
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

7-2017

Educational Magic Tricks Based on Error-Detection Schemes Educational Magic Tricks Based on Error-Detection Schemes

Ronald I. Greenberg
Loyola University Chicago, Rgreen@luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Discrete Mathematics and Combinatorics Commons, Other Computer Sciences Commons,

Probability Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Greenberg, Ronald I.. Educational Magic Tricks Based on Error-Detection Schemes. Proceedings of 22nd
Annual Conference on Innovation and Technology in Computer Science Education, , : , 2017. Retrieved
from Loyola eCommons, Computer Science: Faculty Publications and Other Works, http://dx.doi.org/
10.1145/3059009.3059034

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
© Association for Computing Machinery, 2017

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/212?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1145/3059009.3059034
http://dx.doi.org/10.1145/3059009.3059034
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Educational Magic Tricks Based on Error-Detection Schemes
Ronald I. Greenberg

Loyola University
Department of Computer Science

820 N. Michigan Ave.
Chicago, Illinois 60611-2147, USA

rig@cs.luc.edu

ABSTRACT
Magic tricks based on computer science concepts help grab student
a�ention and can motivate them to delve more deeply. Error detec-
tion ideas long used by computer scientists provide a rich basis for
working magic; probably the most well known trick of this type is
one included in the CS Unplugged activities. �is paper shows that
much more powerful variations of the trick can be performed, some
in an unplugged environment and some with computer assistance.
Some of the tricks also show o� additional concepts in computer
science and discrete mathematics.

KEYWORDS
computer science education; computational thinking; magic; out-
reach; public engagement; unplugged activities; discrete mathe-
matics; error detection; error correction; parity checks; pigeonhole
principle; permutations; counting principles; modular arithmetic;
multidimensional representations; bijections; probability; analysis
of algorithms

1 INTRODUCTION
Using magic1 tricks for computer science education and outreach
has been advocated by a number of previous authors. For exam-
ple, Curzon and McOwan report on presenting 3-hour-long magic
shows to gi�ed students [3]. A series of SIGCSE special sessions
has also presented magic tricks that utilize computational thinking
concepts and have strongly engaged large audiences of computer
scientists [6, 7, 9]. A large pool of computing-related magic tricks
also can be found at the “Computer Science For Fun” website, par-
ticularly through the “Magic of Computer Science” page [4]. Finally,
the trick presented below as “Version 2a” was used by the author
(and occasionally a student assistant) in some of the outreach pre-
sentations described in [15] that reached several thousand students.
Students generally expressed great fascination with the trick and
typically wanted to repeat it if time permi�ed. In surveys of over

1 �e term magic in this paper does not refer to any supernatural e�ects or even sleight
of hand. Nonetheless, use of this term is well within several dictionary de�nitions of
“magic”, and the tricks presented in this paper are not unlike many other “magic” tricks
presented in the references and other sources that are based purely on mathematical
or scienti�c phenomena. Furthermore, there are certain elements of showmanship
involved that we might think of as constituting “sleight of mind”.

ITiCSE ’17, July 03-05, 2017, Bologna, Italy
© 2017 ACM. �is is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. �e de�nitive Version of Record was published in
Proceedings of ITiCSE ’17, , h�p://dx.doi.org/h�p://dx.doi.org/10.1145/3059009.3059034.

200 students, 79% rated the “magic tricks” portion as “Good” or
“Very Good” (as opposed to “Poor” or “Fair”).2

One trick that has become particularly well known through the
CS Unplugged collection of activities is based on using parity checks
for error detection [1, pp. 35–37]. �is activity is recommended for
ages 7 and up and may well amaze older students as well, but the
trick is quite simple and might not impress sophisticated viewers.
�is paper shows that much more powerful variations of the trick
can be performed, some in an unplugged environment and some
with computer assistance. �ese tricks also show o� additional
computing concepts besides parity checking.

�e remainder of this paper �rst explains the CS Unplugged error
detection trick and then provides variations that are suggested to be
performed (with an explanation each time) as an escalating series of
tricks. (While the CS Unplugged trick is actually an error correction
scheme, it is titled as error detection for the simple parity-check
scheme on which it is based. �e other tricks presented in this
paper also perform correction.)

