
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

6-17-2016

Metrics, Software Engineering, Small Systems – the Future of Metrics, Software Engineering, Small Systems – the Future of

Systems Development Systems Development

William L. Honig
Loyola University Chicago, whonig@luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Engineering Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Honig, William L.. Metrics, Software Engineering, Small Systems – the Future of Systems Development. , ,
: , 2016. Retrieved from Loyola eCommons, Computer Science: Faculty Publications and Other Works,

This Presentation is brought to you for free and open access by the Faculty Publications and Other Works by
Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications
and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
© William L. Honig, 2016

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Research Presentation

17 June 2016

William L. Honig, Ph.D.

Associate Professor

Department of Computer Science

Loyola University Chicago

Visiting Researcher, Keio University

Tokyo, Japan

whonig@luc.edu

Metrics, Software Engineering, Small Systems –

the Future of Systems Development

 2006 William L. Honig, Ph.D. Introduction to Computing

Metrics, Software

Engineering, Small

Systems –

the Future of

Systems

Development

What I Hope You Will Remember:

1. Trend to smaller and

smaller computing devices

will continue

2. Quality, Reliability,

Trustworthiness of

computer systems will

increase in importance

3. Metrics, and good software

engineering are key to it all

Outline

1. Where I Started = Early

Metrics

2. Metrics Today

3. What are “Embedded

Systems” – Where / What

Today

4. Growing Importance of

Small Systems (and their

networks)

5. Why Good Software

Engineering is Essential

6. Summary Thoughts

2

I am expecting you to ask questions ANY TIME!!

whonig@luc.edu

What I want YOU to do!

1. Questions are GOOD!

2. You can ask anytime.

3. It is not BAD to ask questions or make comments

It does not mean “I don’t understand”

It does not mean “I am stupid”

4. It is GOOD to ask questions

Shows you are awake

Shows you are interested

Help others understand too!

 2006 William L. Honig, Ph.D. Introduction to Computing 4

My First Computer

– Instruction Speed: 1 instruction every 2 msec.

– QUIZ: What speed processor would this be in today’s
terms (Ghertz)?

 2006 William L. Honig, Ph.D. Introduction to Computing

Quiz 1

Speed

.0005 Mhz processor
(and I had the whole computer to

myself for a few seconds)

IBM 7094

1 instruction every .002 seconds

1/.002 = 500 instructions a second

(assume 1 clock cycle for instruction)

Today Mcycles or Gcycles per second

500/10**6

 2006 William L. Honig, Ph.D. Introduction to Computing 6

Programming Tools

– One punched card per line of program (72 characters)

 2006 William L. Honig, Ph.D. Introduction to Computing
7

My First Job – Bell Labs

– Computer controlled telephone switching

– Reliability and performance

– EVERYTHING is measured = METRICS

– Metrics can be used for GOOD and BAD

Metrics:
1. Seconds to

complete a

call

2. Number of

customers an

hour

3. Customers

who call back

quickly

4. …

I did not know at this point how important it would be!

whonig@luc.edu

Outline

1. Where I Started = Early Metrics

2. Metrics Today

3. What are “Embedded Systems” – Where /

What Today

4. Growing Importance of Small Systems (and

their networks)

5. Why Good Software Engineering is Essential

6. Summary Thoughts

What are Metrics?

Measures, Quantitative Values, Numbers

Things you need or want to measure

IEEE Standard Glossary of Software Engineering Terminology

Std 610.12 -1990:

Metric. A quantitative measure of the degree to which a

system, component, or process possesses a given attribute.

Food Metrics
Things you may want to know before buying a food item

Example Metrics:
1. Protein per servings

2. Salt (NaCl per
serving

What are some typical

software development metrics?

SLOC, KSLOC - Source Lines of Code (may distinguish new,

reused, changed, …)

Person Hours – Actual Time Worked (e.g. on coding, or on

whole development project)

Defects – Count of Bugs or Problems Found (tracking where

defects are found and where they were caused is key to process

improvement)

Earned Value – A Measure of Performance to Schedule

AFR – Appraisal to Failure Ratio (comparing time spent

preventing bugs to time spent fixing them)

Still the best measure of size /
how big something is

Why many developers have to
record time worked.

