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SUMMARY

I have investigated a problem which may be phrased in
many ways, such as finding the probability of answering a given
number of questions correctly on a randomly-completed matching
test which may have a number of extra "dud" answers. I have
determined such probabilities, the average number of correct
answers, and other allied results. I have alsc investigated
a related problem involving the number of ways of choosing a

different element from each of a certain collection of sets.



Ronald Irwin Greenberg
203 Berry Street
Park Forest, Illinois 60466

TABLE OF CONTENTS

IntroductionN. . ceeeasceeasas . e e e wse s B ST e B A ae el e e e e 1

"I,e Probléme de Recontres" and Closely Related Problems.... 2

Recontres with "Duds"...eeeeeeecscsscssssacacacccncccancnnns 6
Systems of Distinct Representatives.....cccceereeenacnannens 10
Conclusion....eeveeeeesse I L L L L L. Ty e 14
APPENAiCeS.ceeivrsinsssnsssasssarssensonnanesrsssscsiusncecns e
BB L TR s v ww wom won bk bk B8 B35 508 B8 B9 0T B8 g0 ww e e e ahom wm 08 Bk 8 22

AcknowledgementS. . cceeeeececsncosasancssscsccnaaccncaccsnss 2i2



Ronald Irwin Greenberg
203 Berry Street
Park Forest, Illinois 60466

INTRODUCTION

I began my project work about a year ago when I attacked a
problem which I later found to be "le probléme de recontres,”
first proposed by P. R. de Montmort.l I present here the results
of my independent work on this problem and on some generalizations
of "le probléme de recontres," which T later made. Some of my
later results, and especially my methods, may be original.

The basic "probléme de recontres" may be phrased in many
interesting ways. In its original form, the problem dealt with
finding the probability that when n balls, numbered 1 to n, are
drawn in a random order, no ball appears in the order indicated
by its label.2 Often considered is the number of ways to place
n rooks on an nxn chessboard so that no rook is on the white

diagonal or can take another.3’4'5

I have applied the problem
to the random completion of a matching test and, in one of my

generalizations, to choosing systems of distinct representatives.

lWarren Weaver, Lady Luck (New York: Anchor Books, Doubleday
& Company, Inec., 1963), b. 1335

2 Ibid.
3William Feller, An Introduction to Probability Theory and

its Applications (New York: John Wiley & Sons, Inc., 1957) p. 10l.

4John Riordan, An Introduction to Combinatorial Analysis

(New York: John Wiley & sons, Inc., 1958), pp. 164-65.

5Herbert John Ryser, Combinatorial Mathematics (The
Mathematical Association of America, Inc., distributed by John
Wiley & Sons, Inc., 1963), p. 24.

Y
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"lL,e Probléme de Recontres" and Closely Related Problems

Suppose a student takes a test which requires the matching of
x answers with x questions.l If he uses each answer once but
otherwise answers randomly, what is the probability that he will
answer exactly y of the questioﬁs correctly? Let us write this

probability as Mi.

Considering first Mg, the true "probléme de recontres,"
0o _ ,x-1 1 0 0
M, = G B oy il SEC R Mx—l) (1)

for x>3, by the following argument. Mi is the product of the
probabilities of (I) using a wrong answer for the first question
answered and (II) answering the other questions incorrectly,

given that the first answer is wrong. The probability of event (I)
is Eii, and if this event occurs, one question (call it question
two) has lost its answer. The probability of event (II) is the
sum of the probabilites of (a) answering question two with the
proper answer for the first question and continuing to success,

and (b) answering question two with any other answer and continuing
to success. The probability of answering question two with the
first question's proper answer is §%T’ and there are then x-2
answers remaining to be incorrectly placed with their x-2
questions, so that the probability of event (a) 1is E%T'Mg—2' The
probability of event (b) is Mg—l since we still have x-2 answers
to be incorrectly placed with their x-2 questions, while the
answer to the first question plays the role of question two's

0 0

1
x—l.Mx—Z T Mx—l'

answer. Thus, the probability of event (II) is
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and (1) is verified since the probability of event (I) is x-1

%
Mg and Mg are readily seen to be 1 and %, respectively, so that
successive application of (1) will yield the value of Mg for any
x. (See Appendix 1 for a table of values of Mg.)

