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PREFACE

Progress in scientific research is dependent on the quality and accessibility of

software at all levels. True progress in software development depends on embracing

the best traditional–and emergent– practices in software engineering, especially ag-

ile practices that intersect with the tradition of software engineering [1]. Measuring

software quality can lead to developers following good software engineering prac-

tices. Software processes can use the best features and practices of various models

which is suitable for that project. To identify these features and practices it be-

comes necessary to measure software quality. Measurement, in essence, captures

information about the attributes of an entity being measured. When it comes to

software measurement, it becomes essential to identify these attributes that would

eventually contribute towards providing meaningful (although not complete) infor-

mation about a software product. This could lead the embracement of best prac-

tices that is important to develop and maintain good reusable software. In this the-

sis, we aim to identify software metrics derived from commonly used metrics like

defect count and lines of code; we then implement these derived metrics and pro-

vide a dashboard view to the software teams which would give them an outline of

how the software development is progressing. With this work, we hope to lay the

groundwork for using software metrics to identify software engineering problems

and come up with software engineering practices to fix them.
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ABSTRACT

There is an emerging consensus in the community that “progress in scientific

research is dependent on the quality and accessibility of software at all levels” [1].

This progress depends on embracing the best traditional—and emergent—practices

in software engineering, especially agile practices that intersect with the more for-

mal tradition of software engineering. As a first step in our larger exploratory project

to study in-process quality metrics for software development projects in Computa-

tional Science and Engineering (CSE), we have developed the Metrics Dashboard,

a working platform for producing and observing metrics by mining open-source

software repositories on GitHub. The Metrics Dashboard allows the user to submit

the URL of a hosted repository for batch analysis, whose results are cached. Upon

completion, the user can interactively study various metrics over time (at different

granularity), numerically and visually. We currently support project size (KLOC),

defect density, defect spoilage, and productivity. The Metrics Dashboard distin-

guishes itself in various ways: 1) it is free/open-source software distributed under a

license still to be determined; 2) it has an extensible architecture that makes it easy

to study additional metrics; 3) it provides both a human-facing web application and

a RESTful web service for consumption by programmatic clients; 4) it is hosted as

a publicly available software-as-a-service (SaaS) instance, and users and contribu-

tors can choose to self-host their own instance; and 5) batch processing. We have

implemented the Metrics Dashboard using modern web service/application tech-

x



nologies and a scalable architecture. While this work is part of an effort to address

sustainable practices in scientific software development, we believe it to be more

broadly applicable to any interdisciplinary software development community.
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CHAPTER 1

INTRODUCTION

Software engineering as practiced today (especially in the industry) is no longer

about the stereotypical monolithic life cycle processes (e.g. waterfall, spiral, etc.)

found in most software engineering textbooks (aimed at large scale software teams).

These heavyweight methods historically have impeded progress for small or medium

sized development teams owing to their inherent complexity and rather limited data

collection strategies that predominated the 1980s (a fervent period for emerging

software engineering research) until relatively recently in the mid-2000s. In addi-

tion, the discipline and practice of software engineering includes software quality,

which has an established theoretical foundation for doing software metrics (a fancy

word for measuring). In our work, we try to explain how software processes can be

pragmatic and use best features or practices of various models without impeding

developer productivity, especially with a growing number of cloud-based solutions

for hosting projects (the most famous being GitHub). The challenge is to cherry-

pick the most-effective practices from a large suite of tools and incorporate them

into existing cloud-based workflows. Development teams are particularly likely to

resist using a practice if it incurs any additional workload on already short-staffed

teams, especially if the solution is not integrated into existing infrastructure (e.g.

GitHub, used by many open source, computational science projects alike). The
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tools we are developing can be incorporated in any existing GitHub-based workflow

without requiring the developers to install anything.

We begin by focusing our energy on the Metrics Dashboard, developed as a

part of an NSF-funded effort for looking at Software Engineering in computational

science projects. We implement traditional software metrics as described in the

classic reference by Fenton with a web-based dashboard so project teams can just

use them to understand quality in their projects.

