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Universal Wormhole Routing ∗

Prepub version for Fifth IEEE Symposium on Parallel and
Distributed Processing, 1993, pages 56–63.

Ronald I. Greenberg and H.-C. Oh
Electrical Engineering Department

University of Maryland
College Park, MD 20742

Abstract

In this paper, we examine the wormhole routing
problem in terms of the “congestion” c and “dilation”
d for a set of packet paths. We show, with mild re-
strictions, that there is a simple randomized algorithm
for routing any set of P packets in O (cdη + cLη logP )
time, where L is the number of flits in a packet, and
η = min {d, L}; only a constant number of flits are
stored in each queue at any time. Using this result, we
show that a fat-tree network of area Θ(A) can simulate
wormhole routing on any network of comparable area
with O(log3 A) slowdown, when all worms have the
same length. Variable-length worms are also consid-
ered. We run some simulations on the fat-tree which
show that not only does wormhole routing tend to per-
form better than the more heavily studied store-and-
forward routing, but that performance superior to our
provable bound is attainable in practice.

1 Introduction

An efficient routing algorithm is critical to the de-
sign of most large-scale general-purpose parallel com-
puters. One must move data between different loca-
tions in an appropriate routing network as quickly as
possible and with as little queuing hardware as pos-
sible. Store-and-forward routing is the most exten-
sively studied model and many asymptotically effi-
cient algorithms have been proposed for this model
(e.g., [14, 11] and the references therein). Recently,
increasing attention has been devoted to the worm-
hole routing model [3], since it can lead to a reduction
in routing time and the storage requirements of inter-
mediate nodes. In this model, packets are composed of

∗Supported in part by NSF grant CCR-9109550

flits or flow control digits, and packets snake through
the network one flit after another.

Only a few works have performed any theoreti-
cal analysis of wormhole routing or similar schemes.
Leighton [13] performs average-case analysis of greedy
cut-through routing on meshes. But cut-through rout-
ing [9] differs from wormhole routing in that it uses
buffers that can store at least one full packet rather
than a few flits. Makedon and Simvonis [17] give worst
case bounds for cut-through routing of permutations
on the mesh and the torus. Aiello, Leighton, Maggs,
and Newman [1] give an efficient algorithm for worm-
hole routing of permutations on a dilated butterfly.
Their algorithm is nonoblivious (may use information
about other packets when routing a given packet).
More recently, Felperin, Raghavan, and Upfal [4] have
obtained a simple, oblivious algorithm for wormhole
routing of permutations on the butterfly and the mesh.

While previous analyses of wormhole routing have
been applicable only to specific networks and/or spe-
cific message patterns, this paper takes a more general
approach based on summary measures of the message
traffic, as in [14, 12, 11]. We require only that any two
packet paths intersect in at most one contiguous se-
quence of edges. (This condition is always satisfied in
networks that have a unique path between each pair
of processors, and the condition can be easily satis-
fied in many other networks by choosing the paths for
packets appropriately.)

After deriving general bounds for wormhole rout-
ing, we apply the results to the construction of area-
universal networks. In particular, when worms have
a fixed length, a bounded-degree network (the but-
terfly fat-tree [7]) of area Θ(A) using wormhole rout-
ing can simulate (on-line) any network of comparable
area with O(log3 A) slowdown. Though it has been
proven that O(logA) slowdown suffices in the store-
and-forward routing model [14, 11], such an approach



requires the universal network to queue full packets at
each intermediate node and similarly limits the type
of competing network that is considered. Also, the
circuit-switching scheme of [7] could actually be used
as a wormhole routing scheme, but with poorer over-
head than we show here, since the earlier scheme locks
down a routing path for more than the time required
for a worm to pass.

We also extend the universality analysis to the case
in which worms have varying lengths. In this case,
each processor continuously generates and sends pack-
ets, where the packet length L is a random variable
with mean E[L] = L̄ and maximum value LM . With
mild restrictions, we show that a fat-tree network of
area Θ(A) can simulate any network of comparable
area with O

(
(LM/L̄) log3 A

)
slowdown.