My first job: time card

More complex development metrics

DEFECT = fancy word for bug

History of System Development

Software
Art Software

Science Software
Process

1960 1990

Why bother?
If you don’t know where you’re

going, any road will do!

Questions:

How good is my system (right now)?

How good is my software process (right now)?

What must I do to improve it?

Where do I start?

What am I doing well (and not so well)?

Am I on schedule?

Is the system high quality

Will it be high quality

when finished?

The general quality
process:

Measure (something(s))
Set Targets, Goals
Try to Improve to Meet Goals
Do it again (and again…)

PLAN

DO

CHECK

ACT

The quality improvement

process PDCA

Kaizen 改善

In the USA:
Much work on product

quality is motivated by
the Japanese success
in high technology
manufacturing.
1. Automobiles
2. Cameras

3. …

The Quality Process and Metrics
(two parts of a whole)

Defined Process; Repeatable Process; Quality Process

• Known steps, known inputs and outputs, entry and

exit criteria

• Cost to remove defects or correct mistakes doubles

each step further into the development

• Feedback: defect reporting, cause analysis, corrective

action plan

Measurement and Metrics

• Data gathering for understanding, evaluation, control,

prediction. (Data gathering can be expensive)

• Metrics can be objective or subjective

EMPHASIS ON

QUALITY METRICS AND PROCESS METRICS

Defects Injected VS Removed

0

5

10

15

20

W1 W2 W3 W4 W5 W6 W7

Weeks Planned for C1 & C2

D
e

fe
c

ts
 I
n

je
c

te
d

&
 R

e
m

o
v

e
d

IN
S

 f
il

le
d

Injected & Removed -C1 Injected & removed -C2
NO.OF INS FINISHED - C1 NO.OF INS FINISHED - C2

0

0.5

1

1.5

2

Value

A/FR - C1 A/FR - C2

A/FR ratio

A/FR Ratio-Quality Measure

Planned

Actual

Phase Yield- Cycle Two

75

85

95

105

R
equirem

ents

H
LD

 I

Test D

code R

C
om

pile

C
ode I

U
nit test

Build & Integrate

System
 test

Tasks Planned

P
la

n
n

ed
 a

n
d

 A
ct

u
al

va
lu

es

Planned C2

Actual C2

SSTSPi ProductSummary

Team (KingMe), Cycle (3), 4/13/2015

 See more on SEI
http://www.sei.cmu.edu/about/index.cfm

 Learn more on quality process
https://asq.org/learn-about-quality/total-quality-

management/overview/deming-points.html

Want to know more?

As a real world software engineer, you should…

Watts Humphrey

Software Engineering

Institute (SEI) – the

world’s premier metrics

and process organization
W. Edwards Deming

http://www.luc.edu/
http://www.luc.edu/
http://www.sei.cmu.edu/about/index.cfm
https://asq.org/learn-about-quality/total-quality-management/overview/deming-points.html

I soon realized that this kind of computer work was

different!

Outline

1. Where I Started = Early Metrics

2. Metrics Today

3. What are “Embedded Systems” – Where /

What Today

4. Growing Importance of Small Systems (and

their networks)

5. Why Good Software Engineering is Essential

6. Summary Thoughts

20

My First Programming Work (Bell Labs)

– Cross Development
» Develop programs on one computer, run on

another
– Time Sharing

» many users at once

Code, ready to run

– Embedded System
» Computer inside to do things

– “Hands off” or “Lights out” Computing
» Do not expect or need human’s around

 2006 William L. Honig, Ph.D. Introduction to Computing 21

My First Keyboard

Normal output: paper tape.

Could Wire to Computer as Input/Output

IBM Time Sharing System:
1. Many people used the computer at

once

2. You typed a command and get an

“instant” response

Metrics == Run Time
(for reliability and quality)
• Lights out system, watches itself

– Part of the software does the “job”
– Other parts watch for hardware failures
– Other parts correct software failures
– Measure (Count and Keep)

EVERYTHING

• Count, Measure, Report all Events
• Key goal RELIABILITY

– five 9’s (99.999% availability)

• Health of whole system more important
than most individual tasks
– Ignore a request for a new phone call,

but keep the whole system running

Quiz: How long can a 5 9’s system be down
in a week (or in a year)?