We provide a brief overview of what practices from software engineering can

be helpful to open source and computational science and engineering projects. Many

projects already use version control. But what else can they be using that would be

helpful to improve software quality? Issue tracking is one that can have huge im-

pact on projects, not only for tracking code but also for textual content.

We provide a brief overview of (software) quality: Many of us know the En-

glish definition of quality, but this definition differs from the one created by W. Ed-

wards Deming–an exponent of quality (in manufacturing) who focused his definition

on customer expectations being met or exceeded. Customer expectations (a.k.a.

satisfaction) is a key driver of process improvement (the idea being that you cannot

improve something you dont understand; measurement is a key to establishing an

understanding of any process).

We provide an overview of software metrics, focused on so-called in-process

metrics (as opposed to code-based metrics, which are also useful but not the scope

of work). Well talk about the ones were doing and a survey aimed at understanding

team attitudes about software engineering.
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We look at at one specific (and challenging) software metric (defect density)

for 10 active open source projects on GitHub that employ software practices to help

us compute the defect density metric accurately (git commits and issue tracking).

The Metrics Dashboard effort itself is built using agile software development meth-

ods.

Lastly, we analyze all of the GitHub projects history (git and issues, among

others) is highly data intensive. Our current focus is only on 10s of projects but

will be scaled to all-known computational science and digital humanities projects in

2016.

Broader Context

Software metrics are a critical tool that provide continuous insight to prod-

ucts and processes and help build reliable software in mission-critical environments.

Using software metrics we can perform calculations that help assess the effective-

ness of the underlying software or process. The two types of metrics relevant to our

work are:

1. Structural metrics, which tend to focus on intrinsic code properties like code

complexity.

2. In-process metrics, which focus on a higher-level view of software quality,

measuring information that can provide insight into the underlying software

development process.

We understand that metrics are often used to evaluate individual developer produc-

tivity rather than overall project quality and progress. For example, a large num-

ber of commits made to a project may or may not have any impact on the software
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quality (yet it is displayed prominently on sites like GitHub). Optimizing on one

metric could result in unintended consequences for a project. For example, these

commits could be overly complex or introduce defects. Therefore, we seek to iden-

tify metrics that will be useful to the project as a whole.

Our aim is to develop and evaluate a Metrics Dashboard to support Compu-

tational Science and Engineering (CSE) software development projects. This task

requires us to perform the following activities:

1. Assess how metrics are used and which general classes or types of metrics will

be useful in CSE projects.

2. Develop a Metrics Dashboard that will work for teams using sites like Github,

Bitbucket etc.

3. Assess the effectiveness of the Metrics Dashboard in terms of project success

and developer attitude towards metrics and process.

Our current focus is on identifying requirements for the Metrics Dashboard,

which include the types of metrics that will help understand and improve the soft-

ware quality.

Related Work

During the design and implementation of the Metrics Dashboard, we have

relied on methods and insights from the mature yet dynamic field of software ar-

chitecture. By unifying a body of independent prior work, the seminal report by

Garlan and Shaw [2] defines software architecture as a design perspective that fo-

cuses on the overall module structure of increasingly complex software systems (as

opposed to details of data structures and algorithms); the report surveys common
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architectural styles and compares their effectiveness and responsiveness to change

based on several case studies. Updated, comprehensive studies of this subject are

available as well [3]. During the last two decades, it has become increasingly com-

mon to design distributed systems that provide common functionality by combining

separate applications and services. This trend has drawn attention to the field of

(enterprise) application integration, where common integration styles include file

transfer, shared databases or repositories, remote procedure invocation, and mes-

saging [4]. The research on comparison between the metrics identified is similar to

the comparison of Defect Density and Change Density by [5]. The work done by

Shah, Morisio and Torchiano [6] studied 19 papers that reported Defect Density for

109 software projects and found that larger projects exhibit lower Defect Density

than medium and small projects. They have compared Defect Density for the pro-

gramming language, Java, C++ and C and state that the difference in Defect Den-

sity could be attributed to different level of detail and expressive power between

the two languages. In [6] the analysis if size, age, programming language and de-

velopment mode of project (close vs. open) could be factors for Defect Density was

tested for and it was found that development mode is a factor with programming

language affecting the values in some cases. In addition it was found that projects

size is relevant, while age was not a factor.