For all versions of the trick described below, a demo may be
viewed at h�p://rig.cs.luc.edu/∼rig/errdetectmagic/errdetect.html;
simply append ?v=1, ?v=2a, etc. to select the desired version of
the trick. Downloading the single source �le will also provide a
full HTML/JavaScript implementation that should run locally in
any modern browser, and a copy of the �le will be archived with
a version of this paper under h�p://ecommons.luc.edu/cs facpubs.
(�e demo does not perform the role of the magician but does
provide all the other steps.)

2 VERSION 1: CS UNPLUGGED
�e CS Unplugged setup works as follows, with a magnetic board
and 36 magnetic tiles that are colored on one side only:

(1) A volunteer is asked to lay out a 5x5 grid of the magnetic
tiles on the board with a “random” mixture of colored and
uncolored sides showing.

(2) �e magician casually adds a sixth row and column “to
make it a bit harder”. (�is statement is actually untruthful,
so it might be be�er to simply say “to make it a bit larger”.)

(3) �e volunteer �ips a tile while the magician looks away.
(4) �e magician looks back at the board and announces which

tile was �ipped.
�e secret of this trick is that the magician adds an extra tile at

the end of each row with the exposed side chosen so that the number
of colored tiles in the row is even. �en the magician adds an extra
2 Some of the presentations used instead, or additionally, the 1–125 number-guessing
magic trick at [10]. Only a small portion of the total students reached were surveyed,
due to the complicated requirements of research involving human subjects when
interviewing students under age 18.

http://dx.doi.org/http://dx.doi.org/10.1145/3059009.3059034
http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html
http://ecommons.luc.edu/cs_facpubs

ITiCSE ’17, , July 03-05, 2017, Bologna, Italy Ronald I. Greenberg

tile at the bo�om of each column with the exposed side chosen so
that the number of colored tiles in the column is even. In computer
science terms, we would say that the magician is ensuring that each
row and column has even parity. A�er the volunteer makes the �ip
that the magician does not see, the magician looks at the grid of
tiles to see which row and column have odd parity, and the tile that
was �ipped is at the intersection of that row and column.

It is straightforward to extend this trick to a larger n × n grid,
and, when the audience is not too large, I like to do it with an
Othello™ set on a table, starting with a 7 × 7 arrangement of the
black and white pieces and then extending to 8 × 8. Additionally,
an interactive demonstration for arbitrary n is available at h�p:
//rig.cs.luc.edu/∼rig/errdetectmagic/errdetect.html?v=1. (Make the
appropriate addition to the query string for the desired value of n
a�er the extension; e.g., the default is the same as appending &n=6.)

But the clever observer may recognize that addition of the extra
full row and column of tiles is not making the trick harder but rather
exploiting a simple rule, especially if the extra row and column are
added by computer, or if the magician needs to proceed a bit slowly
and deliberately to add the extra tiles.

Even this basic version of the trick can teach about parity check-
ing and the XOR (exclusive or) operation as well as the common
technique of identifying a cell in a 2D grid by specifying row and col-
umn number (for example to address memory cells). In successive
versions of the trick, however, additional ideas will be introduced.

3 EASILY PERFORMED VERSIONS WITH LESS
MAGICIAN INTERVENTION

A viewer who knows just a li�le bit about information theory may
realize that the CS Unplugged version of the error detection trick
is associating a lot of check bits with a modest amount of data.
Speci�cally, the magician is placing 2n check bits on an array of n2

bits. In principle, viewing the n2 bits as a linear sequence (e.g., row-
major order) and using a Hamming code [11], one would only need
to add lg(n2 + 1) ≈ 2 lgn bits (which can be shown to be optimal in
the context of transmi�ing data with single-error correction), but
this is not a very easy scheme for a human magician to use.3 In
Section 5, we will see a version of the error detection trick that is
di�cult to do without computer assistance, but, in this section, we
will stick to schemes that are humanly manageable and are more
impressive than the CS Unplugged version of the trick. (When we
do proceed to a version that relies heavily on the computer, it will
appear that we are violating the optimality of Hamming codes; the
reality is that we can “beat” Hamming codes because there isn’t
actually any underlying data being transmi�ed that we need to
retain as we create appropriate checks.)