 2006 William L. Honig, Ph.D. Introduction to Computing

Quiz 2

Availability
This includes:

Hardware problems

System upgrades

Power Failures

Bugs

99.999% availability

24 * 365 days = 8760 hour in a year

.99999 * 8760 = .0876 hours per year

Or 5.26 minutes a year

Or 6 seconds a week

Also
Never write code without knowing

how long it might take to run

What a wonderful world it will be….

Outline

1. Where I Started = Early Metrics

2. Metrics Today

3. What are “Embedded Systems” – Where /

What Today

4. Growing Importance of Small Systems (and

their networks)

5. Why Good Software Engineering is Essential

6. Summary Thoughts

Quiz - What Know About Small

Systems and Mobility?

Who / When First

Tablet Computer?

Who / When First

Smart Phone?

Early Adopters / Missionaries / Pioneers….

Archos (French)

Sep09

Windows 7, Touch

On Screen Keyboard

Stylus

Palm Treo

2002

PalmOS, Touch

Graffiti and Cursive

Stylus, and PHONE

2006 2003

Small Systems - Wearables

• Personal Area Network or
Wearable Area Network

• Things we keep around us
and use to do what we do

• Likely to become much
smaller than a phone or
tablet

• Increased Importance
– Metrics
– Quality
– Reliability

Power?
“Hey, can
you spare a
charge?”

Small Systems
Shrinking Computer

parts means small

systems

Examples
Toaster

Home appliances

https://juneoven.com/

Embedded System



1. Programs run

inside a device.

2. Computer may

not be seen.

3. System is Always

On

4. Expect 5 9’s

Reliability

These systems change the

kind of software

developers need to know

Broad Framework
Architecture
Components and Communications COTS Wearable

and Autonomous
Devices

Custom Analog
and Digital

Devices

Intelligent Devices
(mobile and fixed)

Personal
Computers

Virtual and
Physical Servers

Hierarchical, n to 1, Simple
Wired (USB, Serial Communication)
Wireless (Bluetooth, InfraRed)

True Networks, incl Peer-to-Peer
Wired (USB, LAN, Voice)
Wireless (WiFi, WiFi Direct, NFC)

Full Networks, Intranet
Wired (LAN, ??)
Wireless (WiFi)
Enhanced Security

Full Networks, Internet
Application Architectures
Dynamic App Evolution
Enhanced Security

Soft to Hard Real Time

Statistical Network Performance

Networks will change
Internet of Things will NOT use “just” today’s internet

Security, capacity, reliability, power needs…
What is needed to make it all work?

Outline

1. Where I Started = Early Metrics

2. Metrics Today

3. What are “Embedded Systems” – Where /

What Today

4. Growing Importance of Small Systems (and

their networks)

5. Why Good Software Engineering is Essential

6. Summary Thoughts

 2006 William L. Honig, Ph.D. Introduction to Computing 31

Early Anti-Computer

Movement

Early reaction to automated (“computer driven”) manufacturing

(“embedded systems”)

Ned Ludd, 1812

Luddites Destroying Loom

Luddites Today??

 2006 William L. Honig, Ph.D. Introduction to Computing 32

Do Computers Help or

Hurt?

Code sheets were calculated by hand by women “computers”

Is it bad they lost their jobs? Replaced by machines….

Alan Turing

Bletchley Park

Computers Today??

Does Software Engineering Work?

Dr. William L Honig

Definition

 Many definitions exist, but the core is:

“The study of the development
(including maintenance) of software of
high quality in a highly productive
manner.”

「質のよいソフトウェアの効率よい開発，
およびその運用・保守を扱う学問」

…of Software Engineering

Dr. S. Takada (高田眞吾)
Keio University

Software Process

 Policies, techniques, procedures, etc for
developing software

 Activities such as analysis and design

 Software is normally developed by a team.