In the study by Gala et al. [7] the ratio of the email messages in public mail-

ing lists to versioning system commits which has remained constant along the his-

tory of the Apache Software Foundation(ASF), was found to be independent of the

size, activity and number of developers and relatively independent of the technology
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and functional area of the project but seems to be technical effervescence and popu-

larity of the project. They have studied ratio of developer message to commits and

ratio of issue tracker message to commits. The metrics identify stagnant projects or

projects in the verge of stagnation. They is still verification pending to see if these

results apply to other open source projects and if these results are practical. Defect

Density is a high level metric which may lead to different interpretations so 2 differ-

ent variants of this metric are used, in the work by Shah et al. [8] standard(steadily

increasing variability) and differential(large variability). The conclusion here is that

the standard Defect Density provides a global (with all history included) quality

view of the project and differential Defect Density provides a local (specific to a

version) quality view to a project. Differential Defect Density varies between 1 -

100 defects per KLOC which could be attributed to defects between releases which

belongs to the previous release. The steady growth of standard Defect Density

means either that the quality of a project decreases over time, or that this met-

ric is not a reliable quality indicator. As for differential density, its high variability

could be either normal behavior, or an indicator of a project that is not under con-

trol. In the latter case, projects should try to reduce differential Defect Density as

much as possible. The work done by Nagappan and Ball [9] determine if the defect

density identified by static analysis tools like PREfix and PREfast help predict the

pre-release defect density i.e. the defect density identified by developers. In order to

address the fact that the results were not coincidental they repeated the data split-

ting experiment several times and provided consistent results each time. The static

analysis tool used in this paper mainly works with c and c# modules to identify de-
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fects and calculate the defect density. This highly limits its usage to projects that

use C and C#. The static tools sometimes detect false positives that could identify

modules as error prone even if they are not as error prone as reported. Static Anal-

ysis tools are known to miss deep functional and design errors which are normally

caught by programmers while testing, so this type of automated testing is less ef-

ficient than manual testing by programmers. The paper by Bower et al. [10] pro-

poses a catalog-driven approach to look at qualitative and quantitative dimensions

of software metrics. This approach is needed because there are so many metrics,

and there is little or no attempt to collect (in one place) which are effective and in

what situations. Most approaches are ad hoc and provide little structure. This pa-

per is an attempt to bring structure to the forefront by having a sound cataloging

scheme. There are many surveys for certain metrics (e.g. object-oriented, etc.) but

most discussions about them are qualitative, so there is little way of knowing which

work. This paper is taking some baby steps toward addressing this issue. There is

a table of qualitative aspects and quantitative aspects. A particularly interesting

aspect of quantitative is to distinguish between base metrics vs. derived metrics,

which has come up in our discussions. In this thesis, we work with derived metrics.

The vocabulary in the table could be helpful to us for thinking more deeply about

the metrics we are implementing and understanding their long-term value in actual

projects during the evaluation phase of our work.

7



CHAPTER 2

DESIGN AND IMPLEMENTATION

Metrics Dashboard Functionality

Longitudinal metrics and sampling

Any process, including the software development process, occurs over time

and is therefore longitudinal in nature. In this study, we aim to study the develop-

ment process through metrics that must themselves be longitudinal, that is, they

are functions of time. For example, code size (KLOC) may change over time when-

ever a committer inserts or deletes portions of the code. While these metrics are

conceptually continuous functions of time, it is impractical to treat them as such,

and one typically uses sampling to convert them to discrete functions of time. The

choice of sampling rate (frequency) is a practical one. If one wanted to observe, say,

intra-day phenomena, one would choose a relatively high sampling rate, such as

hourly or even every 15 minutes. Our study, however, focuses on longer-term phe-

nomena, so the commonly used daily sampling rate will be sufficient. In practice,

daily measurements are taken at midnight local time (00 hours). Less frequent sam-

ples can always be obtained by downsampling (decimation) as follows. The mea-
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surement for a metric y(d) for a calendar interval [d0; d1], where di are calendar

dates, is given as the daily average of y over the time interval:

y([d0; d1]) =

∑d1
d=d0

y(d)

d1 − d0
(1)

Using this definition, we can obtain measurements by week, month, or other arbi-

trary period.

