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Minimizing Channel Density with Movable Terminals 

Ronald I. Greenberg and Jau-Der Shih * 
Electrical Engineering Department 
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College Park, MD 20742 

A bstract 

We give algorithms to minimize density for chan
nels with terminals that are movable subject to certain 
constraints. The main cases considered are channels 
with linear order constraints, channels with linear or
der constraints and separation constraints, channels 
with movable modules containing fixed terminals, and 
channels with movable modules and terminals. Jn each 
case, we improve previous results for running time and 
space by a factor of L/ lg n and L, respectively, where 
L is the channel length, and n is the number of termi
nals. 

1 Introduction 

The channel routing problem has received a great 
deal of attention in VLSI layout design. Traditionally, 
channel routers have assumed that the positions ofter
minals on each side are fixed, and they seek to mini
mize the width required to route the channel. While 
determining the width required to route a channel 
is NP-complete [8], channel density provides a fairly 
good estimate for channel width. In fact , many ex
isting channel routers achieve widths that are usually 
within one of the density, e.g., [7]. 

In this paper we consider the situation in which 
the orderings of the terminals and components along 
each side of the channel are fixed, but the exact po
sitions may vary. The existence of movable terminals 
is quite typical in practice and can be used to reduce 
the channel density and channel width. When only 
the ordering of terminals on each side is fixed, Gopal, 
Coppersmith, and Wong [4] give an O(n2 ) algorithm 
to minimize the channel width 1 , where n is the num
ber of terminals. LaPaugh and Pinter [6] presented an 

*Supported in part by NSF grant CCR-9109550 
1 Th.is does not contrad.ict the NP-completeness result, due 

to the use of a model in which there is complete freedorn to 
choose the amount of space between adjacent tenninals. 

O(n2 lgn) algorithm to minimize the channel density 
with the additional constraint that the relative posi
tions of the terminals on each side are fixed. That is, 
the terminals lie on a single top module and a single 
bottom module, and the only freedom is to shift the 
modules relative to each other . More recently, John
son, LaPaugh, and Pinter [5] provided an O(n3 ) al
gorithm to minimize density when there are multiple 
modules and terminal positions are fixed within each 
module, but the only other constraint is a fixed order 
for the modules on each side. 

In the above works, however, the resulting channel 
length may be as large as p+q, where pis the number 
of top terminals and q is the number of bottom termi
nals (or as large as the sum of the module lengths). In 
contrast, Cai and Wong [l, 2] minimize density for a 
channel of fixed length L under a wide variety of con
straints on the terminal positions. For channels with 
only linear order constraints (the orderings of the ter
minals on each side of the channel are fixed), they pro
posed an O(pqL) algorithm to minimize the channel 
density. If we add separation constraints (the distance 
between each pair of consecutive terminals is within a 
certain range), their running time and space become 
O(pqL3

) and O(pqL 2
), respectively. With multiple 

modules and fixed terminals within each module, they 
obtain O(L3 ) time and space. If the terminals within 
the modules are also movable , then the running time 
and space become O(pqL3

). Cai and Wong describe 
the practical applicability of these problems and show 
good reduction of density on sample problems with 
modest values of L. 

In this paper we provide more efficient algorithms 
for these four problems of Cai and Wong [ l , 2]. In 
each case, we improve the running time by a factor 
of L/ lg(p + q) and the space by a factor of L. (It is 
easy to also incorporate "position constraints" , which 
specify a set of allowable columns for each terminal, 
as do Cai and Wong; we will omit further discussion 
of such constraints in this paper.) 

The remainder of this paper is organized as fol-



lows. In Section 2, we introduce some additional ter
minology and notation which will be used through
out this paper. Section 3 describes an algorithm to 
find the minimum channel density for channels with 
linear order constraints by using a dynamic program
ming approach. The algorithm is then extended in 
Sections 4, 5, and 6 to handle channels with separa
tion constraints , channels with movable modules , and 
channels with movable modules and movable termi
nals, respectively. Finally, in Section 7, we provide 
some concluding remarks. 

2 Preliminaries 

We start this section by giving the problem defini
tion and some notations. We define t1, t2 , ... , tp and 
b1 , b2 , .. . , bq to be the terminals on the top and bot
tom side of the channel, which are ordered from left 
to right. We are given L column positions in which to 
place the terminals while retaining the given ordering 
on each side. The goal is to find the positions of the 
terminals such that the channel density is minimized. 

