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Collaboration and Health Care Diagnostics: an

Agent Based Model Simulation

Sebastian B. Linde∗and George K. Thiruvathukal†

Date: 10.23.13 (Draft #2.3)

Abstract

This paper presents a simple ABM of health care diagnostics using the

NetLogo architecture. We simulate patient and doctor populations where
patients differ by their health condition, and doctors differ by their area
of expertise. We assume that an accurate diagnosis results from a patient-

doctor match if and only if the doctor’s area of expertise overlaps with the
patient’s health condition. The model allows for doctors to collaborate
and in so doing share their knowledge with each other. Collaboration of

this kind increases the odds of a successful diagnosis following from any
patient-doctor match. In the analysis, we compare the patient population
outcomes with and without physician collaboration, and further explore

the parameter space of the model. A number of feasible model extensions
are also enumerated.

1 Introduction

Health care diagnostics is the art of matching patient symptoms with a docu-
mented condition. However, such a match is by no means direct or error free,
and can in many cases be the outcome of a long journey for the patient; encom-
passing several consultations with many different professionals before arriving
(if at all) at the correct diagnosis. Diagnostic, and medical, errors are in fact
unsettlingly common. Roughly 1 in 10 diagnosis provided are wrong(Graber
et al., 2012; Wachter, 2010), and an estimated 44,000 to 98,000 US hospital
deaths (annually) result as a direct consequence of misdiagnosis(Kohn et al.,
2000). Meanwhile, medication errors are estimated to harm more than 1.5
million people every year and the extra medical cost of treating drug-related
injuries occurring in hospitals alone amounts to over $3.5 billion a year(Aspden
et al., 2007). Diagnostic errors are the basis for 40% of ambulatory malprac-
tice claims that costs approximately $300,000 per claim on average(Singh and

∗Sebastian B. Linde is a doctoral student in economics at Purdue University (email:
linde@purdue.edu)

†George K. Thiruvathukal is a professor of computer science at Loyola University Chicago
(email: gkt@luc.edu)
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Graber, 2010). While there are several factors that contribute toward making
the diagnostic process inefficient (see: (Singh and Graber, 2010)), this paper
provides a model for looking at the issues brought about by the presence of in-
complete information–both on behalf of the patient, who is often unaware of the
details of his condition, and the health care professional, who possesses expertise
on only a limited number of conditions. In this setting, information (expertise)
is taken to be spread over a large population of health care professionals, and
as such there are direct benefits from collaboration as this provides them with
access to each other’s expertise.

This paper is outlined as follows: in Section 2. we draw out the of the
model, explain the health updating rules, and the matching process used in the
ABM. Section 3. then explains the implementation of the model in the NetLogo
environment; whereas Section 4. presents some simulation results under both
the complete, and incomplete, information settings. Next, Section 5. outlines
some feasible extensions of the model, while Section 6. concludes.

1.1 NetLogo and ABM

Before addressing the model specifications in detail, we briefly introduce the
modeling platform used, NetLogo, and also comment on why ABM is appropri-
ate for dealing with the problem at hand as opposed to other (GE) economic
modeling.

NetLogo1(Wilensky, 1999; Tisue and Wilensky, 2004) is a programmable
modeling environment for simulating interactive phenomena–be it natural or
social. It is particularly well suited for modeling complex systems developing
over time, and its ability to give instructions to hundreds (or even thousands)
of agents enables it to explore connections between micro-level behavior and
the macro-level consequences that result as a consequence of such interactions.
Another convenient feature of the platform is that it allows for a thorough study
of the model’s parameter space by means of experimentation. NetLogo has a
built in software tool called “BehaviorSpace” that allows the user to perform
recursive experiments with the model, while systematically varying the model’s
parameter settings. Recording such data allows us to construct distributions
of the simulation outcomes, and also see how different parameter combinations
effect the behavior of the model. The study of interaction between multiple
heterogenous agents, and experimentation of this kind, is generally not feasible
with the mainstream economic models.