Module size computation

Figure 1 shows how the module size is calculated for a GitHub project named

Astropy. In software engineering, the module size is calculated using LOC. A project

will consist of large number of files, each file with its own commit history. In this

thesis, the final metrics results are grouped with granularity of week or month,

therefore the module size is calculated for the requested granularity. Keeping this

in mind, the module size for the entire project is calculated by looking at the com-

mit history of each file in the project and partitioning the commit history based

on the requested granularity. Referring to figure 1, the calculations are shown for

weekly granularity with the commit history for the file column.py starting from

November 24, 2013 to December 15, 2013. The first commit for the file was made

on November 27, 2013 and hence the LOC value for the dates before the first com-

mit for the file remains zero. Week one shows one commit for the file, therefore, the

LOC value for the file is 793, from the file first commit date (November 27, 2013)

to the second commit date (December 1, 2013). On the second commit, the LOC of

the previous commit is added to the current commit, in this case, the second com-

9



Figure 1. Commit history flow diagram for a file (astropy/table/column.py)
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mit was 7 LOC giving a cumulative commit result, after the second commit date

to the third commit date, of 800 LOC. The process continues for subsequent com-

mits on the file. A point to note here is that the LOC can contain zero or negative

values, in each case we simply add these signed values to the previously calculated

cumulative LOC. Due to the longitudinal nature of our computation, we calculate

the time that has elapsed between each commit in milliseconds, which is later con-

verted to seconds for visualization of results, therefore giving us a result of cumu-

lative LOC multiplied with the time range between the current commit to the next

commit. The final result for each file (time range * cumulative LOC) added with

every other file in the project that falls under the same granularity (week or month)

window. The merged result (time range * cumulative LOC) is divided by the du-

ration of the requested granularity, therefore we end up with the with the module

size with the unit in LOC instead of seconds-LOC. The calculations of module size

is crucial for the metrics calculations of issue density and productivity.

Supported metrics

Issue density is the number of confirmed defects detected in software/component

during a defined period of development divided by the size of the software or com-

ponent [11].

Defect density is usually shown as the number of reported software defects per

1,000 lines of source code (KLOC).

DefectDensity = NumberofDefects/ModuleSize (2)

11



In this thesis, the focus is on open source projects in Github, therefore this

metric is referred to as issue density. Github provides a feature for tracking tasks,

enhancements and bugs for a project and is referred to as issues. Since, open-source

projects in Github use the issue tracking feature extensively for tracking their project

bugs, we use the count of issues for calculating the number of defects, in this case

issues, for the computation of issue density. For our work, we are focused on projects

that use the issue tracking feature of GitHub extensively, one of the reasons being

that, the issue count in GitHub gives us an idea about how active the open-source

user community is for the identified projects along with how actively the contribu-

tors to the project keep track of issues. For example, how promptly the issues are

closed or updated, how well the software is being tested, how promptly the out-

comes of various types of tests and peer code reviews are tracked.

The module size for a given project in a repository is calculated using the

KLOC (thousands of lines of code) for that project. To count the KLOC for a cho-

sen project we count the lines of code at each commit for that file, multiply that

with the duration until the next commit; this is repeated for the entire history

of the file till the current date and the final result is divided by the entire range

for which the file exists in Github. The section on module size computation ex-

plains, in detail, how we calculate the KLOC and how we arrive at the KLOC re-

sult. KLOC per file is given as follows:

KLOC(file) = Duration(BetweenCommits) ∗ LOC/(FileCommitDuration) (3)

12



The file commit duration above is the duration for which the KLOC for a

project is calculated by considering all source files that belong to the project and

is given by

n∑
i=1

m∑
j=1

KLOC(i,j) =
n∑

i=1

(KLOC(i,1) + KLOC(i,2) +

KLOC(i,3) + ... + KLOC(i,m)) (4)

where n = number of files in a repository and m = granularity requested by

the client; for example, week, month. The defect density metrics can be granulated

to give the result grouped either by month or week.