Before proceeding with the promised results, we
give more detail on the model and terminologies used
throughout this paper. We consider the routing of
a set of P packets, each consisting of L flits. We
follow the usual graph-based terminology; processors
and switches are nodes in the graph and communica-
tion channels are represented by edges. We make the
usual assumption that unit time suffices for a flit to
cross any edge in the network (though it would also
be desirable to extend the analysis to general edge de-
lays as done in [8] for the store-and-forward model).
A flit is an atomic objects, which at each time step,
either waits in a queue, or crosses an edge and enters
the edge queue at the end of that edge. (In store-
and-forward routing, packets are the atomic objects.)
We call this unit time step a flit-step, while the corre-
sponding unit time step for store-and-forward routing
is a packet-step. We restrict attention to bounded-
degree networks, so the time to make routing decisions
at any given node does not affect the asymptotic time
bounds.

We may view the packet routing problem as be-
ing comprised of two tasks, selecting a path through
the network for each packet and setting a schedule
for when packets move and wait. In the next section
of this paper, we focus on the second task. Of course,
the selection of paths affects the required routing time.
For example, the maximum distance d, in number of
edges, traveled by any packet is a lower bound on the
routing time; this distance is often referred to as the
dilation in the literature. Similarly, the routing time
is lower bounded by cL, where the congestion c is the
maximum over all edges of the number of packets that
must traverse the edge over the entire course of the
routing.

Once the set of packet paths has been determined,

we can define a graph, D, which has a vertex for each
edge of the network and an edge (u, v) whenever there
is a packet path in which network edge v immediately
follows network edge u. We refer to this graph as the
dependency graph. We ensure that deadlock cannot
occur by assuming that the dependency graph of the
paths is acyclic [3]. (Many networks, e.g., leveled net-
works [14, 11], have no cycle inD for any set of packets.
Also there are techniques for breaking cycles [3].)

2 A Simple wormhole routing algo-
rithm

In this section, we give a simple delayed-greedy
wormhole routing algorithm and its theoretical analy-
sis, when all worms have the same length, L. Through-
out this section, we only consider a set of paths such
that the channel dependency graph is acyclic, and any
two paths intersect in at most one contiguous sequence
of edges. Each node has a queue, for each input edge,
which can store at most one flit. It is sufficient for our
analysis to have each node scan its input queues in a
fixed order and send out a flit whenever the relevant
outgoing edge is not occupied by another worm.

Following is a key lemma showing that sums of ran-
dom variables with a binomial distribution are unlikely
to greatly exceed their expected values.

Lemma 1 Let X have a binomial distribution with
density fX(x;K, p),1 and let Sn be the sum X0+X2+
· · · + Xn−1 of n independent random variables dis-
tributed as X. Let m be a value greater than or equal
to nKp. Then

Pr {Sn ≥ m} ≤ e−
(m−nKp)2

2m .

Proof. The proof uses Chernoff’s general bound on
the sum of independent identically distributed random
variables [2] and will appear in the full paper.

We now use a delayed-greedy approach similar to
that of Felperin, Raghavan, and Upfal [4]. Each packet
chooses an integral delay randomly and uniformly
from the interval [0, R−1], whereR is to be determined
later. Let T1 = max

{
d
L , logP

}
and η = min {d, L}. A

packet that is assigned delay x waits in its initial queue
for xkT1L steps and then proceeds to its destination,
for some constant k.

Theorem 2 Any set of P packets can be routed in
O (cdη + cLη logP ) flit-steps with high probability.

