
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

7-2016

Lack of Attention to Singular (or Atomic) Requirements Despite Lack of Attention to Singular (or Atomic) Requirements Despite

Benefits for Quality, Metrics and Management Benefits for Quality, Metrics and Management

William L. Honig
Loyola University Chicago, whonig@luc.edu

Shingo Takada
Keio University

Natsuko Noda
Shibarua Institute of Technology, nnoda@shibarua-it.ac.jp

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Software Engineering Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation Recommended Citation
William L. Honig, Natsuko Noda, and Shingo Takada. 2016. Lack of Attention to Singular (or Atomic)
Requirements Despite Benefits for Quality, Metrics and Management. SIGSOFT Softw. Eng. Notes 41, 4
(August 2016), 1-5. DOI: http://dx.doi.org/10.1145/2967307.2967315

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Lack of Attention to Singular (or Atomic) Requirements
Despite Benefits for Quality, Metrics and Management

William L. Honig
Department of Computer Science

Loyola University Chicago
Chicago, Illinois 60611 USA

+1.312.915.7988

whonig@luc.edu

Natsuko Noda
Department of Engineering and Design

Shibaura Institute of Technology
Minato, Tokyo 108-8548 JAPAN

+81.3.6722.2764

nnoda@shibaura-it.ac.jp

Shingo Takada
Dept. of Information and Computer Sci.

Keio University
Hiyoshi, Yokohama 223-8522 JAPAN

+81.45.566.1757

michigan@ics.keio.ac.jp

ABSTRACT

There are seemingly many advantages to being able to identify,

document, test, and trace single or “atomic” requirements. Why then

has there been little attention to the topic and no widely used definition

or process on how to define atomic requirements? Definitions of

requirements and standards focus on user needs, system capabilities or

functions; some definitions include making individual requirements

singular or without the use of conjunctions. In a few cases there has

been a description of atomic system events or requirements. This work

is surveyed here although there is no well accepted and used best

practice for generating atomic requirements. Due to their importance in

software engineering, quality and metrics for requirements have

received considerable attention. In the seminal paper on software

requirements quality, Davis et al. proposed specific metrics including

the “unambiguous quality factor” and the “verifiable quality factor”;

these and other metrics work best with a clearly enumerable list of

single requirements. Atomic requirements are defined here as a natural

language statement that completely describes a single system function,

feature, need, or capability, including all information, details, limits,

and characteristics. A typical user login screen is used as an example of

an atomic requirement which can include both functional and

nonfunctional requirements. Individual atomic requirements are

supported by a system glossary, references to applicable industry

standards, mock ups of the user interface, etc. One way to identify such

atomic requirements is from use case or system event analysis. This

definition of atomic requirements is still a work in progress and offered

to prompt discussion. Atomic requirements allow clear naming or

numbering of requirements for traceability, change management, and

importance ranking. Further, atomic requirements defined in this

manner are suitable for rapid implementation approaches (implementing

one requirement at a time), enable good test planning (testing can

clearly indicate pass or fail of the whole requirement), and offer other

management advantages in project control.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management – software quality

assurance, software process models. K.6.3 [Computing Milieu]:

Management – software process

General Terms

Management, Measurement, Documentation, Verification.

Keywords

Atomic requirements, atomic use cases, singular requirements,

requirements creation, requirements metrics, requirements verification

and validation, development process, software engineering.

1. INTRODUCTION
We wish to call attention to the apparent lack of work on what makes “a

requirement” – a single and indivisible statement of system capability

that can be used to support software engineering processes. The benefits

of such singular, indivisible, or “atomic” requirements seem obvious,

including enhanced measures of requirements churn, ease of traceability

to other development deliverables, and improved metrics on

requirements quality.

Despite such benefits, attention and debate on how to define a singular

or atomic requirement does not seem widespread in either academia or

industry. We suggest a draft definition of atomic requirement, relate the

definition to past work, note the potential advantages of working with

atomic requirements, and present a brief example, in hopes of

motivating further attention to and discussion of the topic.

2. THE NEED
There is an abundance of software engineering work in the general area

of requirements. One useful (and much used and adapted) definition of

a requirement from IEEE is a “statement which translates or expresses a

need and its associated constraints and conditions” [6, paragraph

4.1.17]. Although the definition refers to “a need” in the singular it is

not very precise on exactly what a single need is or how to create such

single (or what we term “atomic”) requirements during the requirements

creation processes.