3.1 Version 2a
�e fancier version of the CS Unplugged trick that I have performed
to the delight of many student groups may be explored interactively
at h�p://rig.cs.luc.edu/∼rig/errdetectmagic/errdetect.html?v=2a or
in its original home among other materials for high school out-
reach presentations [10]. Here, with the default 8 × 8 grid, the

3 �e mechanics are actually similar to the workings of the previously mentioned
number guessing trick (e.g., [10, 12]), but that trick imposes an organization on the
relevant information that is not readily available from looking at just a 2D grid of bits.

magician requests at most 3 �ips in the grid generated by the audi-
ence volunteer and/or randomization. (Larger versions can be run
by appending, e.g., &n=10 to the URL.)

�e steps of the trick, most readily performed at a computer
screen, are as follows:

(1) A random 8 × 8 grid of black and white tiles is generated,
and a volunteer is asked to �ip any desired tiles to make
sure the pa�ern is complicated.

(2) �e computer marks a set of at most three tiles that the
volunteer is asked to �ip. (A practiced magician could do
this manually, but the computer assist makes it quicker
and allows the magician to perform the trick without even
looking at the grid at all until step 4.)

(3) �e volunteer �ips a tile while the magician looks away.
(4) �e magician looks back at the board and announces which

tile was �ipped.

To explain this trick we need to explain how Steps 2 and 4 work.
Step 2 is the much more complicated one, and the reader should
remember it can be done quickly by the computer.

A�er Step 1, the computer (or magician) can determine the par-
ities of the �rst seven rows (i.e., whether each row has an odd or
even number of colored tiles). We are guaranteed to �nd that at
least four of these rows have the same parity; let us call this the
“majority” parity. (In explaining this to students we introduce a
new concept, the generalized pigeonhole principle.) We now make
note of the three or fewer rows among the �rst seven that have
the other or “minority” parity; these are rows in which we would
like to �ip (change) the parity, and we will call them the “�ip” rows.
Next we apply the same process to the �rst seven columns, and we
similarly �nd three or fewer “�ip” columns.

We can achieve all the desired parity �ips, by �ipping the tile at
the intersection of the �rst �ip row and �rst �ip column, the tile at
the intersection of the second �ip row and second �ip column, etc.
If there are actually fewer than three �ip rows or fewer than three
�ip columns, we will run out of rows or columns to use in these
pairings, but we can simply go to the last (eighth) row or column if
we run out of �ip rows or columns, respectively. In this way, we
identify a set of at most three tiles that the volunteer is asked to �ip,
and the result then is that the �rst seven rows all have the same
parity and the �rst seven columns all have the same parity. Figure 1
provides a screen shot from a sample run at the stage when the
desired �ips are presented to the volunteer.

Finally, it is straightforward (even mentally) for the magician to
perform Step 4 by looking for the row and column among the �rst
seven that has a di�erent parity from the others. (If all seven have
the same parity, he knows that the �ip occurred in the eighth row;
similar reasoning works with the columns.)

Everything described above for version 2a is readily generalized
to an n×n grid, with the number of �ips requested by the computer
being at most b(n − 1)/2c. While there is no conceptual change as
n increases, the amount of work (mental juggling) for the magician
does increase. (It is possible to reduce the work and increase the
impressiveness a bit with the next variation.) While the number of
�ips the computer requests is at most b(n − 1)/2c, it will sometimes
be less, and Appendix A shows how to compute the probability
distribution for the number of �ips required given a random grid.

http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=1
http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=1
http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=2a

Educational Magic Tricks Based on Error-Detection Schemes ITiCSE ’17, , July 03-05, 2017, Bologna, Italy

Figure 1: A sample run for Version 2a at the stage where the subject is asked to �ip atmost three tiles, a�er which themagician
can identify the next tile �ipped.

