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1. INTRODUCTION 

In many cases, the modeling of a physical problem leads to a system of differential equations. A 
system of first-order, linear, homogeneous differential equations may be written concisely in matrix 
notation and may be solved using the methods presented here. The particular problem to which 
these techniques will be applied involves the determination of the population levels of two species, 
one of which preys upon the other for instance, foxes and rabbits. 

2. DEVELOPMENT OF THE PROBLEM 

2.1. Formulation of the model 

In an ecological system involving a killer population and a victim population, we assume that 
the rate of growth of the victim population is proportional to the number of current members of 
the species and is negatively related to the number of meetings of killer and victim. The number 
of meetings should be proportional to the product of the killer and victim populations. The growth 
rate of the killer population, on the other hand should be positively related to the number of 
meetings. Finally, a large number of killers would increase competition for the victims, which are 
limited in supply. Thus, growth of the killer population is negatively related to the number of 
killers. Letting V(t) represent the population of victims at time t and K(t) the number of killers at 
time t, we have the following system of differential equations: 

V(t) = ccl V(t) - p1 V(t)K(t) 

K’(t) = -a,K(t) + &V(t)K(t) (1) 

where al, x2, B1 and /j2 are positive constants to be determined empirically. 
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2.2. Linearization 

Equations (1) represent a nonlinear system of differential equations since there are terms involving 
the product of V and K. In a linear system, V and K may appear individually only. In order to 
ease the mathematical treatment of this system of equations we will make an approximation which 
reduces the system to a linear form in the vicinity of certain equilibrium populations. 

The first step is the determination of the equilibrium population levels-those population levels 
for which the rates of change with respect to time are zero. Setting V’(t) and K(t) to 0 in equations 
(1) and denoting the equilibrium values of V(t) and K(t) by V* and K* yields 

I/*@, - P,K*) = 0 

K*(-crz + /&I’*) = 0. (2) 

Since the products in equations (2) are zero, either V* = K* = 0 or 

v* = Q/P2 
K* = u,//?~. (3) 

The case of both population levels being equal to zero is of no physical interest, so we use the 
equilibrium populations given by equations (3). 

Now introduce the new variables 

and 

u(t) = V(t) - v* = V(t) - cQ/pz 

k(t) = K(t) - K* = K(t) - al/PI, 

which represent deviations from the equilibrium populations. This gives 

W) = u(t) + aJ/L, V’(t) = o’(t) 

and 

K(t) = k(t) + M%, K’(t) = k’(t). (4) 

Substituting expressions (4) into equations (1) and combining terms leads to 

o’(t) = - WGBJB2 - P,W+) 

k’(t) = WG/ljl + P,WW (5) 

It is now important to notice that V, K, u and k may be thought of as either absolute populations 
or as population densities. It is prudent here to use population densities in units such that the 
equilibrium values of V(t) and K(t) are approximately 1. In this case u(t) and k(t) are much less 
than one for small deviations from equilibrium and the terms involving u(t)k(t) are likely to be 
much smaller than the other terms in equations (5). Thus, as an approximation, we can drop the 
last terms in each equation and get 

u’(t) = - W)M&/B~ 

W) = o(+G/P~. (6) 

Equations (6) are now a linear differential system because u(t) and k(t) only appear individually. 

2.3. The matrix form of the problem 

If we let 



Approximating classical predator-prey problems 309 

equations (6) can be written in the form 

(7) 

This follows from the ordinary definition of multiplication of a matrix and a vector. The derivative 
of a matrix (or a vector) is defined as the differentiation of each individual element of the matrix. 
Since equation (7) is a differential system, we also need to specify an initial condition, x(0) = x0. 
This form may apply to a similar system of n equations for arbitrary n. The matrix A would be 
n x n, and x would be a column vector of n components. 

We might expect the solution of equation (7) to be analogous to the solution of the similar 
equation involving scalars. Indeed, this is the case, with the solution being 

x(t) = eAtxo. (8) 

This solution involves raising e to a matrix power. To make sense of this concept we resort to the 
Taylor’s series expansion of ex and define 

e Ar = o + it + (Ac)~/~! + (Ac)~/~! + (A04/4! + . . . (9) 

It can be shown that for any given A, this series converges Vt [l]. Now let us see if x(t) as given 
by equation (8) actually satisfies equation (7). Since the series representation of eAr converges for 
any given A V t, we can differentiate equation (9) term by term to get 

d -ewr = A + A2t + f$f + ., 
dt 

= A(e’“‘). (10) 

Thus equation (8) really is the solution of the linear differential system (7). The following section 
is devoted to explaining a practical method for calculating eat. 