In the seminal paper on software requirements quality [3] Davis et al.

proposed quantitative measures for requirements specifications. Many

of the proposed metrics assumed that individual requirements could be

identified and calculations performed using each requirement in a

complete system specification.

In [3], for example, the “unambiguous quality factor” is defined as a

percentage using the “number of requirements for which all reviewers

presented identical interpretations”. Similarly, the “verifiable quality

factor” is based on the cost and time required to verify each individual

requirement. These calculations require a clear identification, count, and

the ability to iterate through a well-defined set of individual

requirements (otherwise different readers or reviewers may calculate

costs or percentages in ways that cannot be reconciled or compared).

There are many other lists of characteristics (also termed quality

attributes or “ilities”) of good requirements [2, 18 Chp 4, 14 Chps 9-

11]. These lists include terms such as correct, unambiguous, complete,

consistent, verifiable, etc. In many cases there is again an assumption

that a single separate requirement can be identified and evaluated.

The same IEEE standard cited above includes separate “characteristics

of individual requirements” and “characteristics of a set of

requirements” [6, paragraphs 5.2.5 and 5.2.6]. However, somewhat

unusually for such lists, the IEEE standard includes “singular” as one of

the characteristics of an individual requirement. That characteristic is

explained as “The requirement statement includes only one requirement

with no use of conjunctions” [6, paragraph 5.2.5]. Again, while

requirements writers may wish to adhere to such a characteristic for

requirements, it is not sufficient to create an atomic requirement simply

by prohibiting conjunctions.

3. DEFINITION OF “ATOMIC”

REQUIREMENT
We wish to consider a single complete requirement documented as a

whole to be an “atomic” requirement. Our working definition is: one

atomic requirement completely describes a single system function,

feature, need, or capability, including all information, details, limits,

and characteristics. An atomic requirement statement may include both

functional and nonfunctional aspects of the single function.

An atomic requirement could also be called an individual requirement, a

single requirement, or a cohesive requirement. The goal is to make

atomic requirements that are understandable, self-contained, and

complete. Only information related to a single system capability is

included in an atomic requirement; it covers the simplest and smallest

amount of information that makes sense to describe separately.

To aid in clarity and conciseness of atomic requirements, we define key

terms in a separate system glossary. The glossary can prevent

confusion from the use of natural language and help to ensure that all

users of the requirement understand the term the same way. The

glossary may gather and fully define terms used in multiple

requirements. For example, a system’s UserId may be referred to in

several requirements with its format, length, character set, etc. defined

once and precisely in the glossary.

Some computer systems use or assume industry standards for various

functions, calculations, data representations or interfaces. These

standards can be referenced from within atomic requirements and the

system glossary (they should not be extracted into the atomic

requirement statements).

Required standards and other general information about the system such

as product goals, stakeholders, and additional background can be

documented in other sections of the requirements documentation. The

goal with the glossary and all such other information is to support but

keep relevant information separate from the itemized atomic

requirements.

Finally, some aspects of requirements may apply generally across

several functions and parts of a system. One example of such a

universal requirement is user interface specification. For example, a

system may need to work with various screen sizes, have a certain type

of graphics, etc. These details can be separately defined in one or more

atomic requirement; if helpful these general requirements can note

which other requirements they are bound to.

We recognize that atomic requirements are unlikely to be as clearly

distinguishable or indivisible as elements in the periodic table; however,

the goal is to have as a single requirement statement something which is

self-contained and as complete as reasonably possible.

Since atomic requirements cannot have precisely correct boundaries, the

requirements worker will need to use judgement and common sense.

The goal is to attempt to create smaller and individual requirements

instead of larger and broader statements. A single atomic requirement

should cover the simplest and smallest amount of information about the

capabilities of the system that make sense to describe separately.

4. RELATED WORK
There does not seem to be a large body of work on what constitutes a

single requirement or how they should be created and verified during

the requirements specification process. In this section we note the most

relevant items and relate them to our definition of atomic requirements.