Mainstream economic models, as put by Gallegati (Gallegati, 2008), are
based on the classical physics assumptions of: reductionism, determinism and
mechanism. Under this approach there is no difference between micro and
macro since the whole is nothing but a summation of its components. In order
to arrive at tractable solutions, these General Equilibrium and Representative
Agent models often need to assume that all agents are homogenous in nature

1NetLogo was developed by Uri Wilensky in 1999 and is still in continuous development.
See: http://ccl.northwestern.edu/netlogo/ [accessed 30 May 2012]
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and behavior, and thus predictable. In contrast to this, the ABM methodology
embraces heterogeneity of agents and caters for the study of aggregate dynamics
and empirical regularities that are not know a priori. Since the problem of
health care diagnostics concern the complex interplay of heterogenous health
care professionals as well as heterogenous agents (as will soon be explained
in greater detail) the choice of an ABM approach seems natural and called
for. Furthermore, as was mentioned, many standard models fail to capture
evolutionary behavior over time, while an ABM is capable of capturing this in
great detail, giving insight into the unfolding of our final outcomes.2

2 A Simple Public Health Model

2.1 Model Setup

Agents come in two types (or breeds) in this model: patients and doctors.
The patient population is composed of agents i ∈ {1, 2, ..., N} = Ω, and the
health care professional (which we call doctor) population is made up of agents
j ∈ {1, 2...,M} = Θ. Patients initial health level at time t = 0 is given by the
random variable h0i ∼ N(µh,σ2

h) which is normally distributed for all i. We
further take that patient utility is a function of lifetime (inter-temporal) health,
and hence given by:

ui = ui(h0i, h1i, ..., hTi) = ui(Hi) (2.1)

Where Hi is the lifecycle health of agent i. Next, we say that all agents with
hki ∈ (0, µh−σh) are sick with a condition ci ∼ U(a, b), where the conditions are
taken to be uniformly distributed. When endowed with a condition, we assume
that the agent attempts to find professional help.

Doctors, have an area of expertise given by the random variable ej ∼ U(a, b)
that he/she is able to provide a diagnosis for. The scope of expertise of any one
doctor can be expanded by doctors engaging in collaboration with one-another.
For instance, if doctors 1, 2, 3...,m are taken to collaborate, (denoting this as:
A = {1, 2, 3, ...,m} ⊆ Θ), then we assume that they all have access to the
collective expertise E =

⋃

j∈A{ej} which they can readily make use of in their

patient consultations. 3

This gives us the basic setup of the patient doctor population, with their
respective characteristics. Next, we look at the health updating rules, how to
derive the lifetime–individual and aggregate–health, and explore the matching
algorithms by which sick patients are matched with a doctor.

2While one can conceive a large scale longitudinal study as an alternative to an ABM
approach to the problem at hand, such a study would be preventively complicated to manage,
and would require several years of dedicated investment of both time and financial resources.
As such, the ABM simulation approach seems to lend itself well to this problem, at this time.

3NB: E is the union of all individual expertise since some may be overlapping, e.g. if
E = {ek} ∪ {el} where k ≠ l but ek = el, then E = {ei} = {ej} and there are no evident
benefits from cooperation.
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2.1.1 Health Decay When Healthy and Sick

Starting with the patient population, if a patient is healthy, then his level of
health decays at a rate γ per period t of time, while the decay is δ in the case
that the patient is sick. We assume that γ ≤ δ holds true. Hence, in the case
that the patient is healthy, we use the following health updating rule:

hi(t+ 1) = hi(t)− γ (2.2)

and in the case of where the patient is sick (and not in a consultation–
explained below), the updating rule is:

hi(t+ 1) = hi(t)− δ (2.3)

If patient is sick, he/she will employ a search algorithm in order to try and
find a doctor to help him/her receive a diagnosis. Before explaining the search
process employed, lets first attend to the mechanism of a consultation, and to
how we derive the lifetime health.