3.2 Version 2b
�is version of the trick works for an n×n grid with n ≡ 1 (mod 3).
�e basic idea here is for the magician to operate as in Version 2a
but with Steps 2 and 4 performed in accordance with a grouping of
all but the last row into sets of three (and similarly for the columns).
By the pigeonhole principle, at least two of the �rst three rows
have the same parity, so at most one of these rows becomes a �ip
row. �ere also is at most one �ip row in the next three rows, and
so on, for a total of at most (n − 1)/3 �ip rows. Similarly, there are
at most (n − 1)/3 �ip columns. Pairing �ip rows and columns as
in Version 2a (and defaulting to the last row or column if we run
out of �ip rows or �ip columns), the audience volunteer is asked
to �ip at most (n − 1)/3 tiles to achieve the same parity within
each group of three rows and the same parity within each group of
three columns. Again, this calculation for Step 2 can be done with
a computer assist.

�e magician then can easily complete Step 4 by looking for a
minority parity in one of the row groups (otherwise defaulting to
the last row), and similarly for the columns.

In the case of n = 7, the volunteer is asked to �ip at most two
tiles. (�e analysis of the probability distribution for the number of
tiles needing to be �ipped is again deferred to Appendix A.)

Note that when n is odd, greater care is required in computing
the parity of each row and column. It is necessary to consistently
count either the number of white tiles or consistently count the
number of black tiles, whereas one can count either when n is even.
For this reason, the magician may prefer to work with n = 10,
while limiting the number of organizing �ips to 3 as was the case in
Version 2a that only worked with n = 8. (�ere also is an increased
likelihood here relative to Version 2a of needing fewer than 3 �ips,
as shown in Appendix A.) An interactive demo for this version
defaulting to a 10 × 10 grid may be explored at h�p://rig.cs.luc.
edu/∼rig/errdetectmagic/errdetect.html?v=2b and di�erent values
of n ≡ 1 (mod 3) may be utilized by appending, e.g., &n=7.

4 “CHEATING” TO ACHIEVE FEWER
MAGICIAN-REQUESTED FLIPS

Garcia and Ginat have occasionally performed tricks involving
a secret communication between the two of them, for example
cra�ing a sentence so that the number of words conveys some
information [8]. �ey refer to this as “cheating”, and the same ter-
minology is adopted here to describe secret communication from
the computer or an assistant to the magician. �e trick variations
in Sections 3 do not involve any such cheating even though a com-
puterized assistant provides a convenient way for the magician to
quickly designate �ips that he desires to organize the grid. (While a
nimble magician could bypass the computerized assistant, I suggest
using it to demonstrate that the magician does not even need to look
at the grid until a�er the last �ip and is certainly not memorizing
anything about the grid arrangement or receiving any communi-
cations.) Having completed versions of the trick as in Section 3,
however, the magician may magnify the feat performed by using a
bit of subtle cheating as described below.

4.1 Version 3
An interactive demo for this version of the trick with a 10 × 10
grid can be explored at h�p://rig.cs.luc.edu/∼rig/errdetectmagic/
errdetect.html?v=3. In Version 2b, with n = 10, we can reveal one
secret �ip in the 10 × 10 grid a�er performing three organizing
�ips. Now we will explain how to reveal two �ips, while staying at
three organizing �ips but using a bit of subtle communication of
information from the computerized assistant.

�e steps in this trick are as follows, with the magician not
looking at the grid until Step 5:

(1) A random 10× 10 grid of black and white tiles is generated,
and a volunteer is asked to �ip any desired tiles to make
sure the pa�ern is complicated.

(2) �e volunteer �ips and remembers a tile.
(3) �e computer presents at most three tiles, one at a time,

that the volunteer is asked to announce and �ip.

http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=2b
http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=2b
http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=3
http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=3

ITiCSE ’17, , July 03-05, 2017, Bologna, Italy Ronald I. Greenberg

(4) �e volunteer �ips and remembers another tile.
(5) �e computer prompts the audience to provide a “drumroll”,

and the magician looks back at the grid and announces the
tile �ipped at Step 4.

(6) �e computer may prompt the audience to provide addi-
tional drumrolls (0, 1 or 2), and the magician announces
the tile �ipped at Step 2.