1fX(x;K, p) =

{ (
K
x

)
px(1− p)K−x for x = 0, 1, · · · ,K

0 otherwise



Proof. We refer to the time from xkT1L to (x+1)kT1L
as the x-th phase, and we show that for any given
worm W , the probability is at most 1/P 2 that the
worm fails to reach its destination by the end of the
phase in which it enters the network (under the as-
sumption that all worms dispatched in previous phases
have been delivered). This will yield a probability of
at most 1/P that there exists any worm that does not
get delivered during its phase. Without loss of gener-
ality, we assume that W is sent in the phase starting
at time 0, and we henceforth ignore any worms that
are not dispatched in this phase.

We say that a worm W ′ blocks W at t if the edge to
which the head of W has to proceed at t is taken by
W ′. Worm W ′ delays worm W at t, if at t, there is a
delay chain of r(≥ 1) worms W = W1,W2, · · · ,Wr =
W ′ such that worm Wi is blocking worm Wi−1; worm
W ′ is moving; and no other worm in the chain can
move. Since we exclude any possibility of deadlock,
any blockage will end at some time. Once worm W ′

delays worm W for at most L steps (not necessarily
consecutive), worms W ′ and W take separate paths or
W follows W ′, i.e., W ′ will not delay W again. Note
also that when r = 1, we say that W delays itself, even
though W actually moves in that case.

Now we count how many worms can delayW before
it reaches its destination. Let ∆t denote the set of all
worms that delay W strictly before time t. Then let
Dt be the union of ∆t and all worms that traverse
an edge where some worm in ∆t blocks the previous
worm in its delay chain. Also, let D0 = {W}.

We now consider a given time step t. Let A be the
worm which is in Dt and would delay W at t if W
were not delayed by any worm outside Dt. Let e be
the next edge which A has to traverse. Then, one of
the following events will occur at t:

1. A worm, A′, outside Dt delays A. (Note that e
may or may not be the edge, e′, which A′ traverses at
t.) In this case, we letDt+1 be comprised of the worms
in Dt and all the worms that traverse e′. We make the
conservative assumption that all of these new worms
contribute to the delay of W one after another.

2. No worm outside Dt takes e. In this case, A will
start traversing e.

Let Bt be the number of worms in Dt+1−Dt. Then
Bt is dominated by a binomial distribution with den-
sity fB(b; c,

1
R ).

Now, suppose W has reached its destination by
time τ . Then τ ≤ L

∑τ−1
i=0 Bi + d + L, since W is at

most delayed for L steps by each of the
∑

Bi worms,
and an additional d + L steps suffices for all the flits
of W to reach their destination. Let k = 10 and

τ = 10T1L. The value of R depends on the condi-
tion on d and L.

When L < d, we choose R = 5cL. Since the Bi’s
are (at worst) distributed as B which has a binomial
distribution with density fB(b; c

′, 1
R ) with c′ ≤ c, by

Lemma 1,

Pr

{
τ−1∑
i=0

Bi ≥ 8T1

}
≤ e−2 logP .

This implies that, with probability 1−1/P 2, worm W
is delayed by at most 8T1 worms during the phase,
and all of its flits reach their destination by time
8T1L + d + L ≤ τ . Thus the routing can be done in
O
(
cdL+ cL2 logP

)
flit-steps with high probability.

When d ≤ L, we choose R = 5cd. For d = L, we
can show that at most 8T1 worms delay a given worm
W during the phase with high probability, because

Pr
{∑τ−1

i=0 Bi ≥ 8T1

}
≤ e−

(8T1−2T1
L
d )

2

16T1 ≤ e−2 logP

when L ≤ d. This number of packets that delay W for
L = d does not change even if we increase the worm
length, because any worm which delays W can be de-
layed by another worm only before its head reaches its
destination. Since 8T1 worms can delay W for at most
8T1L steps, the probability is at least 1−1/P 2 that W
reaches its destination within 10T1L steps. Thus the
routing can be done in O

(
cd2 + cLd logP

)
flit-steps

with high probability.

We also have the following corollary to Theorem 2,
which is useful in Section 3.1:

Corollary 3 When d ≤ logP , any set of P packets
can be routed in O

(
cL log2 P

)
flit-steps with high prob-

ability.