Instead of using the direct measurement of faults we compute the fault den-

sity, i.e. derived measures (combination of measures) defined as issues per KLOC.

The idea here is intuitively comprehend how the software development is progress-

ing. For example, if a project has very few issues but the KLOC metric is increas-

ing, this could either mean that the issues identified in the given window (month,

week) is being closed within the window or it could be an indicator of a much larger

problem of the user community or contributors for the project are not as active as

they should be in testing or tracking the issues. In this way, we try to encourage

better project maintenance by the users and developers while the project is being

developed.

Issue spoilage refers to how much effort was spent in fixing faults rather than

building. This can also incorporate the idea of cost of fault prevention compared

with the cost of fault detection and correction.

13



Issue spoilage = effort spent fixing faults / total project effort.

Issuespoilage =
n∑

i=1

Tissues(i)

TlastCommit − TfirstCommit

(5)

where n = number of issues.

We calculate the time taken to fix issues logged in Github. An issue is consid-

ered to be fixed when its status is changed to close. An issue in any other state is

considered to be open. Our approach is to intuitively identify the project health. If

the spoilage value increases over time, this could indicate the following:

• The project issues are being neglected and not closed as quickly as they should

be.

• The project doesn’t have enough contributors and the developers working on

the project are overwhelmed with too much work.

On the other hand, if the spoilage values are reducing this could indicate the fol-

lowing:

• The user community is not actively participating in identifying issues

• The project issues are being closed fairly quickly and this is a good indicator

of a project that is doing well.

One can be fairly certain about the project health, when it comes to spoilage, by

looking at other metrics like issue density, which gives us the issues per KLOC:

• If the issue density value has increased for the chosen granular window and

the spoilage has reduced for the same window then it is a good indicator that

the project is being maintained well.

14



• If the issue density value has decreased for the chosen granular window and

the spoilage has reduced for the same window, it could signify that the cur-

rently active issues are being closed fairly quickly but not much effort is being

expended at identifying new issues.

• If the issue density value has increased for the chosen granular window and

the spoilage has increased for the same window, this could indicate that the

user community is actively identifying issue in the code base but the issues

aren’t being closed quickly enough.

• If the issue density value has decreased for the chosen granular window and

the spoilage has increased for the same window this is an indicator that the

project development has slowed down for that window and steps should be

taken to improve these values.

Productivity is the most commonly used model for productivity measurement

expresses productivity as the ratio of “process output influenced by a personnel”

divided by “personnel effort or cost during the process”. Since our work is focused

on measuring the productivity of a team we define productivity as follows:

Productivity = ModuleSize/TeamEffort (6)

Module size is one of the measures that is used to compute productivity and

is calculated as per the examples provided in the section module size computation.

The module size is given by (4). The team effort is calculated by considering the

development time of the project. Since the results are sampled based on the chosen
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frequency, the team effort is given by the time elapsed between the first commit for

the project and the last commit for the project made in that window.

TeamEffort = TlastCommit − TfirstCommit (7)

This metric combines the process measure (Team Effort) and the product

measure (module size). Our goal is to check how much effort is being spent in fix-

ing issues when compared to actual code development. In order to facilitate the

production of quality software any software development team should be focused on

releasing code with minimal defects or in this case, code that would have minimal

issues associated with it. This in turn makes sure that the less effort is expended on

fixing issues and allows for more focus on software development, thereby reducing

the overall development time and hence reducing the cost of development. A lower

value in productivity means poor software quality which could result from using too

few people or people with the wrong skills.

Our approach with these identified metrics is to give a clear picture of soft-

ware quality. From our experience in both industry and academia, we understand

that no one metric can give a clear indication of project health. Viewing the met-

rics results in conjunction will give us a better idea of software health and pave the

way towards stronger development strategies in future deployments and releases.
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Metrics Dashboard

Architectural overview

Figure 2. Architectural overview of the metrics dashboard service

Figure 2 gives the architectural overview of the Metrics Dashboard service.