Considering the more general case of Mi, there are (;) ways
to choose the y guestions which will be answered correctly, where
(?) refers to the number of combinations of x objects taken y at
a time. Then, since there are (x-y)! total ways to match the

remaining guestions and answers, there are Mg_y-(x—y)! ways to do

so without answering any questions correctly. Thus, out of a
0

Xy
to place the x answers so that exactly y are correct. Therefore,

total of x! possible arrangements, there are (;)-M ¢ (x-y) ! ways

y — X L 0 L] — ] ' 1 3 3
M (y) Mx—y (x-y)!/x!, and simplifying,
¥y = 0 1
W = M /Y (2)

This allows us to determine Mz for any x and y once Mi_y has
been calculated by (1).

Now notice that (2) yields Mi = Mg/x! and that Mi should

equal T Also, if we use Mg = 1 in (1) along with Mg = 0, we
get the proper result, %, for Mg. It seems guite reasonable to
define MO = 1 and expand the domain of (1) to include x=2.

0

After working out the above results on my own, I found the

following expression for Mi(sz) in ‘print:

g%-— g? + f? - g? + ... + (—l)n/nJ .6 I noticed this can be
expanded to
X
Mi = 3 (-1)%/n! for all integers xx0 (3)
n=0

6Weaver, p. 136
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and I proved (3) by complete induction. The formula is clear

for x=0 and x=1 so we assume (3) for all non-negative integers

x<k, where k is a positive integer. Then,

k-1 k

k 1
% k+I(E'nio('1)n/n1 + nEo(ﬂ)n/n!) (by (1) and the

induction hypothesis)

k=1 n k k=l n k
= e r (-1) /nt + E:T( z (-1) " /n! + (-1)7/k!)
n=0 n=0
k-1
= I (-1)"/nt + o (-1 F ke
n_
R k+1 _ l
k+1
= 5 (1%
n=0

and we are done.

(3) is usually derived using the principle of inclusion and

exclusion.7'8'9 Though my work was performed independently,

the approach used up to this point is similar to one used by

Euler plus additional steps suggested by Riordan and Ryser.

1011

Interestingly, (3) shows that Mg approaches % as x gets large

(which it actually does very gquickly), since et = 3 tn/n!
n=0

Also interesting is that regardless of the value of x, the

expectation, or average number correct, in random matching of the

x questions and x answers of a matching test is always 1.

7Feller, pp. 90=9%1l.
8Riordan, p«58.

9Ryser, p. 23.

lORiordan, p. 60.

llRyser, pp. 30-31.
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I determined this as follows. The expectation will be the sum
of the products formed by multiplying each possible number correct

by the probability of getting that number correct. Using (2),

X 3 X 0 - 0
D y-Ml = % youl = Iy /yt= EoM /(y-D)L =
v=0 y:l y:l ¥ y:l :
#~1 0 x=il x-1
T M /y! = L MY = 1 since © MY is just the probability
. x—-1-y _ x-1 - x-1
y=0 7=l y=0

of having somewhere from 0 to %x-1 correct answers on a test
involving x-1 guestions.

The most likely number of correct answers may also be

calculated. It is clear from (3) that for: %32, Mg—l B Mg = % ¥
and if y=x, then y>2, and y'MO p3 6-i>M0 If %x>2 but v#x
f ! Tx-1 37 x-y© £
0 1 0 1. .-0
= — 1 [ *
then Mx—y < M2 5 and as long as y>1, Y‘Mx—l > 2 3>Mx—y .
0 0 L. 7
fhus, for x>2 and y>1, v IM >M and M >M! . Then, the
x-1" "x-y X X

highest probability for x>2 is Mg or Mi , which is Mg—l .

Adain from (3), it is clear that Mg is greater when x is even
and Mg_l is greater when x is odd. We can check the values of
Mi for x<2, and we see that y=1 is most likely for odd x,

y=0 is most likely for even x#2, and y=0 and y=1 are equally

likely for x=2.
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Recontres with "Duds"