2.1.2 Consultation Updating Rule: with (and without) Cooperation

Supposing that patient i is in a consultation with doctor j at time t, then the
health of the patient at time t+ 1 is given by:

hi(t+ 1) =

{

hi(t)− δ + αx if ci = ej
hi(t)− δ if ci ≠ ej

(2.4)

Here, hi(t) denotes patient i’s health at time t, and x is a random variable
x ∼ U(p, q) with a uniform distribution denoting the benefit that the diagnosis
has on agent i’s health, with α ∈ [0, 1] being a parameter indicating the level
of accuracy of the diagnosis. If, on the other hand, doctor j collaborates with
other doctors then we rewrite the above updating rule as:

hi(t+ 1) =

{

hi(t)− δ + αx if ci ∈ Ej

hi(t)− δ if ci /∈ Ej

(2.5)

Different from before, patient i is here diagnosed so long as at least one of
the doctors (in the team) has expertise on his condition, i.e. ci ∈ E.

2.1.3 Individual Lifetime Health and PopulationAggregate Health

Let the total lifecycle health of patient i be given by:

Hi = H1i +H2i +H3i (2.6)

Here, H1i denotes the aggregate health accumulated during the period η
that the agent is healthy. It is given by:

4



H1i = h0 + (h0 − γ) + (h0 − 2γ) + · · ·+ (h0 − ηγ) = h0(η + 1)−

(

η(η + 1)

2

)

γ.

Let κ denote an exogenously given threshold value of health beyond which
the patient becomes sick. That is, if hi ≤ κ then i is sick. Thus, setting

h0(η + 1) −
(

η(η+1)
2

)

γ = κ and solving the quadratic we get η, and since the

initial condition h0 and the decay parameter γ together with κ are known, so
is η. As such, we can solve for H1i for any i. Next, H2i denotes the aggregate
health while sick. This can be solved similar to the previous case, however, here
we set:

H2i = h0(ζ + 1)−

(

ζ(ζ + 1)

2

)

δ = 0

to solve for ζ = 2h0

γ , and therethrough we get H2i. The final part of the
total lifecycle health for a given patient is given by:

H3i = P (diagnosis) ∗ E(Z)

where P (diagnosis) is the probability that i will be diagnosed over his life-
time and hence depends on the search (matching) algorithm employed. E(Z)
is the expected health benefit from obtaining a diagnosis, where Z ∼ U(a, b).
Note, below we solve H3i for each of the two search algorithms.

As such, we have that Hi = H1i + H2i + H3i has its first two parts, H1i

and H2i, fully determined by the initial condition of health, h0, while H3i is the
more interesting part that depends on the underlying search algorithm used, as
well as the patients expected health benefit from a successful diagnosis. From
this result, we simply write the aggregate lifecycle health in society as:

H =
n
∑

i=1

Hi (2.7)

It is worth pointing out that while we say that aggregate health is simply the
sum of all the individual health levels, the patient health is not homogenous.
Instead, we have a large group of unique patients with heterogenous health
conditions.

With the health updating rules and aggregate health defined, we now look
at the search algorithms and define the specific form of H3i for each of these.

2.2 Search (Matching) Algorithms

2.2.1 Incomplete Information (Random Search):

In this setting sick agents move across the (simulation) space at random. If
one of the patients happens to be within a specified radius r away from one
of the doctors, i.e. if the distance is d(i, j) = |i− j| ≤ r, and the doctor is
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available, then patient i and doctor j engage in a consultation. In so doing,
either (2.4) or (2.5) above is invoked as the updating rule depending on whether
the doctors cooperate or not. If successful in receiving a diagnosis the patient
stops, otherwise he continuous until he either receives a diagnosis, exhausts all
doctors, or dies. In summary, this model can be thought to reflect incomplete
information on behalf of the patients when it comes to their ability to directly
locate a doctor, and where there is a significant amount of preliminary search
conducted by the patient before there is a meeting.