The Metrics Dashboard service is currently hosted on the Ubuntu Linux instance

running on the Amazon Elastic Compute Cloud (Amazon EC2) on the Amazon

Web Services platform. The server side application is developed using Spray which

is a lightweight Scala libraries providing server side and client side REST-HTTP

support on top of the Akka toolkit. One can build highly concurrent, distributed

and message driven applications on the JVM using the Akka toolkit. The persis-

tence of the computed results is done via MongoDB which is a document based
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database and since the server side application provides a JSON result this proves to

be a suitable choice. The Metrics Dashboard API can be accessed using the URL

structure, https://tirtha.loyolachicagocs.org/metrics/api/{metric-type}/

{user/organization}/{repository}/{branch}?groupBy={frequency}.

• Metric type tells the web service what metric one is looking for. Currently,

we support three types of metrics which include issue density, which is ac-

cessed using the term density, issue spoilage, which is accessed using the term

spoilage and Productivity, which is accessed using the term productivity.

• User or Organization refers to the username or organization name in GitHub

under which the project of interest is stored.

• Repository is a container in GitHub within which a project resides.

• Branch is the name of the project branch that one would like to access. A

GitHub branch could contain different versions of the same project.

• The parameter groupBy in the URL is the frequency or granularity with which

one would like to view the final results. Currently, we compute the result

based on monthly and weekly frequencies.

The following GitHub open-source projects are being tracked by the Metrics

Dashboard Service by default.
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Table 1. Open-source projects tracked by default as of May, 2016

Project Commits
Open

Issues

Issue

Density

(Issues

/KLOC)

Issue

Spoilage

Produc-

tivity

(KLOC/

ms)

IPython: Productive Inter-

active Computing
21,518 959 2.321 5.6609 6.2445

SymPy: Python library for

symbolic mathematics
25,010 2340 1.7566 17.4247 4.4758

Astropy: astronomy and

astrophysics with Python
15,480 718 0.7850 10.5402 4.0056

Simbody: toolkit for

science- and engineering-

quality simulation

4,542 82 0.1367 0.4798 3.1635

Numpy package for sci-

entific computing with

Python

14,777 1211 3.3737 5.6239 6.7095

The Go Programming Lan-

guage
28,460 2295 2.3565 3.4880 1.8716

When we take a look at a project like Simbody, one can immediately note

that the number of issues for the project is 82. Thereby, the issue density (issues

per LOC) is a lower value, 0.1367. This would lead us to conclude that the de-
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velopers are fixing the issues that are identified fairly quickly. However, the mat-

ter of concern here is that for a project with KLOC in the range of approximately

599 (https://tirtha.loyolachicagocs.org/metrics/api/density/simbody/

simbody/master?groupBy=month) in May, 2016, the issue count seems to be lower.

This could mean the team is more focused on fixing currently identified errors in

their codebase rather than testing and identifying potential bugs or issues that

could break the project. Productivity for the project seems to be a decent value,

one way to come to this conclusion is to make sure that this metric stays above

one. We want a project where effort spent is lower, so whatever the value is for a

particular window of chosen granularity, that value should either stay the same or

steps should be taken to increase the value for the next window of chosen granular-

ity.

Analysing sample visualisations

An attempt at a brief analysis of the projects that are tracked by default is

performed in this section.

Project Go is an open-source programming language developed by Google and

the repository is hosted in GiHub. Figure 3 shows the issue density and KLOC for

the project against month.
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Figure 3. Go: Line chart for density and KLOC against month

At first glance, the steep dip in the issue density catches the eye. This dip

occurs without any corresponding changes in the KLOC for the code. We can in-

tuitively come to the conclusion that a large number of issues were closed in a very

small time frame for this project. To check this assumption for correctness, we can

do the following:

• Navigate to the GitHub issues section for the project (https://github.com/

golang/go/issues?utf8=œ&q=sort%3Acreated-asc%20). Here, we notice

that the first issue for the project was created in October, 2009.

• Check the metrics dashboard service (https://tirtha.loyolachicagocs.

org/metrics/api/density/golang/go/master?groupBy=week), to iden-

tify the window where the dip occurred. The results obtained from the ser-

vice will be in JSON format as shown below, which contains the fields open

or close and openCumulative and closeCumulative which specify the issues
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opened or closed in the chosen granularity and the issues that are in the open

or close state in the current window of chosen granularity.