4.1 Use Case Models and Events for Identifying

and Analyzing Atomic Requirements
We feel traditional use case modelling [e.g., 19 Chps, 3,4] is a good

way to begin to identify atomic requirements. A use case that describes

a full system event or interaction from start to finish will often represent

one or more atomic requirements.

The term “atomic use case” has been used with similar motivation by

Nguyen and Dillon [9, 10, 11] as a way to ensure precise and complete

understanding of functional requirements. This work centers on

determining the various ways the system will respond to or implement

actions as the result of input from an actor.

“As a definition, an atomic use case is conceived as an instantaneous

(indivisible) response by the system that is positive in the sense that

either it (1) effects a change of the system’s state…., or (2) performs a

query that is of interest to the user…” [9]. Exceptions and error cases

are handled separately. In this work, the atomic use cases are used to

develop implementation templates for the system. Atomic is used in the

sense of a single, self-contained, and complete system interaction;

hence, it is similar to our concept.

An earlier system design and analysis scheme [7] is similar with a focus

on finding all the singular “events” to which a system must respond.

Here, the focus is to find all possible events (including error cases and

events which were expected but fail to take place). In many ways this

use of events leads to a similar complete and indivisible list of system

functions as we see for atomic requirements.

Models or formalisms for the analysis of requirements also need to

identify individual requirements. For example, the Abstraction Level

Hierarchy states “the term atomic requirement is used to denote simple

specifications in contrast to more complex ones, and requirements

expressed in a single sentence with one ‘shall’, but without excluding

multiple logical predicates within” [17]. The model and formalism

defined supports a hierarchy of requirements, includes design

information, and facilitates reasoning about levels of abstraction; it has

been applied to teaching embedded systems development to ensure full

understanding of system requirements [16].

4.2 Other Work on Atomic Requirements
A similar concept of atomic requirements has been used in at least two

industrial development methodologies. Both note the desirability of

individual requirements and suggest techniques for identifying them as

part of the process for generating good requirements.

The IBM Rational methodology lists several characteristics for “good”

requirements, including atomic. Instructions for ensuring atomic

requirements include: “The requirement should contain a single

traceable element… Sentences including the words ‘and’ or ‘but’

should be reviewed to see if they can be broken into atomic

requirements” [5, 23 Chp 1]. Note the similar focus on eliminating

conjunctions as in the IEEE definition mentioned in section 2.

The Volere requirements methodology targets the identification of

atomic requirements which are defined “When you have a requirement

that is measurable, testable, traceable and detailed enough to define all

aspects of a need without further breakdown then you have an atomic

requirement”. Individual requirements are combined into higher level

groups when there are too many to manage individually. Groupings are

termed “Business Use Cases”, “Product Use Cases”, “Features”,

“Components”, etc. [15, 20]. Individual atomic requirements are

numbered and tracked.

Given that the academic work on concepts similar to atomic

requirements is apparently fairly limited, we also explored other uses of

similar concepts from the broader field of system development.

One consulting and project management blog has used the term “atomic

requirement” in a manner similar to our concept. The Tyner-Blain site

advises: “(e)very requirement should be a single requirement. If we can

say ‘Half of this requirement is implemented’ then this needs to be two

or more requirements.” Similar to our findings below (section 6.2) on

the advantages of atomic requirements: “(e)ach requirement you write

represents a single market need, that you either satisfy or fail to satisfy.

A well written requirement is independently deliverable” [21, 22].

There are other web materials with thoughts and recommendations

similar to these; however, we have not been able to identify any large,

multi-source, or highly cited body of work on any similar theme.

Among other industrial and consulting materials we note here some of

the most relevant.

The Planet Project blog has as its goal “explain how to write atomic

functional system requirements so that the spec is easy to read, and

ambiguity is kept to a minimum” [12, 13]. It defines atomic as “cannot

decomposed (sic) further” and provides useful natural language

templates for writing various kinds of atomic requirements statements.

The Mitre online System Engineering Guide lists among criteria for a

requirements statement that it should be “(s)pecific and singular:

Needed system attributes (e.g., peak load) are described clearly as

atomic, singular thoughts” [8]. The intent here may be for short and

concise statements that are less than what we envision as a complete

atomic requirement.