3. CALCULATING THE EXPONENTIAL OF A MATRIX 

3.1. Eigenvalues and the characteristic polynomial 

The first step in finding eA’ involves determining the fundamental values or eigenvalues of the 
matrix A. The eigenvalues are the roots of the equation det(A - i-0) = 0, where 0 represents the 
identity matrix of the same order as A. This is called the characteristic equation for the matrix A. 
If det(A - 10) is written in the form of a polynomial, it is called the characteristic polynomial. 

As a numerical example, consider the system 

xi(t) = 4x, - 5x,, x,(O) = 8 

xi(t) = 2x, - 3x,, x2(0) = 5. (11) 

I-Ierex(1)=[::1:;],A=[: I:]andx,,=[i]. The characteristic equation is given by 

4-i. -5 
det 

2 
_3 _ 1 = (4 - E.)(-3 - 2.) + 10 = 0. (12) 
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The characteristic polynomial is thus 

I.= - 3, - 2. 

The roots of equation (12) give us the eigenvalues Jr = - 1 and rZ2 = 2. 

3.2. The Cayley-Hamilton theorem 

The Cayley-Hamilton theorem states that every matrix is a root of its characteristic polynomial. 
A proof may be found in Ref. [2]. 

The importance of the Cayley-Hamilton theorem in this application results from the following 
fact (see Ref. [2] for a proof): given polynomials j(A) and c(A), we can always find polynomials q(A) 
and r(R) such that 

f(A) = c(M~) + r(A) (13) 

with the degree of r(n) less than the degree of c(J). If we choose c(L) to be the characteristic 
polynomial for the matrix A, then the Cayley-Hamilton theorem implies 

f(A) = r(A) (14) 

since c(A) = 0. 
This approach is valid even if j(1) is an infinite polynomial such as e”‘. We simply need to find 

the remainder polynomial r and evaluate r(A). 

3.3. Finding the remainder polynomial 

The degree of the characteristic polynomial of a nonsingular n x n matrix is always n. Thus, the 
remainder polynomial is of the form 

a, + a,i. + a2A2 + ... + a,_,i.“-‘. 

If i.j is an eigenvalue of the matrix A, c(2.j) = 0, so it follows from equation (13) that 

f(j.j) = r(i,-) = a, + alLj + a2j.jz + =.. + a,_,j.Jf-‘. (15) 

If we have n distinct eigenvalues we substitute i., through i., into equation (15) to obtain a system 
of n equations in the n unknowns a, through a,, _ , . Solving for the a’s by Gaussian elimination 
gives us the remainder polynomial r. 

In the numerical example of Section 3.1, n = 2. For f(L) = eLr, equation (15) with i., = - 1 and 
i., = 2 gives us 

e-’ = a, - a, 

e2’=a,+2a,. 

This linear system of equations can be solved for a0 and aI by Gaussian elimination to-yield 

(16) 

a0 = $e-’ + je2’ 

a, = - +e-’ + $e2’. 
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Now, we will calculate e” for the matrix in our example: 

-$e -* + Se2? 
3 ie-’ _ je2’ 

r(A) = a,0 + a,A = 1 a, + 4a, -5a, 

2a, a,-3a, = I[ 5 --I -*e-’ + se” F -2 2’ 
3e 
1 (17) 

Thus, the solution of system (11) is 

or 

xl(t) = 3e-’ + 5e2’ 

x2(t) = 3e-’ + 2e2’. 

3.4. Repeated eigenvalues 

Suppose we have to find eer for the matrix 

2 3 
B= 

[ 1 0 2 

(18) 

(19) 

This matrix has a double eigenvalue, i, = 1, = 2. Because of the repeated root of the characteristic 
polynomial, it is not possible to obtain two distinct equations from equation (15) and solve for the 
coefficients. A slight modification will cure the problem. 

If an eigenvalue iUi is repeated k times (occurs k + 1 times altogether), then, not only isf(&) = r(n,), 
but also 

f’(j~j) = r’(%j) = a, + aJj + a3if + ...a _ A?-’ n 21 

f”(i.j) = r”(Aj) = a2 + a3S + a&f + . . . + a,_ 3E.jn-2 (20) 

f[kl(iwj) = rtkl(Aj) = ak + a k+l;lj + ak+2%3 + ... + a,_k_,L~-k. 
1 

This enables us to fill out the necessary set of n equations in the n unknowns a, through a,_,. 