{

{

"start_date": "2014-11-24T00:00:00Z",

"end_date": "2014-12-01T23:59:59Z",

"kloc": 651.0461298714263,

"issues": {

"open": 30,

"closed": 0,

"openCumulative": 9161,

"closedCumulative": 0

}

},

{

"start_date": "2014-12-01T00:00:00Z",

"end_date": "2014-12-08T23:59:59Z",

"kloc": 653.9527515172911,

"issues": {

"open": 34,

"closed": 0,

"openCumulative": 9195,

"closedCumulative": 0
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}

},

{

"start_date": "2014-12-08T00:00:00Z",

"end_date": "2014-12-15T23:59:59Z",

"kloc": 639.6212584045984,

"issues": {

"open": 120,

"closed": 7968,

"openCumulative": 1347,

"closedCumulative": 7968

}

}

}

On close inspection, we notice that the date 2014-12-08T23:59:59Z is when

the dip occurs, also notice that issues closed is 0 and closedCumulative is 0

For the next window, (2014-12-15T23:59:59Z) closed and closedCumulative is

7968.

• Navigate to GitHub issues (https://github.com/golang/go/issues) to

check if the values reported by the metrics dashboard service is correct. If

we filter using the criteria closed:<2014-12-08, we see that no issues were

closed before this date (https://github.com/golang/go/issues?utf8=œ&q=
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closed%3A%3C2014-12-08), even though the first issue was opened in Octo-

ber, 2009.

• Change the filter to closed:<2014-12-09 (https://github.com/golang/

go/issues?utf8=œ&q=closed%3A%3C2014-12-09) and we will see that 7926

issues were closed. Change the date to 2014-12-15 (https://github.com/

golang/go/issues?utf8=œ&q=closed%3A%3C2014-12-15) and you will see

7968 issues were closed, which matches the result obtained through the met-

rics dashboard service.

So to summarize, the Go programming team managed to close 7926 issues

in one day, which is not considered to be a good programming practice, consider-

ing the fact that the team hadn’t closed any of the identified issues since October,

2009. A point to note here is that the status of issues in GitHub can be changed,

however here were are concerned only with the open and closed dates of issues and

having an issue for five years is simply not excusable. For the above analysis we

choose the granularity to help easily narrow down the exact date when the dip oc-

curred.
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Figure 4. Go: Line chart for density and spoilage against month

Figure 4, shows the issue density and spoilage against month, as one expects

the spoilage value dips at around the same window when the issue density dips.

Another observation one can make using the visualization is that spoilage in-

creases until the end of the year 2014 to a peak of almost 7.0, as the time to fix

issues increased. After the dip the spoilage has remained constant which is a good

indicator that the issues are being closed regularly and newer issues are identified

and tracked. For an active project to be healthy, the spoilage should not drop too

low, which could indicate that the project isn’t being tested and the user commu-

nity isn’t actively identifying or reporting issues.
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Figure 5. Go: Line chart for Issues grouped by week

Figure 5, shows the issues for the Go project against week, as one expects the

issues for the project were opened until the end of the year 2014 (cumulative open

issues are shown in red). The closed cumulative issue count, shown in yellow, shows

that the issues for the project were closed beginning the end of the year 2014. Since

2015, the team or users have continued to open and close issues at a fairly steady

rate and no drastic changes in the values are seen. This means that the team is im-

proving its improving its workflow when it comes to resolving issues.

Project SymPy is an open-source project in GitHub and is a Python library

used for symbolic mathematics and is one of the projects that is being tracked by

default by the metrics dashboard service.
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Figure 6. Sympy: Line chart for issue density and KLOC against month

Figure 6, shows the issue density and KLOC for the project against month.

At first glance, we notice that the KLOC or module size has increased significantly

since 2012 but the issue density has reduced during the same period. Normally, it

is expected that as the module size increases the number of issues for a project will

also increase, giving higher values of issue density. However, this may not always

be the case. As seen from figure 7, the yellow line, which indicates the closed issues

cumulatively added since the beginning of the projects’ lifetime,shows significant

increase compared to the issues opened (shown in the color red) shows a steeper

increase staring from the year 2012. Therefore, this would lead us to the conclu-

sion that the issues are being closed at a faster rate than the rate at which they are

opened, which in turn reduces the issue density during that period.
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Figure 7. Sympy: Line chart for issues grouped by week

Figure 8, shows the spoilage for SymPy, one would expect that since the issue

density has reduced and the larger number of issues are being closed than they are

opened, the spoilage should also show significant reduction. It is interesting to note

that this isn’t always the case.