Now consider a matching test which has not only x questions
and their x "good" answers but also z extra "dud" answers to make
the guessing more difficult. Let ZMi be the probability of
getting exactly y correct when the x gquestions are randomly
answered with x of the x+z answers. (When z=0 we are dealing
with the previous problem again and may write just Mi ) LE
doing this, any number of duds, n, from 0 to min {x-y,z} may be
used. Of (X;Z) total ways of choosing x of the x+z answers

z X Py, 1y ;
for use, there are () ( ) = (%) (D) ways to do so with n duds
ol n’ 'n
and x-n good answers used, so that the probability of this
occurrence 1s (i)(i)/(x;z). At this point, since n duds are

being used in place of n of the good answers, n questions have

no chance of being answered correctly, and the probability of

answering y of the remaining x-n correctly is an_n . Thus,
z. Yy min{x-y,z} y Z\ X, , X+Z
M = ) ml_ (5 )/ C5H (4)
n=0
Furthermore,
ooy o om0 EE-TE) ]
My (y) Mx—y (x+z) ! (5]

by the following argument. There are (?) ways to choose the

questions which will be answered correctly. Once this is done,

X-y+z (pn

there are P
X-y k

denotes the number of permutations of n

objects taken k at a time) ways to place answers with the

remaining questions and Tl aprEtE
X-y = X-y

answering any correctly. Then, the total number of successes

ways to do so without



Ronald Irwin Greenberg
203 Berry Street
Park Forest, Illinois 60466

x)_zMO pXTYtZ
Y Xy X-y

. ; . +
the x guestions with the x+z answers 1S PxX

is , while the total number of ways to answer

= Thus,

Z X)

_zMO XYtz
4 e

*E gy /PX;:Z , yielding (5).

MY =
X
: _ . ZuY — ZyY
If we use (5) with y=0, we get simply Mx = Mx and we

must return to (4). Nevertheless, for y#0, (5) is very convenient

if we have first calculated zMg_y by (4) or some other method.

; ; z. 0
Fromr(4), some interesting formulas for MX Fas Thned valoss

z(z-1) (z=-2) ... (z-n+l) i (z)

of x can be obtained. If we use i .

r

(z) will be 0 when n>z, allowing us to sum from 0 to x in (4)

even if z<x. First, using (4),

M = M) = 1 (6)
Next,ZMg = zil'Mg + E%I'lMg’ and since Mg = 0 and 1Mg = 1,
M) = 1 (7)
Zyg = 2-Mg/PZ;2 + 4z-lMg/Pz;2+ z(z—l)-2M8/Pz;2
M) = % by (3), 0 = 5 by (7), ana 20 = 1 by (6), yielding
zMg - (22+z+l)/PZ;2 (8)

Similar equations for x=3, x=4, and x=5 are included in Appendix 2.
Another formula for ZMg may be developed as follows. Let
us reserve a certain place for each of the z dud answers as
well as for each of the x good answers. As many as z of the
questions may be put in their proper places as long as we only

match duds with their dummy positions. There is a total of

(

X+Z

- ) ways to have n matches and (i) ways in which the matches

e oo



Ronald Irwin Greenberg
203 Berry Street
Park Forest, Illinois 60466

involve only the duds. Thus, the probability that n matches

will involve only the duds in (i)/(x;z) and
z
z 0 _ n .z X+z . n _ 0
My = nEO Mors (n)/( n }. BSince M ., = Mx+z—n/n! :
z
z 0 0 . (Z X+3z
M. = nEO L E— (n)/P n (9)

This is useful for small values of z. For example,

1.0 _ .0 0
MX = Mx+l + MX/(X+1), and by (1),

1.0 %420

% XL x+2 (10)
2.0 _ .0 2 0 1 0 ;
Also by (9), Mx - Mx+2 o x+2 Mx+1 + (x+2) (x+1) MX » which
can be written as
2.0 .0 1 0 1 0 1 .0
Moo= Moot oMo Y T ) D (11)
Now, we can apply (1) to the latter two terms to obtain
2.0 _ .0 1 0 i 0
Mx B Mx+2 ¥ x+2 Mx+l * x+1 MX+2' and
2.0  =x+2 .0 gl 0
x  xX+1 M'x+2 + x+2 Mx+l (12)
Alternatively, we may apply (1) to the first two terms of
(11) as well as to the last two, and obtain
2 0 . %3 .0 L 40
x  xX+2 Mx+3 + x+1 Mx+2 (13)

gimilar formulas for z=3 and z=4 are included in Appendix 2.
such formulas are convenient if one has a table of values of
Mi as in Appendix 1.

In addition to the convenient formulas for fixed values of
z or X, a nice general formula for ZMi similar to (3) can be

obtained using the principle of inclusion and exclusion. Let
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1= be the probability that a given n questions will be correctly
answered. Sn will be Py multiplied by the number of ways to
choose n questions. Whereas there are (x+z)! total ways to
match the guestions and answers, there are (x+z-n)! ways to

match the remaining guestions and answers when n questions

(x+z-n) !