Given this algorithm, we have that the probability of being diagnosed at any
given period t (while i is searching) is given by: P (diagnosis|t) = m

p
∗ |Ei|

m
= |Ei|

p
,

where m is number of doctors, p number of states (different types of patches) in
the illness space, and |Ei| is the cardinality of Ei ⊂ E where Ei contains all the
doctors with relevant expertise for patient i. Solving the lifetime benefit from
health care, H3i, we get:

H3i =

(

|Ei|

p
+

(

p− |Ei|

p

)

|Ei|

p
+ · · ·+

(

p− |Ei|

p

)ζ |Ei|

p

)

E(Z) =

=

(

ζ
∑

k=0

(

p− |Ei|

p

)k |Ei|

p

)

E(Z) =

⎛

⎜

⎝

|Ei|

p
·
1−

(

p−|Ei|
p

)k

1−
(

p−|Ei|
p

)

⎞

⎟

⎠
E(Z)

which, as we can see, simplifies since it is a simple geometric series.

2.2.2 Partially Perfect Information (Non-random Search):

Although the patients still have incomplete information regarding their own
condition, and the expertise of the doctors, they have perfect information on
where each of the doctors is located. As such, the patients employ a more
structured approach toward trying to get a diagnosis from the doctor population.
To start, patient i chooses doctor j ∈ Θ randomly out of the doctor population.
In the case that doctor j is available they have a consultation, again invoking the
relevant updating rule of (...) or (...). If the patient is unsuccessful in receiving
a diagnosis from j then he picks a new doctor k ∈ Θ \ {j} and repeats the
process until he either receives a diagnosis, exhausts the population of doctors,
or dies.

The expected benefit from health care for patient i is in this case calculated
as:

H3i =

(

|Ei|

m
+

(

m− |Ei|

m

)

|Ei|

m− 1
+ · · ·+

(

m− |Ei|

m

)ζ |Ei|

m− ζ

)

E(Z) =

=

(

ζ
∑

k=0

(

m− |Ei|

m

)k |Ei|

m− k

)

E(Z)
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where the terms are as previously defined, and the summation is taken as
follows: if m > ζ we stop at the time t when hi = 0 (the agent dies); and
conversely, if m < ζ we stop when m = 0 (all doctors have been exhausted).

Since both of these matching algorithms are of interest we run our ABM
simulation experiments on both separately. The next section explains the spec-
ification of the outlined model in the NetLogo environment before presenting
the results of our simulations.

3 NetLogo Model Implementation

Having outlined the basic logic of our model, we now turn to look at its imple-
mentation, and specification, in the NetLogo environment.4

3.1 Interface Overview

Figure 3.1: Netlogo Interface

4The model source code can be found at:...
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Figure 3.1 shows the NetLogo interface. On the LHS we see the but-
tons/switches that allow us to set the initial parameter values of the model.
Varying these allows us to fully explore the parameter space of the model.
While the program is running, one can study the evolving behavior using the
plots (seen in the lower left corner), and further view the interaction of the
agents in the simulation world (the large square on the RHS).

In the agent simulation window, the white agents are doctors, black agents
are healthy individuals, while colored agents are sick (with their color indicating
the particular condition). Meanwhile, we also note that the space is made up of
colorful patches–these indicate the expertise space of the doctors. For example,
if doctor j is standing on a red patch, then this means that he has expertise on
condition “red”, and as such he can diagnose patients with this illness. If doctors
collaborate, and say, doctor j stands on a red patch, and doctor k stands on a
green patch, then they are both able to diagnose conditions “red” and “green”.
This follows from our assumption that if doctors collaborate this means that
they have access to each other’s expertise.

Below, we go into a more through treatment of the Setup and Recursive
procedures of the ABM model.

3.2 Setup Procedures

The Setup button in the upper RHS of Figure 3.1 initiates the patient and doc-
tor procedures. The patient setup procedure, creates the number of patients
that has been specified (using one of the sliders below the Setup button), ran-
domly allocates them to a patch on the space, and assigns each an initial health
endowment from a normal distribution of health (who’s mean is set by one of
the sliders). If a given patient is allocated a health level that is less than one
standard deviation from the mean health he is considered sick, and as such,
assigned a condition from a uniform distribution of illnesses. The type of condi-
tion is indicated by the patient’s color, however, the patient is assumed unaware
of the specifics of his own condition.