�e reveal in Step 5 works just as in Version 2b, but one may
observe that there is some �exibility in how the organizing �ips
are done, and that is the main source of communication to the
magician. Speci�cally, there will typically be three �ip rows and
three �ip columns, but we can use any ordering of the three �ip
rows and any ordering of the three �ip columns before proceeding
to pair them and proceed through the organizing �ips. Since there
are six possible orderings of the three �ip rows and six possible
orderings of the three �ip columns, the computerized assistant
can communicate enough information to discriminate between
6 × 6 = 36 possibilities. Here we are introducing the mathematical
concept of how to count permutations as well as the multiplication
principle for combining the information from the rows and the
information from the columns.

(We can also communicate at least as much information if there
are fewer than three �ip rows or fewer than three �ip columns. For
example, if there are only two �ip rows, we can use the last row as
a third distinct �ip row. If there is only one �ip row, we can pick
any other row to be used twice as a �ip row, and by choosing an
appropriate one from among the �rst six rows available we pro-
vide enough information to discriminate between six possibilities.
Finally, if there is are no �ip rows, we can use the last row as a
�ip row and use any other of the �rst six rows twice according to
which of the six possibilities we wish to communicate.)

With the information communicated through the choice of orga-
nizing �ips, we are nearly able to specify which of the 100 tiles in the
grid was the last �ip before the organizing �ips. We can complete
the cheating communication by communicating a number from
one to three, which is su�cient to discriminate among 36× 3 = 108
possibilities. Our subtle way to do this is through the number
of drumrolls prompted at the beginning of Step 6. (�e drumroll
prompted at the beginning of Step 5 is just to get the audience to
practice and to de�ect a�ention from the true communication.)

In showing the way that we encode one of the 100 grid tiles by
communicating three values with ranges of 6, 6, and 3 (not quite
fully utilized), we can also introduce mathematical concepts such
as encoding numbers using di�erent choices of number base (radix)
and construction of bijections.

4.2 Version 4
As a warmup for the �nal non-cheating trick in Section 5, we can
reveal a �ip in a very large grid with a single organizing �ip but
a heavy cheat. We can actually use an arbitrarily large n for this
trick, but we will show it (h�p://rig.cs.luc.edu/∼rig/errdetectmagic/
errdetect.html?v=4) and explain it for n = 11. In this variation, we
reveal a single secret �ip a�er the computerized assistant requests
the volunteer to announce and perform a single �ip. �ere are
actually a number of ways to do this easily (for example, request
a �ip to the tile that is in the mirror position across the diagonal

of the grid from the secret �ip), but a method that is reasonably
subtle and likely to puzzle most audience members for a time is to
use multiplicative inverses mod 11. Speci�cally, the computerized
assistant can request a �ip to tile (r , c) (row and column numbers
starting at 0), such that the magician can then reveal the secret �ip
as being (5r mod 11, 5c mod 11). Or to guard against the possible
tendency of humans to pick r = c , one may want to increase the
mystery by using two di�erent values, at the expense of doing
slightly more di�cult arithmetic, for example, arrange that the
secret �ip will be (5r mod 11, 7c mod 11); these are the details used
in the referenced demo.

5 ORGANIZING ANY GRID WITH ONE FLIP
At this point, an audience that has been led through the above
versions of the trick, has seen powerful variations with no “cheating”
communication to the magician and extremely powerful tricks with
such “cheating”. We can now promise to go back to eliminating
any opportunities for cheating communication but still increase the
impressiveness of the trick. In fact, we will be able now to reveal a
secret �ip in an arbitrarily large grid by doing just one organizing
�ip beforehand and no cheating! �e only wrinkle in this ultimate
variation of the trick is that it is di�cult for a human magician to
complete it unaided. With practice, it should be manageable in an
8× 8 grid, and I propose to create a smartphone app to perform the
trick for larger grids. �is smartphone app will photograph the grid
a�er the secret �ip occurs, but it will be operated by an audience
volunteer who will �rst verify that the phone is in airplane mode
so that it will be clear that no cheating communication is occurring.
Following is a description of how this trick is performed in theory.