(x+z)! ' B

have been correctly answered. Thus P, =

x)(x+z—n)!

Sn = (n eyl By the principle of inclusion and exclusion
5%
zv® = 3 (-1)™ s, so
b n
n=0
X
z. 0 _ bl o n_ (x+z-n)!
Me = x+2) ! nEO( 1) n! (x-n)! (14)
Thus, (3) is a special case of (14). (8ee Appendix 3 for a
table of values of ZMg.)
. %l (stwen)d (x-n+z) (x-n+z-1)...(x-n+1) . .
Notice that ooy T " T{x—n)l (x+z)(x+z—l)...r(x+l)“”ls”the

quotient of two monic polynomials in x of degree z and has a

limit of 1 as x goes to infinity. Thus, we can see from (14) that

; . X

1580, 20 lim n 1 lim (x+z-n)!
= - 1 = = M e

.58 MX Koo nio( 1) /n! > for any z. Also, S B e

; lim =z ,0 _ %1 _aaD (kz-03 1

is 0 whenever n>0, so o MX = T§IETT( 1) 0l (=) T 1

as might be expected.
The expectation for a matching test with duds can be found
just as it was without duds by using (5) instead of (2). This

yields §§E as does another simple argument. The probability of

' . . : 1 .
a given question being answered correctly is e and since

y X
there are x guestions, we expect an average of e correctly

answered questions.
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For lMi, the most likely event is y=0 when Al .| This s Bcell

i -y+2 0
as follows. By (5) and (10), Mi = Xx{l . x—y+2/y!
Mi_y+2/y! ig at least as great for y=0 or y=1 as for any other

value of y, so lMi clearly is greatest for y=0 or y=l. It is

. w0 0 ; ,
greatest for y=0 when ) Mx+2>Mx+1’ which is true when
x02) 0+ (c1) T2/ (x42) 1) > (x4 1) M0 This inequality can be
x+1 : x+1 °
written as (—l)X+2/(x+j_)!>—MS‘{+l and is clearly true for even
values of x. For odd x>1, we have (—1)X+2/(x+l)12—§; ?%>—Mx+l .

It is easily checked that y=0 and y=1 are equally likely when
%x=1. For z>1l, there is an even greater tendendy to have fewer

correct answers. Thus y=0 is always most likely for =z>l.

Systems of Distinct Representatives

"LLe probléme de recontres" may also be generalized by
considering the number of ways to choose a system of distinct
representatives (SDR's) from k sets of n elements (n,kzl)
determined as follows. The numbers from 1 to k are arranged
in order in a circle, with the i'th set consisting of i and
the next n-1 consecutive numbers in the circle. This number
of SDR's will be denoted by AE . For Az,
are considering sets {1,2,3}, {2,3,4}, 18 4 1), 41,27,

for instance, we

If k<n, numbers will occur more than once in a single set as

in {1,2,1}, {2,1,2} (n=3, k=2). Nevertheless, we will consider
that there are four different SDR's composed of a 1 from the
first set and a 2 from the second set.

"Le probléme de recontres" is involved whenever n=k-1. We

i B
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are matching the numbers from 1 to k with the k sets, but each number

_ k-1

is’ prohibited  from a.different one_of the sets so Mi-k! X

for k22 A§—2 with k>3 is a case of the "probléme de ménages"
for which the solution may be established by a tidy recurrence
argument developed by I. Kaplansky.l2

Let us now try fixing n. Al and A2 are trivial; the former

k k
is always 1, and the latter is always 2+ For Ai and Ai, —
following recursions hold:
A= 2n) ) - a (15)
Ap = 281 - Ay (16)

My proof for (15) is as follows. Aﬁ can be broken down into
tWo smaller problems where we have k-1 sets remaining to choose
from after choosing a number from the first set and removing
this number from the possible choices for the other sets. The ®
first problem is B, 4., where we have chosen one of the end
numbers from the first set. We have the same problem regardless
of which end number is chosen. The second problem is Ckul’
where we have chosen the middle number of the first set. We have
3

Ak = 2Bk—l Ck—l with B0=C0=l. In the Bk problem, there are

just two possible choices remaining in the last set. Depending

+

upon which we choose, there are Ck—l ways, or just one way to
continue. By defining Ck=0 for k<0, we can write Bk=ck_l+l for

k20. Similarly, C,=C,_,+C,_, for kzl. (The C arises because

k=2

one of the choices forces another.)