Doctors are instantiated in a similar fashion. Their number can be specified
by one of the sliders, and they are all randomly assigned to a patch who’s color
indicates that particular doctors area of expertise. By pressing the Cooperate
button (to the right of the Setup button) we indicate that we want the doctors
to cooperate in their respective efforts to diagnose the patients. As seen in
Figure 3.2, the presence of a cooperation regime is visually displayed by white
links that indicate a stream of two way information (expertise) flow between
the health care professionals.

Last, we have that setup of the patches. These are randomly allocated a color
(same as the conditions) from a uniform distribution of colors (conditions).

3.3 Recursive Procedures

Once the setup of the model has been implemented, the recursive procedures
dictate the rules by which the system evolves over time. These rules are initiated
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Figure 3.2: Presence (left) and Absence (right) of Cooperation Between Doctors

by pressing the Go button (just right of the Setup button). The nature of the
evolving process for the agents depends on the search algorithm we choose for
the model, and as such we here take a look at both of these.

Under the Incomplete Information setting the patient procedure work to
have the sick patients randomly move around the space (as seen in Figure 3.2).
When the patient lands on a patch of a doctor they engage in a consultation.
The consultation is successful in providing the patient with a diagnosis in the
case that the doctors area of expertise is the same as that of the patient (in the
case of no cooperation between doctors), or when it matches that of at least one
of the doctors expertise (in the case of cooperation). If the patient receives a
diagnosis of his condition we set the patients color to green, and set his health
level to increase by an amount drawn from a uniform distribution. The idea here
is that the benefit of a diagnosis may have a varied effect on different people,
since in some cases a diagnosis may help the agent to take measures that helps
improve his/her health, but this is not necessarily true in all cases.

Under complete information, the matching process is far less arbitrary. Here,
the agents randomly chooses a new available doctor in each period until: a
successful diagnosis is provided, all doctors are exhausted, or the patient dies.
The particular why in which this actually works is as follows: each period an
agent randomly draws a doctor, if he is available, i.e. not in a consultation with
somebody else, then the patient forms a “grey” link with that doctor (as seen
in Figure 3.3). The next period this repeats, however, the agent will not form
a link with any doctor that he has previously linked with.

9



Figure 3.3: Complete Information Doctor and Patient Matching

3.4 Analysis and Behavior Space

The NetLogo model allows for continuous tracking and analysis of the evolving
system over time. This is a nice feature, and as can be seen in Figure 3.4, it
allows for the study of how, for example, the number of diagnosed patients and
aggregate health changes over time in our simulated society. It further allows
for the comparison of such inter-temporal change across different setups, for
example, in the presence, and absence, of cooperation between doctors. Again,
this can seen in Figure 3.4 by comparing the top level output plots (for the
setting of cooperation), with those below (for no cooperation).

An additional feature of NetLogo is the possibility of fully exploring the pa-
rameter space of the model. The Behavior Space feature allows one to run, and
record, the model hundreds of times and as such analyze the effect of different
parameter changes upon the model behavior. In the next section, titled Results,
we document the main findings of our model, and further explore the robustness
of these results to changes in the parameter setup.
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Figure 3.4: Diagnosis and Aggregate Health Outcomes (Incomplete Informa-
tion)

4 Results

Here we look at the model under incomplete and complete information. Each
of these settings are first analyzed separately before being compared. The anal-
ysis consists of comparing the overall diagnostic efficiency of the system in the
presence and absence of cooperation. In so doing, we look at: the number of pa-
tients successfully diagnosed under each setting, the level of aggregate health,
the average time it takes for a patient to be successfully diagnosed, and the
average number of consultations required for a successful diagnosing to result.