3 Wormhole routing on fat-trees

Fat-trees constitute a class of routing networks for
hardware-efficient parallel computation [15, 7, 14].
Figure 1 shows a layout of one variant of fat-trees,
which uses switches of constant size. A fat-tree in
this style is usually referred as a butterfly fat-tree, of
which a variation has been adopted in the CM-5 su-
percomputer of Thinking Machines Corporation [16].
In Figure 1, a set of N processors are placed at the
leaves, represented by circles; the squares are switches.
Each connection drawn between a pair of switches or
a processor and a switch represents a pair of oppo-
sitely directed links, each capable of transmitting one
flit in unit time. We call the link from parent to child
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Figure 1: A butterfly fat-tree.

a down link, and the other an up link. The underlying
structure of Figure 1 is a complete 4-ary tree. Each
edge of the underlying tree consists of a group of links,
called a channel. We call the channel from parent to
child a down channel, and the other an up channel.
The number of links in a channel is called its capac-
ity. An important measure of the difficulty of routing
a set of packets on a fat-tree is the load factor, the
maximum ratio of the number of packets traversing a
channel to the capacity of the channel. The load factor
λ is closely related to the congestion c. We can always
choose packet paths so that c = O (λ+ logN) [14,
Lemma 9].

We select a shortest path for each packet. The de-
pendency graph for the paths selected in this way is
free from cycles, because no shortest path proceeds
from a down channel to any up channel. Also, any
two paths selected in this way do not intersect in more
than one contiguous sequences of edges. Hence the re-
sult of Section 2 can be applied.

3.1 Area-universality of fat-trees

3.1.1 Worms with a fixed length

The algorithm analyzed in Section 2 allows us to ex-
tend to the wormhole routing problem universality
theorems from [15, 7, 14, 6] which state that a uni-
versal fat-tree of a given area (volume) can simulate
(using circuit switching or store-and-forward packet
routing) any other routing network of equal area (vol-
ume) with only a polylogarithmic factor increase in
the time required. Throughout this section, we as-

sume that all worms have a fixed length, L.
We construct a fat-tree on unit-size processors,

which occupies area linear in the number of processors,
as in [6]. (It is actually more reasonable to consider
processors that are larger than constant-size, but we
bypass this complication, since it can be handled as
in [6, 5].) Then, a very simple one-to-one mapping of
a competing network’s processors to those of the fat-
tree guarantees that any set of packets delivered in
one packet-step by a competing network of compara-
ble area does not induce too great a congestion on the
fat-tree, as is shown by the following lemma, adapted
from [6, Lemma 2.1].

Lemma 4 Consider networks with unit-sized proces-
sors, and let R be the set of all networks of area A.
Then, there exists a fat-tree F of area Θ(A) such that
any set of packets delivered in one packet-step by a
network in R induces a congestion of O (logA) on F .

We can immediately extend this lemma to the case
in which the competing network uses wormhole rout-
ing; the set of packets that move during any window of
L flit-steps in the competing network induce a conges-
tion of O (logA). Then we can state our universality
result for wormhole routing:

Theorem 5 A fat-tree F of area Θ(A) can simulate
any network of area A with a factor of O

(
log3 A

)
loss

of runtime efficiency, using on-line wormhole routing.

Proof. Consider the set of packets that moves during
L flit steps in a competing network of area A. By
extending Lemma 4 as suggested above, we know that
the congestion created by this set of packets on a fat-
tree of area Θ(A) is O (logA). Next we can restate
Theorem 3 by substituting A for P as long as the
number of packets is polynomial in A, as is true here.
For a fat-tree, d = O (logA), so the set of packets can
be delivered by F in O

(
L log3 A

)
flit-steps.