Figure 8. Sympy: Line chart for issue density and spoilage against month
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Note that spoilage is a measure of how long it takes to fix an issue, there-

fore, even though a team manages to close issues at a fairly decent rate, if there

are older issues in the project that are still in the open state, this will significantly

add to the spoilage and we may not see a drop in spoilage as seen for this project.
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CHAPTER 3

CONCLUSION

Simplistic measurements can cause more harm than good, but a combination

of simplistic and derived metrics can serve as a useful tool at making software qual-

ity easily comprehensible to software developers. This Thesis, aims at providing a

clear idea of how the identified metrics are calculated and how we arrive at the re-

sults. A brief evaluation of the results obtained so far helps us identify areas in the

time line where a project might have deviated from the norm. These results gives

a team better insight on how the software development progresses over time. How-

ever, the metrics implemented by the Metrics Dashboard team, in no way, provides

a thorough understanding of a projects’ health, instead it serves as an initial step

towards better understanding of a software development process which would help

teams address many new challenges related to the development, deployment, and

maintenance of reusable software.

Evaluation

The metrics implemented so far, have given us a basic idea of the develop-

ment process for a project. The AWS server side implementation of the identi-

fied metrics can be used by teams with a simple request to the Metrics Dashboard

team to track a project. The success of the work done so far depends heavily on

whether the teams find the dashboard useful in identifying potential faults or ar-
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eas that need to be worked on, for e.g. testing and logging issues, fixing older is-

sues, reducing the time required to fix issues. A sort of balance needs to main-

tained between these metrics and high peaks and drops in the metrics should be

avoided. The metrics implemented so far by no means completely or fully under-

stand a projects’ health but when compared to simplistic measures like KLOC,

count of issues, project contributors etc., these derived measures give a deeper view

into a projects’ development process overtime which could in turn help software

development teams understand and improve software quality. The next steps to

evaluation of metrics identification and usage is comprised of the following steps:

1. Evaluate whether CSE teams find the Metrics Dashboard useful: It is known

that CSE software development teams embrace some aspects of Software En-

gineering. We can then capitalize on this to gauge interest in the idea of us-

ing metrics. It is key to understand what information an SE team is looking

for while using the Metrics Dashboard service. Since the three metrics im-

plemented so far depend on popular measures like KLOC, Issues, time to fix

issues, this should serve as a useful addition to the already popular metrics.

2. Evaluate the effect of the Metrics Dashboard on software quality and software

process: Software metrics serves as a useful tool in monitoring software de-

velopment process, so it is key to track the effects these measures have on the

maintenance of existing software modules or development of newer modules.

3. Add new metrics as they become necessary: Substantial interest in metrics is

expected about reported defects (via the issue tracker in GitHub) over time

and the mean time to resolve (fix) issues over time. While there are a large

31



number of metrics that we could include in the dashboard, we will focus on

metrics that can be derived from information already collected by the tools

projects are currently using.

4. We will migrate towards using Apache Spark, a cluster computing platform

which serves as a general purpose engine for large scale data processing. The

reason being that, GitHub allows a maximum of 5000 requests per hour(also

called rate limit) for an authenticated request. Each request to GitHub API

gathers information about a project and is useful in computing the derived

metrics. This rate limit won’t pose a problem for smaller projects, however,

for larger CSE projects with a rate limit of 5000 the metrics computation and

storage could take hours, which is not a feasible option. We plan to overcome

this delay by cloning the repository locally and compute KLOC with the help

of Apache Spark. We will still be using GitHub API for gathering information

on issues.

We aim not to tag projects as being good or bad, instead we want to ensure

that teams focus on following good software engineering practices and we hope that

our initial attempts at Metrics Dashboardwill help achieve this goal.
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