4.1 Incomplete Information Setting

The basic model setup used as a frame of reference here in the results is:

Parameter: Level:
Number Of Patients 1000
Number Of Doctors 10
Mean Of Health Dist. 50
Condition/Expert Space 14
Accuracy Alone 1
Accuracy Team 1
Synergy 1
Gamma 0.1
Delta 0.2

Table 1: Initial Settings
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4.1.1 Number of Diagnosed Patients

The model was run 20 times, with and without cooperation, in order to remove
any spurious results brought about by the random process that underpin the
model. The results show a statistically significant (p-value = 2*e−16) difference
between the number of patients successfully diagnosed when there is, and is no,
collaboration among doctors.

Figure 4.1: Number of Patients Diagnosed Under Cooperation

As illustrated in Figure 3.1, we see that the number of successful diagnosis
under cooperation is almost four times that achieved when doctors do not work
in teams. In order to investigate the robustness of this finding we looked at the
sensitivity of the result to changes in the mean health level, µh, and the level
of decay of health, δ, when the patient is sick. Increasing the mean health level
has the effect that agents have a longer time to search for a doctor with the
proper expertise, hence it improves the chances of the patient being diagnosed.
this is seen in the left image of Figure 3.2.

From the figure we see that the statistically significant difference between
the number of patients diagnosed under the two settings of cooperation remains.
In fact, as patients are given more time to search in this incomplete information
setting, the probability that they be diagnosed in a collaborative setting grows
greater (as illustrated by the fact that the slope of the red line is steeper than
that of the blue in the left graph of Figure 3.2).

Increasing the level of health decay while sick, δ, (see RHS graph in Fig-
ure 3.2) has the effect of decreasing the number of diagnosed patients under
both regimes of cooperation. This is because the level of health decay has an
inverse relationship with the amount of time that the patient has in-order to
find a doctor, let alone the one with the right expertise. Nevertheless, a sig-
nificantly greater number of patients are still being diagnosed in the setting of

12



Figure 4.2: Sensitivity to Number Diagnosed Due to Changes in Mean Health
and Decay

collaboration.

4.1.2 Level of Aggregate Health

Since cooperation, as just seen, implies a larger portion of diagnosed patients
this also translates into a larger aggregate level of health in society at large.
The scale and significance of the effect that collaboration between health care
professionals may have here is, however, dependent on several factors previously
described in Section 2.

From the experiments run in the ABM we see the following:

• The size of the health benefit, E(Z), that a diagnosis can provide is posi-
tively correlated with overall health.

• The size of the condition/expertise space is inversely related to the level
of health in society. That is, as the number of possible conditions grow,
ceteris paribus, this decreases the chances of a patient being diagnosed
since the probability of any doctor being an expert on that condition is
reduced.

• More doctors translate into a higher probability of diagnosis, and thus
into a larger health level overall.

• If initial condition of health, h0, is increased, it provides an overall health
benefit that is more than 1 : 1 to the increase in h0.

4.1.3 Time to Diagnosis

We find that although the population of diagnosed patients under cooperation
is significantly larger (p-value = 4.09*e−15) than that under no cooperation,

13



Figure 4.3: Time Taken for diagnosed patients to get their diagnosis

the speed with which the patients are diagnosed when doctors collaborate is
still significantly faster. This difference appears stable, but the overall timing
of diagnosing changes as follows when we change the parameters of the model:

• increasing the number of doctors is inversely related to the timing of di-
agnosis.

• Increasing the size of the illness space increases the average time of diag-
nosis.

• Likewise, increasing the time allowed for search also increases the time to
diagnosis since a lot of patients that previously died without receiving a
diagnosis are now diagnosed.

• The time taken is not dependent on the number of patients in this simple
setup.

Seeking to reduce the time to diagnosis is important for several reasons: firstly,
it may help increase the life expectancy of the patients by means of early in-
tervention. Second, it may prevent the spread of disease that would otherwise
affect the health of other individuals in society too, and thereby have a signifi-
cantly adverse effect on overall aggregate health. And Third, longer time is often
reflective of an inefficient health care system with a lot of deadweight costs and
inefficient use of health care resources. We can look a this cost in more detail
by studying the number of doctor consultations each of the diagnosed patients
need to go through in order to get their diagnosis.