 Not by just one individual.

 Need to manage the team.
 Need to define the process.

 Process may need to be defined per
organization.

Why Software Engineering

Problems:

●Systems Late

●Incomplete

●Buggy

●No one knows when

it’s “done”

Possible Solutions:

 Requirements

 Analysis & Design

 Metrics and

Measures

 Continuous Quality

ImprovementIf you don't know where you

are going, any road will get

you there.
Paraphrase of exchange

between whom?

Hint: Lewis Carroll

The disciplined development

of great computer based

systems for the world!

 2006 William L. Honig, Ph.D. Introduction to Computing

Quiz 4

Reading
(1865..) Alice’s Adventures in Wonderland;

Through the Looking Glass

(1995) Neal Stephenson, The Diamond Age: Or,

A Young Lady's Illustrated Primer

(2009) Paolo Bacigalupi , The Windup Girl

Alice and the Cheshire Cat

(of course)

Math and programming fundamentals

Nano technology, virtual reality

Post oil, biotechnology

Department of Computer Science

Copyright 2008 William L. Honig, Ph.D.

38

A Growing Problem

• Software that has hidden features

– spyware

– Unexpected functions and impacts

• Why?

– Malicious intend (a whole other issue)

– Poor systems thinking and analysis

Department of Computer Science

Copyright 2008 William L. Honig, Ph.D.

39

Software Transparency

and Purity
Transparency: All functions are

disclosed to the users / owners /

operators of the system

Purity: system does nothing irrelevant

to its stated purpose, nothing foreign to

it’s advertised nature

For more details see Pascal Meunier, Software Transparency and Purity,

Communications of the ACM (51,2) Feb 2008.

Quiz 5

Management
What if the future of the

company depends on this

system coming out on time and

with good quality?

A team of programmers has been working hard to finish a

system. They have written 2347 lines of Java code over the

last 3 months.

They have been testing for the last two weeks.

So far they have found and fixed 23 bugs

How many more bugs may be in the system?

Are they finished testing? Or should they keep working? Is

the system finished and ready to release?

Quiz 5
Defects
Another word for bugs,

errors, mistakes.

BUT!

Good software engineering + quality processes can solve it

Metrics that can give answers:

Defect Density (past and similar projects)

Defect Arrival Rate and Defect Fix Rate

Cost of Rework (Defects caused by other fixes)

Capture / Recapture Calculation (Inspections)

Answer
It’s impossible to tell how

many bugs remain

YOU
Don’t you want to be able to do this???

Believe Me…

Maturity to use Metrics and Software Engineering Process

• Alternative is chaos, heroes, burnout, no

predictability

Democratic Development Teams

• Teams can control their own destiny, schedule,

results, rewards…

• No need to guess (schedules, results, quality)

My thoughts…..who knows for sure?

whonig@luc.edu

Outline

1. Where I Started = Early Metrics

2. Metrics Today

3. What are “Embedded Systems” – Where /

What Today

4. Growing Importance of Small Systems (and

their networks)

5. Why Good Software Engineering is Essential

6. Summary Thoughts

What does this mean to computer

science students today?

Learn the difference between Great, Good, and OK

programming

• Even more important for small systems

• To me, this requires metrics, good software

engineering process

Growth opportunities in

• Reliable, secure, trustworthy systems

• Small systems, their networks and security

• Large dedicated
mainframes
(eventually mini
computers)

• Large and
reliable
embedded
systems

• Global access to
applications

• Large
programming
organizations

Big
Computing

• Go to computer
to do work

• Democratic
applications

• Quality and
Reliability
Suffers; Defects
Acceptable

• More, smaller,
quicker
programming
teams

Personal
Computing

• Devices with us
all the time (in
us?)

• Devices work
“on their own”,
talk to each
other

• Who and how
will the
software be
made?

Pervasive
Computing

Three waves of computing systems….

This is YOUR future.
Be Ready for It.whonig@luc.edu

	Metrics, Software Engineering, Small Systems – the Future of Systems Development
	Recommended Citation

	Slide 1