12Ryser, pp. 32-35.

i
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3 . _
Phus, Eor-kzl; Ak = 2(Ck_l+l) + ck—l = Ck_2+2+Ck

3 3 _ "
Then, for k24, 2A; ,-A; 5 = 2(Ck_1+Ck_3+2) - (Ck—3+ck—5+2) =
2C, _1#Cy 3 Cp_gt2 = 20y _+Cy_y+2 = Cp_14Cy H#Cp_3¥Cy_y*2 =

.3 : . 3
Ck+ck—2+2 = Ak . Now, we must simply notice that Al = 3,
Ag = 5, and Ag = 6 in order to make use of (15). A similar
but more difficult process yields (16).
. n n n
< = —
It is now true that for l<n<4, Ak ZAk_l Ak—n , but

this pattern does not continue for n>4. The recurrences

get considerably more complicated. After finding my recursions,
T discovered that researchers at the University of California,
Los Alamos Scientific Laboratory, had considered an equivalent

problem and devised a general method to find a recursion formula

n

for Ak with any fixed value of n (although they do not define

AE for k<n).13 Their recurrences for n=3 and n=4 are given in
3 _ .3 < 4 4 4 4

the forms Ak+2 = Ak+l + Ak 2 and Ak+3 = Ak+2 + Ak+l +Ak 4,

which may be verified by my method. Their recurrences for n=5

and n=6 are included in Appendix 4, and all the recurrences
actually work for k<n according to my definition of AE.
Also included in Appendix 4 are tables of some of the values

of AE which I computed using my own recursions and/or the

University of Chicago's DEC-20 computer. All my calculations
agree with the more extensive tables of Metropolis, Stein, and

Stein.14

lBN. Metropolis, M.L. Stein, and P.R. Stein, "Permanents of

Cyclic (0,1) Matrices," Journal of Combinatorial Theory, 7
(December 1969), pp. 291-306.

141pid., pp. 315-317.

= B
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I noticed early that Ai is even whenever n is even since
there are equal numbers of SDR's starting with symmetrically
located numbers in the first set. I conjecture that AE i
divisible by four when n is. I also suspect that for odd
values of n, Ai is even if and only if the greatest common
divisor of n and k is not 1. Though I have not yet devised
proofs, these conjectures are supported by my numerical
calculations and those of Metropolis, Stein, and Stein.

3

By the method I used for Ak, I also found simple recurrences

for the number of SDR's of a collection of sets of 3 elements,
where the elements do not runn all the way around in a circle.
If we have k sets in which the i'th set just contains, i, i+1,
and i+2, then the recursion is of the form

+ A + k+1 or A +1. The first

w o P k-2 e = ZBp.g T Brog

three numbers in the sequence are 3, 7 and 14. We may also

A

consider the problem just mentioned with one change: the last

set consists of k, k+1, and 1. Then the recursion is of the

+ A + 2 oxr A

5 K = 2Ak—l - Ak—3' The latter

form Ak = Ak—l
is the same recurrence as for Ai, but here the first three
numbers of the sequence are 3, 6, and 1l1. By considering

situations such as these for all n, we may develop a problem

even broader than AE.

~13-
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CONCLUSION

T have rediscovered some classic arguments relating to
"le probléme de recontres" and found multiple expressions for
the more general probability of ZMi, with some possibly original
results. My approach to the problems dealing with systems of
distinct representatives is different from that of Metropolis,
Stein, and Stein, but my recurrences and numerical calculations
involving Aﬁ are corroborated by their work. I also have made
other discoveries involving SDR's, as well as expectation,
limits, and most likely event for a matching test, some of
which might be new or at least be derived by novel methods. The
results I have found may be used not only with matching tests
and systems of distinct representatives, but also for many
other problems of a similar nature.