14



Figure 4.4: Number of Consultations for Diagnosed Patients to get their Diag-
nosis

4.1.4 Number of Consultations to Diagnosis

We use the term “deadweight loss” to signify expenditure that would have been
avoided by the consumer had he/she better information available. For example,
in the case that a patient i with condition ci is matched with a doctor j that has
expertise ej, where ci ≠ ej , then both parties would be better of from avoiding
this encounter–the patient will not get his moneys worth since he does not get
diagnosed, and the doctor could be allocating his time towards other patient
whom he can actually help diagnose. Figure 3.4 above shows that the average
number of consultations that a patient needs to go through (and hence pay for)
when doctors work in a teams, as opposed to when they work alone, is significant
(p-value = 2*e−16) . This difference grows even larger when we allow agents
more time to search in this algorithm, because here agents that get matched
at most only get to see 2 doctors, meaning that if they are to accurately get
diagnosed they need to be lucky in ending up with the right doctor from the
start.

Nevertheless, we see that significant efficiency improvements are established
under the cooperative, making it attractive not only from a public health per-
spective, but furthermore from an economic standpoint too.

4.2 Partially Perfect Information Setting

The basic model setup used as a frame of reference here is the same as before,
the only difference is in the search algorithm employed.
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4.2.1 Number of Diagnosed Patients

Figure 4.5: Number of Patients Diagnosed

Unlike in the incomplete information setting, here, the search algorithm
employed by the patients is so effective that the total number of patients is not
significantly different given our initial setup (p-value = 0.18) . However, this
result is no robust in that it is highly sensitive to the level of decay chosen for
when the patient is sick. That is, a high enough δ, which implies that in a large
enough population of doctors the patient must find the right doctor fast, and
cannot rely on visiting every doctor before getting diagnosed.

From Figure 3.6, we see that the drop in the number of patients diagnosed
when there is no cooperation drops significantly, while the overall level of diag-
nosis of cooperating doctors remains stable and robust to this change.

4.2.2 Level of Aggregate Health

Same analysis as for the previous algorithm is true here. Significant difference
in the max level of health (p-value = 0.0185).

4.2.3 Time to Diagnosis

As illustrated in Figure 3.7, we see that there is a significant difference (p-value =
2*e−16) between the time taken to successfully diagnose a patient in the presence
(and absence) of collaboration between doctors. Furthermore, comparing the
result under complete information, to that of incomplete information, we see
that the average time to diagnosis for patients that are diagnosed is now greater
that it was under the incomplete information setup. The reason for this is that
under complete information we employ a more efficient search algorithm. As
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Figure 4.6: Number of Patients Diagnosed as δ is changed

such, we have that agents now get to meet more doctors in the time that they
are alive, allowing agents that would have previously died a better chance at
being diagnosed.

4.2.4 Number of Consultations to Diagnosis

Due to the nature of the search algorithm the number of consultations is similar
to the time to diagnosis. This is also evident from the similarity of the Figures
3.7 and 3.8. And yet again, we note a significant difference (p-value = 2*e−16) in
favor of collaboration between doctors. In fact, we see that cooperation brings
with it a more efficient matching process, with fewer consultations, and thereby
lower costs for the patients. Likewise, the efficiency of the matching process is
also positive news for public health provision in that we have a better use of
medical resources under a setting of cooperation.

4.3 Summary

While the models analyze the impact of cooperation under two different match-
ing algorithms the results of both indicate that cooperation is to be preferred
from a health and economic point of view in both cases. More specifically, in
model 1 we saw a significant difference on every account of: number of diagnosis,
overall health, time to diagnosis, and number of consultations. While Model 2
did not demonstrate a significant difference between the two settings in terms of
the number of people being diagnosed, the difference becomes significant if we
allow for a larger health decay for when the patient is sick. But even though the
difference in number of diagnosed patients may not have been radically differ-
ent, the speed with which they were diagnosed, and the number of consultations
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Figure 4.7: Time to Diagnosis for Diagnosed Patients

required for a diagnosis, was significant.
These results seem to suggest that cooperation between health care profes-

sionals on a micro-level can have positive macro-level effects both in terms of
overall public health, as well as on the economic expenditure on health care.