It should be noted that under some circumstances,
we can obtain an asymptotic bound that appears
better than the above by splitting each packet into
flits and essentially treating these flits as independent
packets. Of course, we must then attach complete ad-
dressing information to each flit. If a flit is big enough
to carry a full address, then we can think of each flit
as being transformed into a packet of two flits and
we could use the store-and-forward routing scheme for
leveled networks of Leighton et. al. [14, 11] to route
the packets in O (cL+ d+ logP ) time. This yields
O (logA) overhead for fat-tree simulation. Of course,



it is unfair to compare this result with Theorem 5,
because this independent-flit approach would induce
additional overhead, such as increased storage in the
intermediate nodes and the overhead of splitting and
reconstructing the packets.

3.1.2 Worms with variable lengths

In this section, we consider the situation in which each
processor continuously generates and sends packets,
where the packet length L is a random variable with
the mean E[L] = L̄, the variance var[L] = σ2

L, and
the maximum LM .

We assume that the standard deviation of the
packet length satisfies 0 < σL ≤ ϵL̄, for some constant
ϵ such that 0 < ϵ < 1. This assumption is satisfied
by the packet-length distributions, generated in typ-
ical concurrent computing applications, presented in
the literature, e.g. [18].

The full paper will prove the following theorem:

Theorem 6 Consider a set, R, of networks with area
A. Suppose that each processor continuously gen-
erates and sends packets during a time interval of
length ∆T ≥ ALM . Let LM be bounded above by
a polynomial in A. Then a fat-tree F of area Θ(A)
can simulate any network of area A with a factor of
O
(
(LM/L̄) log3 A

)
loss of runtime efficiency, using

on-line wormhole routing.

3.2 Simulation

This section investigates the practical performance
of wormhole routing algorithms on butterfly fat-trees.
We only consider the case in which all packets have a
fixed length L.

3.2.1 Description of the butterfly fat-tree

We use the butterfly fat-tree with N processors in
the style of Figure 1. Each node has an address
which is expressed as a pair (l, a) of integers, where
l represents the level of the node in the butterfly fat-
tree and a represents the address of the node in that
level. Let the level of a node be its distance from the
leaves. At the 0-th level (l = 0) are N processors
which are addressed from 0 to N − 1. In Figure 1,
we arrange the processors in a similar fashion to the
shuffled row-major indexing in [20]. These processors
are connected to N/4 switches at the 1-st level such
that the processor at (0, a) is connected to the switch
(1, ⌊a/4⌋). At the l-th level, for l = 2, · · · , log4 N ,
there are ml =

ml−1

2 switches. The connections of a

switch are determined by the switch’s address as fol-
lows: (l, a) is connected to (l+1,

⌊
a

2l+1

⌋
·2l+a mod 2l)

and (l + 1,
⌊

a
2l+1

⌋
· 2l + (a+ 2l−1) mod 2l).

3.2.2 Routing algorithms and strategies

Algorithm STORE is a (delayed) greedy store-and-
forward routing algorithm. Each packet chooses an
integral delay randomly and uniformly from the inter-
val [0, R−1]. A packet that is assigned delay x waits in
its initial queue for x time steps and then proceeds to
its destination. At each step, each node scans its input
queues once and sends out available packets greedily
(whenever the corresponding output edge is idling and
the queue at the end of that edge is not full).

Algorithm WORM is a (delayed) greedy wormhole
routing algorithm. Each packet consists of L flits.
Each packet chooses an integral delay randomly and
uniformly from the interval [0, R−1]. A packet that is
assigned delay x waits in its initial queue for xL logN
time steps and then proceeds to its destination. At
each flit step, each node scans its input queues once.
If the flit is a head flit, the node sends it out accord-
ing to the flit’s path only when the output edge is not
being used by any other packet and the queue at the
end of that edge is not full. If the flit is not a head
flit, the node sends it out to where the flit’s head was
sent out, whenever the queue at the end of that edge
is not full.

Algorithm UNIV is the universal store-and-forward
routing algorithm of [14] for leveled networks.