Note that the density at any given column depends 
only on the fixed order of the terminals on each side 
and the position of that column within those order
ings. Then let d1 (i,j) be the density at the column of 
t; when t; is placed between bj and bHi, let d2( i, j) be 
the density at the column of bj when bj is placed be
tween ti and ti+l, and let d3( i, j) be the density at the 
column oft; and bj when they are aligned. These den
sity fun ctions can be computed easily in O(pq) time 
for all possible i,j; we assume throughout this paper 
that these values have been computed and saved. Also 
define 8f(i,j) to be 

8d(· ')={ l ifd1(i ,j):Sd 
1 i,J 00 if di(i ,j) > d, 

and define 8g( i, j) and 8g( i, j) analogously. 
The main idea of our algorithms is as follows. Given 

a target density d, we compute the minimum channel 
length required to achieve the density. Based on the 
computed channel length and L , we increase or de
crease the target density. By using a binary search 
on all the possible channel densities, we can find the 
minimum density achievable in length L. 

3 Channels with Linear Order Con
straints 

In this section, we give an algorithm to minimize 
the channel density for channels with linear order con-

straints. We begin by showing how to find the mini
mum channel length at a given target density d. To 
do that, we introduce some subproblems used as the 
basis for a solution by dynamic programming. (We 
show in detail only how to find the minimum channel 
length, but one can readily retrace the computations 
leading to this result to determine the corresponding 
terminal placement.) 

The length function Ld( i, j) is defined to be the 
minimum number of columns spanned by top termi
nals ti, .. . , t; and bottom terminals bi , ... , bj, with 
the restriction that each of those columns has den
sity at most d when all the other terminals are placed 
to the right of both t; and bj. If the target density 
d is unachievable, then Ld(i,j) is defined to be oo. 
We define Lf(i,j) the same way as Ld(i ,j) but with 
the constraint that t; is to the right of bj. Lg ( i, j) 
and L3(i ,j) are defined similarly but with the con
straint that t; is to the left of bi , and t; is aligned with 
bj , respectively. We now show how to compute these 
functions recursively using the shorthand 

Ld(i,j) = min{Lf(i,j), Lg(i ,j), L3(i,j)} 

The final answer to our problem is Ld(p, q) . 
Consider first the computation of Lf(i , j) . By the 

definition of Lf(i,j), t; must be to the right of bj. 
Thus we require one column more than are spanned 
by t1, t2, .. ., ti-l and bi , b2 , .. ., br 

Lf(i , j) = (Ld(i -1 ,j) + l)81(i,j) 

Similarly, we can express Lg(i ,j) and L3(i ,j) as 

and 

L3(i , j) = (Ld(i - l , j- 1) + l)8g(i ,j) . 

For initial conditions, we have, for c = 1, 2, 3, 

j 

L~(O ,j) = j IT 8~(0, k), j=O,l, ... , q , 
k=I 

and 

L~(i, 0) = i IT 8~(k , 0) , i=O, l ,. . ., p , 
k=l 

where we think of to and bo as dummy terminals at 
the left of their respective sides that do not contribute 
to density. 



Theorem 1 Given a target density d , the minimum 
channel length subject to linear order constraints can 
be computed in O(pq) time and space. 

Proof. We have already noted that the o values can be 
computed in O(pq) time, and an additional O(p + q) 
time suffices to determine the ini tial conditions . Then 
we compute the values of the three length functions 
together in order of increasing i and j using the re
currences above. There is a total of O(pq) values to 
compute, and each can be computed in 0( 1) time from 
previously computed values. • 

Corollary 2 T he minimum density of a channel 
subject to linear order constraints can be found in 
O(pq lg(p + q)) time and O(pq) space. 

Proof. The minimum density problem can be solved 
by binary search on density, which is at most p + q . 

• 
4 Channels with Linear Order Con

str aints and Separation Constraints 

[n this section, we extend the algorithm of Section 3 
to handle channels with linear order constraints and 
separation constraints. Let the separation constraints 
have the following form: the distance s; between t ; 

and t;+1 must satisfy l; :'.S s; :'.Sr;, and the distance sj 
between bj and bj+1 must satisfy lj :'.S sj :'.S rj. 

To handle the distance constraints, we have to mod
ify the length functions. Let Lf(i,j, k) and L~(i , j , k) 
be defined as in Section 3 but with the restriction that 
the horizontal distance between i; and bj equals k (in 
absolute value). We define Lg(i , j) exactly as before . 
The constraints for the three length functions are il
lustrated in Figure 1. Then , Ld( i , j) is obtained by 
minimizing over the three types of length functions 
and a ll possible k's. 