As a result of my investigations, additional questions come
to mind. I plan to attempt to determine the number of ways

to choose an SDR from the sets described for AE so that there
are agreements in y places with the SDR 1,2,3,...,k. I also
plan to investigate in more detail divisibility patterns for
Aﬁ and seek proofs or counterexamples for my conjectures. In

addition, I would like to explore the problem I suggested

involving a generalization of AE.

il -
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53
144
103
280

2119
5760

16687
45360

16481
44800

1468457
3991680

16019531

43545600

-15-

« 3333333333

«375

.3666666667

.3680555556

.3678571429

.3678819444

.3678791887

.3678794643

.3678794392

.3678794413

.3678794412

.3678794412
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APPENDIX 2

Formulas for ng with fixed walues of x or z

z. 0 _

MO = 1

z. 0 _ =z

My = 23T

z 0 _ 2 z+2

M2 = (z"+z+1) /P 5

ZMg = (z3+3z2+52+2)/PZ;2

ZMg = (z4+6z3+1722+202+9)/PZZ4

ZMg = (z5+104+4523+10022+109z+44)/PZ;5
1D . &2 0

bid x+1°" x+2

2.0  x+2 .0 4 0

M. = x+l'Mx+2+ X+2'Mx+l

3.0  x+4 0 x+2 0

M, = oMt D) o030 Mxe2

2 2

4 0 X+ Tx+T 0 x“+5x%x+3 0

« = TRtD) =30 Mard” D) (x+2) (xF4) “Mx+3

=16
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APPENDIX 3
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4 5
1 i
: 5
= 5
7 81
10 42
67 227
05 336
143 19209
240 3024
178 18089
315 30240
4 5
1 1
.8 .83333
i 7 : 1380
.63810 .67560
.59583 .63128
.56508 .59818
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APPENDIX 4

. i n
Recursions and Numerical Values for Ak

n=3
S T Rag TR T Ay A
1 3
2 5
3 6
4 9
5 13
6 20
. 31
8 49
9 78
10 125
i | 201
i 324
13 523
14 845
15 1366
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APPENDIX 4 (Continued)

4 4 *
Br+1 -

144
264
484
888
1632
3000
5516
10144
18656

]
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APPENDIX 4 (Continued)

n=>5
A12+10 . 2A12+9 = 2Ai+8 i 2Ai+6 B 8A15<+5 B 6Ai+4 B 2A]i+3 | ZA12+1 * Ai + 247

1 5

2 13

3 29

4 65

5 120

8 265

7 579

8 1265

9 2783
10 6208
Il 13909
12 31337
73 70985
14 161545
15 369024

i
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APPENDIX 4 (Continued)

5
Bt s = 280,04 * 2P0 * APi1a = YPpi1g - 16Ay, o = 16A,g
- 12A1E+7 S 10A£+6 - 4Af:+5 + MR, +AR[L, + B et
+ 2A]6{+l + A}i + 96*
1 6
2 18
3 48
4 130
5 326
6 720
- 1854
8 4738
9 12072
10 30818
11 79118
12 204448
13 528950
14 1370674
15 3557408

* Taken from Metropolis, Stein, and Stein.

-21-



Ronald Irwin Greenberg
203 Berry Street
Park Forest, Illinois 60466

BIBLIOGRAPHY

Feller, William. An Introduction to Probability Theory and its
Applications. New York: John Wiley & Sons, Inc., 1957.

Metropolis, N., Stein, M.L., Stein, P.R. "permanents of Cyclic (0,1)
Matrices." Journal of Combinatorial Theory, 7 (December 1969),
291-321.

Riordan, John. An Introduction to Combinatorial Analysis. New
York: John Wiley & Sons, Inc., 1958.

Ryser, Herbert John. Combinatorial Mathematics. The Mathematical
Association of America, Inc., distributed by John Wiley & Sons, Inc.,
1963.

Weaver, Warren. Lady Luck. New York: Anchor Books, Doubleday &
Company, Inc., 1963.

ACKNOWLEDGEMENTS

I would like to thank my mathematics teachers at Rich Central
High School for the past two years, Mr. Barry Bruckner and Mr.
George Fabian, for their continued encouragement and interest
in my work. I would also like to thank Professor Paul Sally,
Chairman of the Mathematics Department at the University of
Chicago, for his help in facilitating my research during the
1978 NSF summer math program at the University. I am particularly
grateful to Professor Irving Kaplansky of the University of
Chicago, who taught the combinatorics class in the 1978 summer

program and inspired me to broaden the scope of my investigation.

a3 5



	An Investigation of Montmort's "Probleme de Recontres" and Generalizations
	Recommended Citation

	tmp.1473022945.pdf.OgSZS