Algorithm SPLIT uses the independent-flit ap-
proach. Each packet is split into flits which are treated
as independent packets and routed as in STORE.

In the butterfly fat-tree, there is more than one
shortest path between a pair of leaves. More specifi-
cally, at a switch, a packet can take any one of two up
links, when its destination is not one of the leaves of
the subtree rooted at the switch. (There is no redun-
dancy for down links.) We can use this redundancy in
selecting paths.

• Fixed-Path (FP) selection: For each packet, we
select a shortest path randomly and uniformly be-
fore the packet leaves its source.

• Random-Path (RP) selection: When a packet
needs to go up, it selects an up link randomly.
If the link is blocked, the packet waits. The se-
lection is oblivious, i.e., each time a packet seeks
to go up, it makes a selection randomly.

• Greedy-Path (GP) selection: The packet seeking
to go up scans up links and chooses the first one



which is not blocked.

When more than one incoming packet is to be
routed to an outgoing link, the way of selecting one
may affect the results. The following schemes have
been tested:

• Fixed-Order (FO) scan: At each time step, a
switch scans its incoming links in a fixed order
and chooses the first pertinent packet for each
outgoing link.

• Random Round-robin (RR) scan: This scheme is
similar to FO scan, except that a switch selects
the first incoming link randomly and scans around
from that link.

• Farthest-First (FF) selection: In this scheme, a
switch scans its input queues in a RR fashion,
except that priority is given to packets heading to
the farthest destinations for up links, and packets
from the farthest sources for down links.

3.2.3 Simulation results

We consider only the static injection model in which
every processor has a fixed number of packets to inject.

The communication patterns we consider are:

• Random Instance: Each packet chooses a desti-
nation randomly and uniformly.

• Complement Permutation: Each processor (0, a)
sends a packet to processor (0, N − 1 − a). This
permutation induces as high a congestion on the
fat-tree as any other permutation. The conges-
tion created by this permutation is

√
N/2.

• Many-to-1 Instance: Packets are sent from
processors (0, 0), · · · , (0, N/2 − 1) to proces-
sor (0, N − 1), and packets from processors
(0, N/2), · · · , (0, N−1) are sent to processor (0, 0).
This pattern gives high congestion (c = N/2)
with the same number of packets as for a per-
mutation.

Four network sizes have been tested: N = 16, 64,
256, 1024. Experiments on networks of larger sizes are
being conducted.

For each run, we measure the maximum commu-
nication latency which is the time elapsed after the
routing has begun until the tail of the last packet ar-
rives at its destination. In figures 2 – 5, each point
represents 30 runs. The average values are connected
with lines and the deviation at each point is indicated

0

50

100

150

200

250

300

350

400

16 64 256 1024

m
a
x
.
 
l
a
t
e
n
c
y
 
[
p
a
c
k
e
t
-
s
t
e
p
s
]

N

UNIV & STORE-RP-RR; 30 runs; 1 random instance/run; q=1 packet

’UNIV’
’STORE’

Figure 2: Performance of STORE (with RP and RR):
Comparison with UNIV. Both algorithms used R =
lgN .

by an error bar. We also note in some figures the load
factor λ.

The queue size of WORM was chosen experimen-
tally. For random instances, little was gained by in-
creasing the queue size beyond 2 flits, and this choice
generally yielded better performance than STORE
with queues of any size tested. In the following, we use
queues for 2 flits in WORM, and queues for 1 packet
in STORE. (STORE improves somewhat with larger
queues, but we are already using more buffer space
than for WORM.)

First, we compared STORE with UNIV. Even
though UNIV is known to be asymptotically optimal
(O (c+ logN)) on fat-trees, the greedy routing algo-
rithm (STORE) performed better than UNIV, for all
of the communication patterns considered. A compar-
ison on random instances is shown in Figure 2.

We tested the effects of initial delays on the latency
of STORE and WORM. We found that the initial ran-
dom delays can decrease the latency, but we did not
find any cases in which they provided much advantage,
so we do not use them henceforth.