5.1 Version 5
In this version of the trick, we view the tiles as being arranged in a
d-dimensional space with four positions in each dimension, i.e., 4d
total tiles. For smooth presentation, we will still display them in
an n × n grid; the default size demonstrated in h�p://rig.cs.luc.edu/
∼rig/errdetectmagic/errdetect.html?v=5 is an 8×8 grid representing
43 tiles that can be thought of as comprising a 3-dimensional array
of 4 × 4 × 4 tiles. More generally, the demo can be run in higher
dimensions by appending, e.g., &d=4 to the URL.

�e idea in this version of the trick is a conceptually simple
extension of Version 2b with n = 4. In each of the d dimensions,
we consider the four possible indices and focus on the �rst three
values. We compute the parity for the array slices with values 0,
1, and 2 and pick at most one slice in which a tile must be �ipped
so that all three slices will have the same parity; if no such �ip is
needed, we select the slice at value 3. A�er doing this for each of
the d dimensions, we determine the single tile at the intersection
of all d slices. �is is the single tile we request the volunteer to
�ip. To reveal the secret �ip, we check each of the dimensions for a
slice among the �rst three that has di�erent parity than the others
or default to the last slice. �at is, revealing the secret �ip is done
through essentially the same process as determining which single
organizing �ip is desired.

�e di�culty for a human magician is that once we get up to at
least three dimensions, the slices are large, and some mental gym-
nastics must be performed to view where they lie within a simple

http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=4
http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=4
http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=5
http://rig.cs.luc.edu/~rig/errdetectmagic/errdetect.html?v=5

Educational Magic Tricks Based on Error-Detection Schemes ITiCSE ’17, , July 03-05, 2017, Bologna, Italy

two-dimensional presentation. It is, however, quite straightforward
mathematically to map between d − dimensional coordinates of
tiles and positions in a two-dimensional grid. �us, it should be
feasible to program a smartphone app to perform this trick.

6 CONCLUSION
�rough the medium of magic tricks based on binary error detec-
tion/correction, we have shown that students can be entertained
and taught about many concepts in discrete mathematics, such as
parity checks, the pigeonhole principle, permutations, counting
principles, modular arithmetic, multidimensional representations,
and bijections. �e smartphone app proposed in Section 5 also
can provide an interesting programming assignment. Finally, the
analyses in the Appendices motivate delving into probability and
analysis of algorithms for more advanced students.

ACKNOWLEDGMENTS
�e author is supported in part by National Science Foundation
grants CNS-1543217 and CNS-1542971.

A PROBABILITIES FOR NUMBER OF
MAGICIAN-REQUESTED FLIPS

For more advanced students, the versions of the trick in Section 3
motivate additional analyses regarding the number of organizing
�ips the magician must request. (�e analysis for Version 2b will
also be applicable to Version 3 in Section 4.) We already have estab-
lished upper limits on the number of organizing �ips, but sometimes
fewer �ips will su�ce. Here we analyze the probabilities of need-
ing di�ering numbers of organizing �ips. Some of the analysis is
common to Versions 2a and 2b, and we start with that portion of
the analysis before proceeding in the two di�erent directions.

In either version, let us denote by l the upper limit on the number
of organizing �ips, i.e., l = b(n − 1)/2c for Version 2a and l =
(n − 1)/3 for Version 2b. Also denote by F (n, f) the probability of
having exactly f �ip rows. �e analysis is the same for columns,
so that F (n, f) will also denote the probability of having exactly f
�ip columns. Now the probability of having at most f �ip rows is

S (n, f) = Σ
f
i=0F (n, i) .

Finally, the probability of needing f �ip tiles, Pr(f) is the probability
of having f �ip columns and at most f �ip rows or vice-versa, minus
the intersection of these two events, i.e.,

Pr(f) = 2F (n, f)S (n, f) − (F (n, f))2 .

A simpli�ed case is when f = l ; in that case we see S (n, l) = 1, and
the probability of needing l �ip tiles is Pr(l) = 2F (n, l) − (F (n, l))2.