The BA Times online newsletter for business analysts, refers to the

work of Nguyen and Dillon (see section 4.1 above) and defines an

atomic use case as “it is the basic, core and single action / step carried

out by an actor. It has three main and important characteristics: 1. Is

very unique building block and cannot be further broken down, 2.

Effects a change in the system / application, and 3. Has a binary

outcome” [1]. The same article raises the question “In this generation

of Agile, SCRUM and other faster than ever technologies, do you still

have the burden of creating a functional specification document…?” to

which it implies a positive answer.

5. EXAMPLE ATOMIC REQUIREMENT
Consider the familiar login screen where a user begins access to a

system or application. Students or novice requirements workers may

feel that a suitable requirements statement is similar to:

System Access. System shall control access so that user is able to log in

with password, log out, and reset password anytime.

However, there are numerous defects apparent in this simple statement;

it is imprecise (is only a password necessary to gain access?),

ambiguous (can user log out before log in?), and incomplete (what is

necessary to reset a password?). Some of these faults are caused by

combining what could be separate atomic requirements in a single

statement.

Higher quality information may result if a single system interaction is

defined separately and in detail. One atomic requirement might define

the login process or event with separate requirements for logout,

forgotten password, new user, etc. The actions taken by the user and the

system responses including updates to the system state may be

considered a single system function.

A possible atomic requirement might be:

Requirement 1 (Log In By user). The system shall allow users to log in

by providing a UserId and Password at the LogInScreen. The system

shall check the UserId and Password provided to determine if the user is

known to the system, in which case the user is allowed access to the

MainMenu; otherwise, an error message is displayed and the system

stays on the LogInScreen.

Alternative responses are included in the requirement, not just the

standard success scenario. Terms shown in PascalCase are defined in a

system glossary, a subset of which is shown here in Table 1. The

requirement is named, given a brief title, and numbered (number shown

here is illustrative only). The two screen names are briefly defined in

the glossary but would be fully defined elsewhere with a mockup of the

actual user interface (not shown here).

However, there is potentially more information needed that may belong

with this atomic requirement. For example, further details on how the

UserId and Password are processed and more explicit error processing

for failed login attempts. A more complete but still atomic requirement

may be:

Requirement 1 (Extended) Log in By User. The system shall allow

users to log in by providing a UserId and Password at the LogInScreen.

1.1 The system shall check the UserId and Password provided to

determine if the user is known to the system, in which case the user

is allowed access to the MainMenuScreen; otherwise, the login is

unsuccessful, an error message is displayed and the system stays

on the LogInScreen.

1.2 The set of currently known UserId’s and associated Password’s

is stored in encrypted form inside the system; clear text of UserId

and Password are never stored or saved inside the system. See

Requirement 14 - User Administration for more details.

1.3 If the user attempts to log in unsuccessfully using any UserId

twice in any 24 hour period, the user is warned that there is only

one more opportunity to successfully log in before the account will

be locked. After the third failure to log in the UserId is locked and

the user is informed; future attempts to log in will be unsuccessful

until the UserId is unlocked. See Requirement 15 - Unlocking and

Resetting User Identification.

1.4 The system shall close the LogInScreen LogInTimeOut

seconds after it is displayed if there is no user response or after a

failed login attempt that resulted in the UserId being locked.

This requirement is still atomic since it details a single interaction

between the user and the system; the interaction continues until the user

has been successful or the login attempt is complete. Some of the

additional information would be characterized as nonfunctional

requirements. The other referenced numbered atomic requirements

provide associated information but are separate functions with their own

definitions (and are not shown here).

Some requirements writers may prefer the shorter, initial requirement

statement. Others may prefer, and some types of systems may require,

the more complete extended requirement statement. If the shorter form

were used, additional information would likely be provided in other

requirements (possibly separate atomic requirements statements

focusing on system administration and security).

As noted in Section 3, requirements may reference required external

standards. The astute reader may observe that the definitions of UserId

and Password could be improved by referencing a suitable character set

standard such as Unicode (and cleaning up what it means to be upper or

lower case, dropping the 26 as a number of characters, etc.).