Consider Lf(i , j , k) first . There are three cases: (1) 
t;_ 1 is to the right of bi , (2) t ; _ 1 is to the left of bj , and 
(3) t;_ 1 is aligned with bj . And the minimum among 
the three cases is the minimum channel length. In the 
first case, 

Lt(i,j, k) = ~~n{Lt(i-1,j, k') + k - k' }of(i , j) , 

with l; - 1 :'.S k - k' :'.S r; - 1. Figure 2( a) illustrates the 
restriction on k'. The second case can be analyzed 
similarly, and we have 

Ld1(i , j , k) = min{L~(i - l , j , k') + k}6f(i , j) , 
k' 

t· t · 

: .... k ~ : : .... k ~ : 

bj bj 

(a) (b) 

t 

Figure 1 : Three types of length functions: (a) 
Lf(i,j, k) (b) Lg(i ,j, k) (c) Lg(i,j ) 

: .... k' ~ : k - k' : .... 

b· . 
: .!..--- k ---+- : 

(a) 

(c) 

: .... k' ~ : ... k ~ : 

. b· . 
:-+- k +1k'- : 

(b) 

Fig ure 2 : Three possibilities of Lf(i ,j, k): (a) ti-I 
is to the right of bj. (b) t;_ 1 is to the left of b1 . (c) 
t;-1 is aligned with b1 . 

with l;-1 :'.S k+k' :'.S r;-1. In the third case, which is 
possible only when l;-1 ~ k ~ r ;-1, we find 

Lt(i , j, k) = (Lg(i - l , j) + k)ot(i , j) . 

All three cases are shown in Figure 2. The range of k 
isO<k<L. 

From the above argument, Lf(i , j, k) can b e ex

pressed as 

d { (minA1)6f(i , j) 
Li(i,j, k)= (minA2)6f(i,j) 

where 

and 

if l; - 1 S k S r;-1 

otherwise 

A2 = {min1,_ 1 <k -k'<r, _ 1 {Lf(i -1 , j , k') + k - k'}, 
min1,_ 1 ~k+k'~r,_ 1 {L~(i - l,j, k') + k}} . 

Similarly, L~( i, j , k) and Lg ( i , j) can be expressed as 
follows: 

d { (minB1)6~(i,j) 
L2 (i , j , k) = (minB2)6~(i , j) 

if LL 1 s ks r;_1 

otherwise 



and 

where 

(min C1)c5g(i, j) 
if [/;-1 , r;-1] n [t;_ 1, r;_ 1] #- 0 

(minC2)c5i(i , j) otherwise 

Bi = { L3( i , j - l) + k} U B2 , 

B2={min11 <k+k'<r~ {Lf(i,j-1,k')+k}, 
t-1- - t-1 

min11 <k -k'<r' {L~(i , j-1 , k')+k-k'}} , 
t-1- - t -1 

C1 = {L3(i- l,j- l)+max{l;-1 , /i_i}}UC2 , 

C2 = {min(m,k')Elm k' {Lf(i - l , j - 1, k') + m} , 
min(m,k')EJm"k' { L~( i - 1, j - 1, k') + m}} , 

and 

Im ,k' = {(m, k')ili-1 :Sm :S r;-1 and 
Z:-1 :Sm+ k' :S rL1} , 

lm ,k' = {(m, k')Jl;_ 1 :Sm :S r;_ 1 and 
l;-1 :Sm+ k' :S r;-1} . 

Theorem 3 Given a target density d, the minimum 
channel length subject to linear order constraints and 
separation constraints can be computed in O(pqL 2 ) 

tim e and O(pqL) space. 

Proof. We compute values of the length functions in 
order of increasing i, j and k , and then the minimum 
channel length is 

min { min Lt(P, q, k), min L~(p , q, k) , Lg(p , q)} . 
O<k<L O<k<L 

There are O(pqL) values of Lf and L~ to be computed, 
and each can be computed from previously computed 
values in O(L) time. In addition, there are O(pq) val
ues of Lg to be computed, each in time O(L2

). 

• 
Corollary 4 The minimum density of a channel sub
j ect to linear order constraints and separation con
straints can be found in O(pqL2 1g(p + q)) time and 
O(pqL) space. • 

5 Channels with Movable Modules 

This section considers the problem of channels with 
movable modules, but the terminals inside the mod
ules are fixed. We first augment the set of terminals to 
include the endpoints of the modules. Then we insert 
pseudo-terminals on the modules until every column in 

the modules contains a terminal or a pseudo-terminal 
as in (2]. As a result , the separation constraints be
tween terminals inside a top module have the form 
l; = r ; = 1 (an adjacency constraint), and the sep
aration constraints between the right endpoint of a 
top module and the left endpoint of the module im
mediately to its right are l; = 1, and r; = oo. (The 
constraints on the bottom are similar.) Now we can 
see this problem as a channel subj ect to linear order 
constraints and special separation constraints. 