4. SOLUTION OF THE LINEARIZED MODEL 

We return to the problem in which 

[ 

0 
A= 

- ff2PlIB2 

G2ll31 1 0 

The eigenvalues of A are given by i.’ + cllu2 = 0. Since a1 > 0 and CI~ > 0 the roots of this equation 
are i., = i 6 and i., = -i& where i = n. Note that the techniques of the preceding 
sections apply equally well to complex eigenvalues as to real ones. If we are to apply equation (15) 
and the methods of the preceding section, we must evaluate f(n) = e” at the complex eigenvalues 

iJ- ala2 and -i&. To do this we will make use of the Euler formula 

eie = case + isin (21) 
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as well as trigonometric identities cos( - 0) = cos 9 and sin( - 0) = -sin 8. Thus equation (15) 
becomes 

cos&t + isin&t = a0 + a,i&t 

cos&t - isinfit = a0 - a,iJ&& 

with the solution 

(22) 

a, = cosJuIC(2t 

a, = JGsin&& 

obtained by Gaussian elimination. For eA’, we get 

a,ll + a,A = 
[ 

cos u,a,t - (~2BliP2JG%nJZG~ 
(~IBzIP1&G)sinJcc,cr,t 

(23) 

cos cc,crzt 1 J- . 
Since the initial conditions of the populations are u(0) = u. and k(0) = k,, we can now write an 
approximate expression for the populations of victims and killers: 

40 
[ I[ v,cos&t - k0(,,&Bllfi2&&in&% 

k(t) = vO(J%P21P1&&in,h% + ko cos,.h% 1 

Applying basic trigonometric identities, this can be simplified to 

40 
[ I[ C~&G/~2Jcr,)co&Gt + 4 

k(t) = Csin(&t + 0) 1 ’ (24) 

where C and 8 are constants which may be determined from the initial conditions. This shows that 
u and k vary sinusoidally with the same period, with the oscillation of the killer population lagging 
one-quarter period behind that of the victim population. 

We may also wish to find the direct relationship between II and k. To eliminate t from equation 
(24) note that 

V2 

(B1JaI12,G)2 

+ k2 = C2. (25) 

This represents an elliptical orbit about the origin of the v-k plane. Since u and k are deviations 
from the equilibrium population levels, we have, in the plane of the original V and K (called the 
phase plane), an elliptical orbit around the point corresponding to the equilibrium values of V and 
K. 

5. ADDITIONAL OBSERVATIONS 

In this problem it is also possible to proceed from the original system directly to the phase plane. 
This is easy because the system (1) is autonomous, meaning that t does not appear explicitly in the 
equations. Writing dV/dt for V’ and dK/dt for K’, and formally dividing the first equation by the 
second, yields the single differential equation 

dV/dK = V(cc, - B~K)IK(--Q + lj2V (26) 
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or, rearranging, 

(-cr,/V + fi2)dV = @r/K - /?,)dK. (27) 

Integrating and exponentiating both sides yields 

ePzV eS~K 
_‘-=c 

Ifa2 K"' 
(28) 

where c is a constant determined by the initial conditions. Though we cannot solve explicitly for 
V or K, this equation leads to closed orbits about the equilibrium point. When the perturbations 
from equilibrium are small, the orbits may be approximated by the ellipses of equation (25). 

The approximation which has been presented for the model under consideration has proven 
quite reasonable, but one must, in general, be very careful in attempting to simplify such systems. 
Other more simplistic modifications may at first appear reasonable but can lead to poor results. 
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7. EXERCISES 

Why is the number of killer-victim meetings assumed to be proportional to the product of their populations? How 
reasonable do other assumptions embodied in the model seem to be? What other factors might be included in the model 
to make it more realistic? 

Find the characteristic polynomial and the eigenvalues for the matrix 
8 1 

( > 
_ 1 6 

Verify the Cayley-Hamilton theorem for the matrix in Exercise 2. 
Verify the correctness of solution (18) by substituting it into system (1 I). 
Find eu’ for the matrix Et given in equation (19). 
Choose several different sets of values of a,, az, /J,, /I2 and c. Then, for each set, sketch the graph of V vs K according 
to equation (28) and note its shape. Find the corresponding values of C in equation (25) and see how these ellipses 
compare to the other graphs, 

8. ANSWERS 

Think of the meetings as being one-one so that meetings occur during contacts between pairs of individuals from the 
two groups. The number of pairs at time t is given by V(r)K(r). 
Characteristic polynomial = ,I2 - 141 + 49. I, = I., = 7. 

L%-148+490=(_; $-14(_; ;)+49(; ;)=(; ;) 

e2’ = a + 2a 

1 

0 = e2’ - 2tc2’ 

rel’ = 
0 I__0 

(II a, = teZr 

e”‘=a D+a B= 
e2’ 3re” 

0 1 ( > 0 e2’ 
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