A.1 Version 2a
In Version 2a, we assume for simplicity that n is even (with only
small modi�cations otherwise needed). To complete the analysis,
we just need to note that

F (n, i) = 2
(
n − 1
i

)
/2n−1 =

(
n − 1
i

)
/2n−2 ,

based on choosing exactly i of the �rst n − 1 rows to have even
parity or choosing exactly i to have odd parity. It does not seem

Table 1: �eprobability Pr(f) that f is theminimumnumber
of magician-requested �ips in Version 2a for n = 8. (Exact
fractional values are given; for uniformity, they are not nec-
essarily in simplest terms.)

f F (n, f) S (n, f) Pr(f)
0 1/64 1/64 1/4096
1 7/64 8/64 63/4096
2 21/64 29/64 777/4096
3 35/64 64/64 3255/4096

Table 2: �eprobability Pr(f) that f is theminimumnumber
of magician-requested �ips in Version 2b for n = 10.

f F (n, f) S (n, f) Pr(f)
0 1/64 1/64 1/4096
1 9/64 10/64 99/4096
2 27/64 37/64 1269/4096
3 27/64 64/64 2727/4096

feasible to give simpler expressions for the probability of needing
f �ip tiles in general, but we note in Table 1 the values for n = 8.

A.2 Version 2b
In Version 2b, we complete the analysis by noting that

F (n, i) =

(
l

i

) (3
4

)i (1
4

)l−i
.

Again, it does not seem feasible to give simpler expressions for the
probability of needing f �ip tiles in general, but we note in Table 2
the values for n = 10.

Comparing Table 1 for Version 2a (n = 8) to Table 2 for Version 2b
(n = 10), each with a maximum of 3 �ip tiles, we see that the la�er
version improves the probability of ge�ing by with fewer than 3
�ips from about 1/5 to about 1/3.

B VERSION 5 COMPUTATIONAL EFFICIENCY
While all the trick versions presented in the paper illustrate compu-
tational concepts, most are actually computationally quite simple,
such that they can be performed by a human. In the case of Ver-
sion 5, however, a more involved computational organization is
required, and the naive approach is not the most computationally
e�cient. �is can motivate deeper analysis for advanced students,
and we analyze here the required running time for a serial algorithm
and even the required resources for a parallel algorithm. Recall that
there are actually two computations, one to organize the array of
tiles and one to reveal the secret �ip performed by the audiene vol-
unteer. But these two computations are the same, and we consider
here the time to do it once. (Good references for fundamentals of
algorithm analysis are [2, 13].)

Let us begin by de�ning some notation and determining the
naive serial computation time. We have been working with tiles
displayed in an n × n square corresponding to a d-dimensional
quaternary array. �at is n2 = 4d (i.e., n = 2d), and each tile

ITiCSE ’17, , July 03-05, 2017, Bologna, Italy Ronald I. Greenberg

is addressed with a d-tuple of coordinates, x0, x1, . . . , xd−1, each
coordinate having value 0, 1, 2, or 3. We denote by Pd (C) the parity,
i.e., XOR, of all the tiles in the d-dimensional quaternary array
satisfying condition C. Our task then is to compute Pd (xi = v)
for all i ∈ Zd and v ∈ Z3 (with Zm being the standard notation
for the set {0, 1, . . . ,m − 1}). Let T (d) be the time to compute all
these values. �e naive approach is to compute each of these values
independently as the XOR of 4d−1 = n2/4 bits, which involves a
total of 3d

(
n2
4 − 1

)
XOR operations, which is Θ(n2 lgn), where,

again, n2 is the number of tiles.

B.1 E�cient Serial Computation
For more e�cient computation, note that for i ∈ Zd−1,

Pd (xi = v) =
3
⊕
j=0

Pd (xi = v and xd−1 = j) . (1)

For any �xed value of j, �nding Pd (xi = v and xd−1 = j) for all
i ∈ Zd−1 and v ∈ Z3 involves computing in a quaternary array of
dimension d−1, so to complete that computation for all j ∈ Z4, time
4T (d − 1) is su�cient. Once we have done that, the computations
indicated in (1) for all i ∈ Zd−1 and v ∈ Z3 can be completed
with 3 · 3 · (d − 1) XOR operations. Finally, we need to compute
Pd (xd−1 = v) for each v ∈ Z3, which is easy to do using results
already available in any of the dimensions, e.g.,

Pd (xd−1 = v) =
3
⊕
j=0

Pd (x1 = j and xd−1 = v) . (2)