We also found that the average latency tends to de-
pend linearly on the worm size L. This is consistent
with the observation that the total number of packets
which may delay a given packet is not a function of
L once L ≥ d, as we mentioned in the proof of The-
orem 2. Therefore, except where otherwise noted, we
do experiments for only one worm size L = 32 flits.

Figure 3 compares the path selection schemes for
both store-and-forward routing and wormhole rout-
ing. Adaptive schemes significantly outperform the
fixed-path scheme for the cases we considered. Similar
results were obtained with the other packet selection
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Figure 3: Comparison of routing schemes on selecting
paths in STORE and WORM with RR scan.
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Figure 4: Comparison of routing schemes on scanning
input queues in STORE and WORM with RP selec-
tion.

schemes.
Using the best path selection scheme, RP, Figure 4

compares the packet selection schemes. It shows that
RR slightly outperforms FO (by 4–8% for most cases).
(FF performed similarly to FO.) We henceforth show
most of our results with the RR and RP routing
schemes. (The GP-FO combination may also be a
good choice, though RP-RR outperforms it by 5–9%
for STORE and 12–15% for WORM with N = 1024
and N = 4096. With GP-FO, we don’t have to worry
about the difficulty of implementing good randomiza-
tion schemes, and some programmers prefer determin-
istic systems.)

Figure 5 compares two approaches for treating the
flits in a packet: ordinary wormhole and independent-
flit (SPLIT) approaches. The performance of SPLIT
is pretty sensitive to the selection of routing schemes.
For example, SPLIT with GP-FF uniformly outper-
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Figure 5: Comparison of routing schemes on treating
flits: WORM (with RP and RR) and SPLIT (with
various strategies).

forms SPLIT with RP-FO, which was not observed
for STORE. We found that WORM with RP-RR out-
performs SPLIT with RP-FO and SPLIT with GP-
FF, and SPLIT with RP-RR performs slightly bet-
ter than WORM with RP-RR. This comparison is,
however, made without considering the addressing in-
formation to be added to each individual flit in the
original packet. From Figure 5, we can expect that
even a slight increase in the number of flits sent by
SPLIT (due to the replication of addressing informa-
tion) would cause WORM to outperform SPLIT.

Table 1 compares the average latencies of WORM
and STORE for various conditions. For all cases con-
sidered, WORM outperforms STORE.

Using the measured congestion and average laten-
cies for WORM with RP and RR on the random mes-
sage patterns, we sought a best fit to the routing time
in the form kcL logp4 N for constants k and p. Using
data for N = 16, 64, 256, 1024, and 4096, the best
least-squares fit was obtained with p = 1.7, which is a
better growth rate than would be expected from our
proven bound.

References

[1] B. Aiello, T. Leighton, B. Maggs, and M. New-
man. Fast algorithms for bit-serial routing on
a hypercube. In Proceedings of the 2nd Annual
ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 55–64. Association for Comput-
ing Machinery, 1990.

[2] H. Chernoff. A measure of asymptotic efficiency
for tests of a hypothesis based on the sum of



STORE-RP-RR WORM-RP-RR
N random complement many-to-1 random complement many-to-1
16 269 198 544 125 68 258
64 534 442 2144 233 161 1028

256 944 829 8352 441 301 4102
1024 1677 1565 32992 843 583 16392

Table 1: Average latency, in flit-steps, of the greedy store-and-forward (STORE with R = 0 and q = 1) and the
greedy wormhole (WORM with R = 0 and q = 2) algorithms. Each value represents an average of 30 experiments.
The average load factors of the random instances are 2.9, 4.4, 6.9, 12.9, for n = 16, 64, 256, 1024, respectively.

observations. Annals of Mathematical Statistics,
23:493–507, 1952.

[3] W. J. Dally and C. L. Seitz. The torus routing
chip. Distributed Computing, 1:187–196, 1986.