Table 1. Partial System Glossary

Term Definition

LogInScreen

User enters UserId and Password and requests

log in. Optional choices for new user and

forgot password

LogInTimeOut
Unit: seconds. A system configurable value

between 10 and 120 in increments of 5

MainMenuScreen
User selects from possible choices based on

capabilities of UserId

Password

6 to 10 characters at least one of which must be

a number; upper and lower case characters are

distinct

UserId

6 to 10 characters at least one of which must be

a number; characters one of 26 upper and lower

case letters; numbers one of 0 to 9; upper and

lower case characters are not distinguished

6. ADVANTAGES OF ATOMIC

REQUIREMENTS
We believe that an increased focus on creating individual atomic

requirements will improve requirement creation and also support other

steps in system development and their associated measures and metrics.

This section presents thoughts on these advantages; while much of this

section is conjecture, opinion, or observation, it is intended to suggest

areas for further investigation and experimentation.

6.1 Improved Requirements
The overall requirements generation, verification, and validation

process is improved by a focus on atomic requirements. Simply by

attempting to define “a” single requirement the resulting text is more

likely to be complete. The mental discipline to keep asking “Is this all

one requirement?” and “Is there anything missing from this

requirement?” encourages higher quality. Otherwise there is too likely

a tendency to rush onward to the next thought. By focusing on one

requirement at a time there is an increased likeliness of getting that

requirement correct and high quality.

As mentioned in section 4.1 atomic requirements are likely to be

discovered and related to a single use case or a single event between the

system being developed and the external environment. This sort of

focus on the granularity or atomicity of the system being defined seems

to be an important heuristic aid to getting requirements right.

While we believe that good judgement is necessary to decide what

content goes into a single atomic requirement, once a suitable list of

these singular requirements exists, it also provides a rough measure of

the size of the system so defined. It may not be possible to precisely

determine if a single requirement is indivisible; however, the count of

atomic requirements at any given point does provide some measure of

the size of the system. While a difference between 8 or 10 singular

requirements may depend more on the requirements writers style and

method used to identify atomic requirements, it is likely that there will

be a significant difference between a system documented with 10

requirements and one with 50 (no matter what the difference in authors

or methods).

Requirements processes often call for each requirement to be uniquely

identified (e.g., [6, paragraph 5.2.8.1]). Similarly, it is usually

recommended to rank requirements for importance or priority [6,

paragraph 5.2.4] for example into categories such as essential, desirable,

optional. As atomic requirements are being defined, it is easy to identify

and count each requirement, assign a name and / or number the

requirement, and rank its importance. This identifier can be used to

track or trace that requirement through the entire development process.

(Requirements identifiers should be unique and unchanged throughout

the development process).

Requirement change or churn is a common concern during

development. Atomic requirements allow better measurement of churn

– any change to any one requirement can be considered one change. By

being as small and self-contained as possible, atomic requirements

make a simple count of number of requirements changes more

meaningful and useful. The unique identification of requirements aids in

such measurements. If the so called “simple” change affects a third of

the systems requirements, is it really so simple after all?

6.2 Improved Development and Scoping
Atomic requirements provide a good base for other phases of

development including testing. The set of atomic requirements being

implemented in an upcoming release gives a clear definition to the

expected functionality.

With well-defined atomic requirements it is possible to implement a

single requirement at a time (and add a concise increment to the

capabilities of the system). Likewise, the test(s) necessary to verify the

system function added should be clear from the requirement definition.

Good atomic requirements go hand-in-hand with testability. If it’s not

clear how to define the test(s) for a single requirement (and have a clear

pass/fail test conclusion) then the requirement is likely incomplete,

inconsistent with previously implemented requirements, or not truly

atomic.

Testing of an atomic requirement should fully exercise the capability

and either 100% pass or fail. While it may be possible that only some

parts of the test fail, it will usually not be useful or meaningful to use

the product in this state.

Properly defined atomic requirements may facilitate automated

evaluation of requirement quality and testability. Recent work has

investigated whether “existing requirements quality measures such as

understandability / readability can be useful in predicting requirement

testability” [4].

When development projects get into trouble, there is often a need to

remove some capabilities from an upcoming release (“de-scoping”).

Within a planned set of atomic requirements, it will be clear where and

what to cut – one or more complete requirements can be eliminated or

deferred to future releases. Obviously, this decision making is aided by

clear requirement identification and traceability of requirements to other

development deliverables including test cases and results.