The length functions used in this section are as de
fined in Section 3. The approach to calculate these 
length functions is the same except for a modification 
to handle adjacency constraints. Using the notational 
shorthand 

L~ ,y(i , j)=min{L~(i,j) , Li(i , j)} , 

we have: 

{ 
(Ld(i-l , j)+l)c5f(i , j) 

Lf(i , j) = (Lf,3 (i- l , j) + l)c5f(i , j) 
if ri-1 = 00 

ifr;-1=1 

'f I I rj-l = oo 
if rj _1 = 1 

(Ld(i - l , j-1) + l)c5i(i , j) 

L~(i , j) = 

'f I i r;-1 = rj-l = oo 
(LL(i- l ,j- 1) + l)og(i , j) 

' if r;_ 1 = 1 and rj_ 1 = oo 

(L~ 3 (i - l , j-1) + l)c5g(i , j) 
' if r ;_ 1 = oo and rj_ 1 = l 

(L3(i - 1, j - 1) + l)c5i(i , j) 
if ri - 1 = rJ-l = 1 

and 

Ld(i , j) = min{Lf (i , j) , L~(i , j) , L~(i , j)} . 

Theore1n 5 Given a target density d, the minimum 
channel length for channels with movable modules can 
be computed in O(L2 ) tim e and space. 

Proof. We can compute Lf(i,j) , L~(i , j) , and Lg(i , j) 
from previously computed values in 0(1) time. Includ
ing the pseudo-terminals, there are O(L) terminals on 
each side of the channel, which yields O(L2 ) length 
function values to be computed. • 

Corollary 6 The minimum density of a channel with 
movable modules can be solved in O(L 2 lg(p+q)) time 
and O(L2

) space. • 



0 .. .. 1 ii I O · .. ·l ........... J.__i ____. . -k-- . -k--..... 1- · ..... 1-
0 .. I .bj I 0 .. 1 bj l 

(a) (b) 

o .... , ii i . -k-..... 1-

0 .. 1 bi l 
(c) 

Figure 3: Three types of length fw1ctions: (a) 
Lf(i,j,k,l) (b) Lg(i,j,k,l) (c) Lg(i,j,k,l) 

6 Channels w ith M ovable Terminals 
and Modules 

In this section, we consider channels with movable 
terminals and modules. That is, the modules on each 
side of the channel are movable as in Section 5, but 
we also allow the terminals within the modules to be 
movable . To handle this situation, we have to intro
duce new definitions and length functions. 

Define a left terminal to be the leftmost terminal of 
a module, a left endpoint to be the left endpoint of a 
module, and a right endpoint to be the right endpoint 
of a module. Now augment the set of terminals to in
clude the endpoints of the modules. The length func
tions have four variables i, j, k, and l as illustrated in 
Figure 3; here k and l represent the distance from the 
rightmost of t; and bj to the left edges of their mod
ules. The length function Ld(i,j) is equal to the mini
mum of the three types of length functions for all pos
sible k's and l's (where each length function accounts 
for Lhe lengths of the modules containing t 1 , t 2 , ... , t; 

and b1,b2, ... ,bj)· 
In order to compute the length functions, we clas

sify the terminals into four types: left endpoints, right 
endpoints, left terminals, and others. With a lengthy 
case analysis based on the types of t; and bj, we 
can minimize density in O(pqL 2 lg(p + q)) time and 
O(pqL2

) space. 

7 Conclusion 

We have presented algorithms to minimize the 
channel density for a variety of problems. These 
algorithms improve the previous known results by 
O(L/lg(p + q)) in running time and O(L) in space. 
These algorithms can also easily be extended to chan-

nels with exits or channels with irregular boundaries 
as in [l] without increasing the complexity. ln the pro
cess of minimizing density for a fixed channel length, 
we have provided even more efficient algorithms to 
minimize length at a fixed density. By running the 
latter type of algorithm O(p + q) times , we can also 
minimize more complex cost measures, such as area 
(where density is treated as width) in a channel of 
length at most L. 

For the case of movable modules with fixed termi
nals, density can be minimized in a channel of length 
L in O(n3 lg n) time independent of L (which is an 
improvement for large L) using the method of Chao 
and LaPaugh [3]. However, their method can not be 
extended to handle channels with movable terminals. 
An interesting open question is to solve other varia
tions of the problem in time polynominal in n only. 
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