[4] S. Felperin, P. Raghavan, and E. Upfal. A the-
ory of wormhole routing in parallel computers.
Manuscript, 1993. Earlier version in Proceedings
of the 33rd Annual Symposium on Foundations of
Computer Science.

[5] R. I. Greenberg. The fat-pyramid and universal
parallel computation independent of wire delay.
IEEE Trans. Computers. To appear.

[6] R. I. Greenberg. The fat-pyramid: A robust net-
work for parallel computation. In W. J. Dally,
editor, Advanced Research in VLSI: Proceedings
of the Sixth MIT Conference, pages 195–213. MIT
Press, Apr. 1990.

[7] R. I. Greenberg and C. E. Leiserson. Randomized
routing on fat-trees. In S. Micali, editor, Random-
ness and Computation. Volume 5 of Advances in
Computing Research, pages 345–374. JAI Press,
1989.

[8] R. I. Greenberg and H.-C. Oh. Packet routing in
networks with long wires. In Proceedings of the
30th Annual Allerton Conference on Communi-
cation, Control, and Computing, pages 664–673,
1992. Revised version (University of Maryland
technical report CS-TR-3044 and UMIACS-TR-
93-22) submitted to Journal of Parallel and Dis-
tributed Computing.

[9] P. Kermani and L. Kleinrock. Virtual cut-
through: A new computer communication
switching technique. Computer Networks, 3:267–
286, Sept. 1979.

[10] M. Kunde and T. Tensi. Multi-packet-routing on
mesh connected arrays. In Proceedings of the 1989
ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 336–343. Association for Com-
puting Machinery, 1989.

[11] F. T. Leighton, B. M. Maggs, A. G. Ranade, and
S. B. Rao. Randomized routing and sorting on
fixed-connection networks. Manuscript, 1991. To
appear in Journal of Algorithms.

[12] F. T. Leighton, B. M. Maggs, and S. B.
Rao. Packet routing and job-shop scheduling
in O(congestion + dilation) steps. Manuscript,
1991. To appear in Combinatorica.

[13] T. Leighton. Average case analysis of greedy rout-
ing algorithms on arrays. In Proceedings of the
2nd Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pages 2–10. Association
for Computing Machinery, 1990.

[14] T. Leighton, B. Maggs, and S. Rao. Universal
packet routing algorithms. In Proceedings of the
29th Annual Symposium on Foundations of Com-
puter Science, pages 256–269. IEEE Computer
Society Press, 1988.

[15] C. E. Leiserson. Fat-trees: Universal networks for
hardware-efficient supercomputing. IEEE Trans.
Computers, C-34(10):892–901, Oct. 1985.

[16] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Dou-
glas, C. R. Feynman, M. N. Ganmukhi, J. V.
Hill, W. D. Hillis, B. C. Kuszmaul, M. A. S.
Pierre, D. S. Wells, M. C. Wong, S.-W. Yang,
and R. Zak. The network architecture of the con-
nection machine CM-5. In Proceedings of the 4th
Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 272–285. Association for
Computing Machinery, 1992.



[17] F. Makedon and A. Simvonis. On bit-serial packet
routing for the mesh and the torus. In J. JaJa,
editor, Proceedings of the Third Symposium on
the Frontiers of Massively Parallel Computation,
pages 294–302. IEEE Computer Society Press,
1990.

[18] J. Y. Ngai. A framework for adaptive routing in
multicomputer networks. Technical Report CS-
TR-89-09, Department of Computer Science, Cal-
ifornia Institute of Technology, 1989.

[19] A. Papoulis. Probability, Random Variables, and
Stochastic Processes. McGraw-Hill, 1984.

[20] C. Thompson and H. Kung. Sorting on a mesh-
connected parallel computer. Communications of
the ACM, 20(4):263–271, Apr. 1977.


	Universal Wormhole Routing
	Recommended Citation

	tmp.1499959158.pdf.v2HMu