6.3 Improved Management
Atomic requirements are also broadly useful in other areas of system

development and can improve management accountability and

performance.

Customer agreements, including contracts, can be based on specific

atomic requirements. It is possible to assign value to individual

requirements in a manner similar to planned value / earned value

schedule calculations. Value may be calculated from the number of

atomic requirements that are fully completed, tested, and delivered.

Atomic requirements provide a base for numerous metrics for

management visibility in the development process and status. Examples

include numbers of requirements created, validated, developed, tested,

delivered, etc. At the start of development, atomic requirements with

high quality structure and precision provide a sound foundation for

measuring the rest of the development.

7. SUMMARY
When originally looking for past work on requirements metrics, we

asked ourselves the question “What is a requirement?” since we wanted

to be able to do metrics on each separate requirements statement. To our

surprise we found little work on the topic of atomic requirements.

While development processes that number or identify each requirement

are common, they generally do not specify what, exactly, should be

given a single identifier.

While there are mentions of working with singular or atomic

requirements in the sources surveyed in section 4, there is no common

view of what they may be beyond limiting the use of conjunctions.

Hence, we offer a working definition of atomic requirement (section 3),

which, while still imprecise and requiring the use of judgement, we feel

is a start in the right direction. We plan to use this definition for

experiments on how different types of requirements affect requirements

metrics and quality.

As noted, atomic requirements seem to have broad and important

advantages – helping to provide quality requirements specifications,

improving process management including change control and

traceability, supporting proper testing, and allowing thoughtful software

engineering in general. Thus, we write this note to spawn more

discussion and future research on the topic

8. REFERENCES
[1] BA Times 2014. New Age Requirements Capturing

Methodologies- Are Requirement Documents Dead?

http://www.batimes.com/articles/new-age-requirements-capturing-

methodologies-are-requirements-document-dead.html. Accessed

2016- 04- 22.

[2] Boehm, B. 2015. Architecture-Based Quality Attribute Synergies

and Conflicts. In Proceedings of the 2015 IEEE/ACM 2nd

International Workshop on Software Architecture and Metrics

(SAM '15). IEEE Computer Society, Washington, DC, USA, 29-

34. DOI=http://dx.doi.org/10.1109/SAM.2015.18.

[3] Davis, A., Overmyer, S., Jordon, K., Caruso, J., Dandashi, F.,

Dinh, A., Kincaid, G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta,

A. and Theofanos, M. 1993. Identifying and measuring quality in a

software requirements specification. In Proceedings of the First

International Software Metrics Symposium (May 21 – 22, 1993).

DOI= 10.1109/METRIC.1993.263792.

[4] Hayes, J., Li, W., Yu, T., Han, X., Hays, M. and Woodson, C.

2015. Measuring Requirement Quality to Predict Testability. In

Proceedings of the 2015 IEEE Second International Workshop on

Artificial Intelligence for Requirements Engineering (AIRE)

(AIRE '15). IEEE Computer Society, Washington, DC, USA, 1-8.

DOI= http://dx.doi.org/10.1109/AIRE.2015.7337622.

[5] IBM Press 2007. Requirements Management Using IBM Rational

RequisitePro.

http://www.ibmpressbooks.com/articles/article.asp?p=1152528.

Accessed 2016- 06- 01.

[6] IEEE Standard 29148. 2011. Systems and software engineering --

Life cycle processes -- Requirements engineering. ISO/IEC/IEEE.

DOI= 10.1109/IEEESTD.2011.6146379.

[7] Miranda, E. L. 1989. Looking for the event list. SIGSOFT Softw.

Eng. Notes 14, 5 (July 1989), 80-82. DOI=

http://dx.doi.org/10.1145/71633.71641.

[8] Mitre 2016. Analyzing and Defining Requirements.

https://www.mitre.org/publications/systems-engineering-guide/se-

lifecycle-building-blocks/requirements-engineering/analyzing-and-

defining-requirements. Accessed 2016- 04- 22.

[9] Nguyen, K. and Dillon, T. 2003. Atomic use case: a concept for

precise modelling of object-oriented information systems. In

Object Oriented Information Systems (Geneva, 2003). OOIS ’03.

Springer-Verlag Berlin Heidelberg, 400-411. DOI= 10.1007/978-

3-540-45242-3_41.

