, polynomial-time
construction of a routing schedule that achieves the bound. Whether a deterministic,
polynomial-time algorithm exists that achieves our better bound is an open question.

Perhaps the bound on off-line routing can be further improved (e.g., to O(λ+lg n)). The
integer programming framework of Raghavan and Thompson [15] is one possible approach

20

which might give a probabilistic construction that achieves this bound. On the other hand,
it may be possible to apply more direct combinatorial techniques to yield an improved
deterministic bound.

8 Concluding remarks

This paper has studied the problem of routing messages on fat-tree networks. We have
obtained good bounds for randomized routing based on the load factor of a set of mes-
sages. Our algorithms directly address the problem of message congestion and require no
intermediate buffering, unlike many algorithms in the literature. We have shown how to
use the routing algorithms to prove that fat-trees are volume-universal networks. This
section discusses some directions for future research.

The analysis of the algorithm RANDOM gives reasonably tight asymptotic bounds on
its performance, but the constant factors in the analysis are large. In practice, smaller
constants probably suffice, but it is difficult to simulate the algorithm to determine what
constants might be better. Unlike Valiant’s algorithm for routing on the hypercube, our
algorithm does not have the same probabilistic behavior on all sets of messages, and
therefore, the simulation results may be highly correlated with the specific message sets
chosen. The search for good constants is thus a multidimensional search in a large space,
where each data point represents an expensive simulation.

Although we have shown that GREEDY is asymptotically worse than RANDOM, it
may be that it is more practical to implement. The logarithmic-factor overhead that
we have been able to show is mitigated by a constant factor of 1

12
. Simulations indicate

that a greedy algorithm might actually work quite well [6], but we have been unable to
prove a good upper bound on its performance. Despite the simplicity of control offered by
GREEDY, it seems unwise to base the design of a large, parallel supercomputer on un-
proven conjectures of performance. Thus, a comprehensive analysis of GREEDY remains
an important open problem.

The idea of using load factors to analyze arbitrary networks is a natural one. We
have been successful in analyzing fat-trees using this measure of routing difficulty. It may
be possible to analyze other networks in terms of load factor, but some improvement to
our techniques seems to be necessary if channel widths are small and the diameter of
the network is large. The problem is that a message that passes through many small
channels has a high likelihood of conflicting with other messages. One solution might
involve buffering messages in intermediate processors or switches.

The high probability results reported in this paper for routing on fat-trees are almost
deterministic in the sense that substantial deviation from the expected performance will
probably never occur in one’s lifetime. On the other hand, from a theoretical point of view,
it would be nice to match the results of this paper with truly deterministic algorithms.
Most deterministic routing algorithms in the literature are based on sorting, and thus a
direct application to fat-trees causes congestion problems, much as does Valiant’s routing
technique. A deterministic routing algorithm for fat-trees that circumvents these problems
would yield even stronger universality properties than we have shown here.

21

Acknowledgments

We have benefited tremendously from the helpful discussions and technical assistance of
members of the theory of computation group at MIT. Thanks to Ravi Boppana, Thang
Bui, Benny Chor, Peter Elias, Oded Goldreich, Johan Hastad, Alex Ishii, Tom Leighton,
Bruce Maggs, Miller Maley, Cindy Phillips, Ron Rivest, and Peter Shor.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi, “Sorting in c log n parallel steps,” Combina-
torica, Vol. 3, No. 1, 1983, pp. 1–19.

[2] R. Aleliunas, “Randomized parallel communication,” Proceedings of the 1st Annual
ACM Symposium on Principles of Distributed Computing, August 1982, pp. 60–72.

[3] V. E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic,
New York: Academic Press, 1965.

[4] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations,” Annals of Mathematical Statistics, Vol. 23, 1952, pp. 493–507.

[5] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd
edition, New York: John Wiley & Sons, 1957.

[6] A. T. Ishii, Interprocessor Communication Issues in Fat-Tree Architectures, Bachelor’s
thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, May 1985.

[7] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” JACM, Vol. 27, No.
4, October 1980, pp. 831–838.

[8] F. T. Leighton, Complexity Issues in VLSI, Cambridge, Massachusetts: MIT Press,
1983.

[9] F. T. Leighton and C. E. Leiserson, private communication, May 1985.

[10] F. T. Leighton and A. L. Rosenberg, “Three-dimensional circuit layouts,” SIAM Jour-
nal on Computing, Vol. 15, No. 3, August 1986, pp. 793–813

[11] C. E. Leiserson, Area-Efficient VLSI Computation, Cambridge, Massachusetts: MIT
Press, 1983.

[12] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient supercomput-
ing,” IEEE Transactions on Computers, Vol. C–34, No. 10, October 1985.

[13] F. M. Maley, private communication, October 1984.

[14] N. Pippenger, “Parallel communication with limited buffers,” Proceedings of the 25th
Annual Symposium on Foundations of Computer Science, IEEE, October 1984, pp.
127–136.

22

[15] P. Raghavan and C. D. Thompson, “Provably good routing in graphs: regular arrays,”
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May 1985,
pp. 79–87.

[16] C. D. Thompson, A Complexity Theory for VLSI, Ph.D. thesis, Department of Com-
puter Science, Carnegie-Mellon University, Pittsburgh, PA, 1980.

[17] E. Upfal, “Efficient schemes for parallel communication,” JACM, Vol. 31, No. 3, July
1984, pp. 507–517.

[18] L. G. Valiant, “A scheme for fast parallel communication,” SIAM Journal on Com-
puting, Vol. 11, No. 2, May 1982, pp. 350–361.

[19] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel communication,”
Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May 1981,
pp. 263–277.

[20] A. Waksman, “A permutation network,” JACM, Vol. 15, No. 1, January 1968, pp.
159–163.

23

	Loyola University Chicago
	Loyola eCommons
	1989

	Randomized Routing on Fat-Trees
	Ronald I. Greenberg
	Charles E. Leiserson
	Recommended Citation

	tmp.1499956252.pdf.4Z8ep