5 Possible Extensions

The following list provides some interesting extensions for future work:

• Make the model multi-generational. The current model only reviews
one generation, so allowing for new generations to come into being may be
of interest, and would allow for an overlapping generations type of study
to be made. With that said, the additional benefit that such a study
could give for the purpose at hand seemed minimal, and was as such not
pursued.

• Allow patients to cooperate and share information. Here we as-
sume that patients do not leverage their social networks in order to find
a suitable doctor that can evaluate their symptoms. However, in the real
world collective intelligence is often at play, and could be a factor helping
to speed up the matching process when doctors do not fully cooperate.
This seems to me a fruitful avenue of future work as it could yield insight
into the relationship between social structures and their implications for
favorable economic and health outcomes. In a simple case, one can assume
that each of the agents has information about a limited number of doctors,
together with their area of expertise, and that he/she can share this with
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Figure 4.8: Number of Consultations to diagnosis for diagnosed patients

immediate neighbors, and further with the neighbors of neighbors with
some level of information decay accounted for.

• Adding health care budget. Every visit to the doctor costs patients
money, either directly or indirectly via insurance. Including such a budget
could limit the number of doctors any given patient may sample in order
to get a diagnosis. While the model indirectly captures economic cost by
the way of counting the number of consultations that a patient engages
in, it does not constraint the number of such encounters that the agent
can engage in–something that a budget would do. This basic extension
(or modification) can easily be brought about by E.g. adding cost Kj

for each consultation with doctor j. This would then be added to the
utility function so that the agent weight expected benefits from a possible
diagnosis against the costs of a doctors appointment.

• Appointment/queuing system. The model does not block out more
than one patient seeing a doctor at a given time, so including an appoint-
ment system could help with this shortcoming.

• Time budget for Doctors. This introduces a constraint on the number
of patients that any given doctor can see. We have included this into
the code of the ABM, but excluded it out of the analysis for the purpose
of keeping things as simple as possible. Nevertheless, working with a
time budget may be of interest, especially if we consider that it may take
more/less time for doctors to see patients in a team, verses in a one-on-
one, setting. Then this modification could provide better insight into the
cost benefit tradeoffs (if any) that come from health care professionals
working in teams.
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• Accuracy of Diagnosis. Aided by real world data on what the potential
diagnosis accuracies are of a doctor working in a team as opposed to
alone would be of great interest, and would help make the analysis more
accurate. The literature on malpractice in the medical profession seems to
here suggest that teams would have a higher rate of accuracy–something
that is brought about by the increased level of peer review when working
in a team environment.

6 Concluding Remarks

Micro-level behavior can have significant Macro-level effects. In the model pre-
sented here we looked at the effect that cooperations between health care profes-
sionals on a micro-level can do for the overall level of health in our model, on the
number of patients successfully diagnosed, and the efficiency with which they
are diagnosed. In doing this, we looked at two models–one of complete, another
of incomplete, information. The results under each setting, although different,
seems to unanimously suggest that collaboration between health professionals
is indeed something of importance. As we saw, an efficient system results in
a lower level of deadweight expenditure, which translates into less healthcare
spending for patients and less unnecessary use of scarce medical resources.

While there are numerous possible extensions to the model (as outlined in
Section 4.) that can be investigated with future work, there is also a need for
more research into measuring the real world efficiencies of medical teams. Such
research could provide data with which the current model could be compared,
to further see if the predictions it makes are reasonable.

Appendix

Online Resources:

To explore the NetLogo model interactively visit: http://ccl.northwestern.edu/netlogo/
to first download NetLogo.

Next, visit our Bitbucket repository at: https://bitbucket.org/slinde/collaboration-
and-health-care-diagnostics-an-agent-based-model/src (here you can download
the Netlogo model that we developed and explored in this paper).
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