[10] Nguyen, K. and Dillon, T. 2005. Atomic use case as a concept to

support the MDE approach to web application development. In

Proceedings of International Workshop on Model-Driven Web

Engineering, 2005, Sydney, Australia.

[11] Nguyen, K., Dillon, T. and Danielsen, E. 2006. The concept of

web event and a practical model-driven approach to web

information system development. International Journal of Web

Information Systems 2,1, 19-36. DOI=

http://dx.doi.org/10.1108/17440080680000098.

[12] Planet Project 2009. Writing atomic functional requirements.

http://planetproject.wikidot.com/writing-atomic-functional-

requirements. Accessed 2016- 03- 16.

[13] Planet Project 2009. How to determine if a requirement is atomic.

http://planetproject.wikidot.com/how-to-determine-if-a-

requirement-is-atomic. Accessed 2016- 03- 16.

[14] Pressman, R, and Maxim, B. 2014. Software Engineering – A

Practitioner’s Approach. McGraw-Hill Education, New York, NY.

[15] Robertson, S. and Robertson, J. 2013. Mastering the Requirements

Process – Getting Requirements Right, 3rd ed. Addison-Wesley,

Upper Saddle River, NJ.

[16] Salzer, H., and Levin, I. 2004. Atomic requirements in teaching

logic control implementation. In Int. J Engineering Ed 20,1, 46-51.

[17] Salzer, H. 2010. Abstraction level hierarchy: The model and its

significance for software engineering. In Proceedings of the 2010

IEEE International Conference on Software Science, Technology

& Engineering (SWSTE '10). IEEE Computer Society,

Washington, DC, USA, 61-69. DOI=

http://dx.doi.org/10.1109/SwSTE.2010.11

[18] Sommerville, I. 2015. Software Engineering. Pearson Education

Limited, Harlow, England.

[19] Stumpf, R., and Teague, L. 2005. Object-Oriented Systems

Analysis and Design With UML. Prentice-Hall, Upper Saddle

River, NJ.

[20] The Atlantic Systems Guild 2009. Atomic Requirements: where

the rubber hits the road.

http://www.volere.co.uk/pdf%20files/06%20Atomic%20Requirem

ents.pdf. Accessed 2016- 03- 16.

[21] Tynerblain.com 2006. Atomic requirements.

http://tynerblain.com/blog/2010/09/14/atomic-requirements/.

Accessed 2016- 03- 16.

[22] Tynerblain.com 2010. Writing atomic requirements.

http://tynerblain.com/blog/2006/06/14/writing-atomic-

requirements/. Accessed 2016- 03- 16.

[23] Zielczynski, P. 2007. Requirements Management Using IBM

Rational RequisitePro. Pearson / IBM Press.

http://www.batimes.com/articles/new-age-requirements-capturing-methodologies-are-requirements-document-dead.html
http://www.batimes.com/articles/new-age-requirements-capturing-methodologies-are-requirements-document-dead.html
http://www.ibmpressbooks.com/articles/article.asp?p=1152528
https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/requirements-engineering/analyzing-and-defining-requirements
https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/requirements-engineering/analyzing-and-defining-requirements
https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/requirements-engineering/analyzing-and-defining-requirements
http://dx.doi.org/10.1108/17440080680000098
http://planetproject.wikidot.com/writing-atomic-functional-requirements
http://planetproject.wikidot.com/writing-atomic-functional-requirements
http://planetproject.wikidot.com/how-to-determine-if-a-requirement-is-atomic
http://planetproject.wikidot.com/how-to-determine-if-a-requirement-is-atomic
http://www.volere.co.uk/pdf%20files/06%20Atomic%20Requirements.pdf
http://www.volere.co.uk/pdf%20files/06%20Atomic%20Requirements.pdf
http://tynerblain.com/blog/2010/09/14/atomic-requirements/
http://tynerblain.com/blog/2006/06/14/writing-atomic-requirements/
http://tynerblain.com/blog/2006/06/14/writing-atomic-requirements/

	Lack of Attention to Singular (or Atomic) Requirements Despite Benefits for Quality, Metrics and Management
	Author Manuscript
	Recommended Citation

	Proceedings Template - WORD