�e computation of (2) for all v ∈ Z3 can be completed with just
9 XOR operations. �us we obtain the following recurrence for the
running time with initial condition T (1) = 0:

T (d) = 4T (d − 1) + 9(d − 1) + 9 = 4T (d − 1) + 9d .
Rewriting in terms of n = 2d with T ′(n) = T (lgn), we have

T ′(n) = 4T ′(n/2) + 9 lgn
and T ′(2) = 0, with solution T ′(n) = Θ(n2). �us we shave a lgn
factor o� of the naive computation time, and we can see this is
asymptotically optimal since we must inspect every one of the n2

tiles except the one with all coordinates equal to 3.

B.2 E�cient Parallel Computation
For a parallel algorithm, we need some additional notation; let xi,l
represent a tuple of l coordinates starting at xi , i.e.,

xi,l = (xi ,xi+1,xi+2, . . . ,xi+l−1) .

�en for v ′ ∈ Z2l
4 , let S (v ′) ∈ Zl4 denote the starting half of the

coordinates of v ′ and E (v ′) ∈ Zl4 denote the ending half of the
coordinates of v ′. Further, let Tl (d) and Wl (d) be the time and
work (total number of operations) to compute Pd (xil,l = v) for all
i ∈ Zd/l and v ∈ Zl4, so that T1 (d) time andW1 (d) work su�ce for
the overall computation we need. Now the key relationships are

Pd (xil,l = v) = ⊕
v ′∈Z2l

4
S (v ′)=v

Pd (xil,2l = v
′) (3)

and
Pd (xil+l,l = v) = ⊕

v ′∈Z2l
4

E (v ′)=v

Pd (xil,2l = v
′) (4)

For �xed i and v , each of the computations in (3) and (4) is an
XOR of 4l values, which can be completed in Θ(lg(4l)) = Θ(l) time
with Θ(4l) work. �us, we can relate Tl (d) and Wl (d) to T2l (d)
and W2l (d) by using (3) and then (4), each for i even. (Using the
equations in sequence avoids a concurrent read to Pd (xil,2l = v

′)
so that the results are valid even on an EREW PRAM.)

Tl (d) = T2l (d) + Θ(l) (5)
and

Wl (d) =W2l (d) + Θ((d/l) (4l)2) (6)
where (6) accounts for using (3) and (4) for d/l values of i and 4l
values of v .

Noting that Td (d) =Wd (d) = 0, we can iterate (5) and (6):

T1 (d) =
lgd−1∑
j=1

Θ(2j)

and

W1 (d) =
lgd−1∑
j=1

Θ
(
(d/2j) (4(2

j))2
)
.

In each case, the term with j = lgd − 1 dominates, and we �nd
T1 (d) = Θ(d) andW1 (d) = Θ(4d), i.e., time Θ(lgn) and work Θ(n2)
forn2 tiles. �is result matches the lower bound on work to compute
even a single Pd (xi = v) as per the serial analysis, and it matches
the lower bound on time for even a randomized CREW PRAM [5]
and comes very close to the lower bound of Ω(lgn/ lg lgn) on the
still more powerful randomized CRCW PRIORITY PRAM [14]

REFERENCES
[1] Tim Bell, Ian H. Wi�en, Mike Fellows, Robyn Adams, Jane McKenzie, and

Sam Jarman. 2015. CS Unplugged: An enrichment and extension programme for
primary-aged students. h�p://csunplugged.org/wp-content/uploads/2015/03/
CSUnplugged OS 2015 v3.1.pdf.

[2] �omas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
2009. Introduction to Algorithms (third ed.). MIT Press.

[3] Paul Curzon and Peter W. McOwan. 2008. Engaging with Computer Science
�rough Magic Shows. In 13th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. ACM SIGCSE, 179–183.

[4] Paul Curzon, Peter W. McOwan, et al. 2011. �e Magic of Computer Science.
h�p://www.cs4fun.org/magic. (2011). Accessed March 8, 2016.

[5] Martin Dietzfelbinger, Miroslaw Kutylowksi, and Rüdiger Reischuk. 1994. Exact
Lower Bounds for Computing Boolean Functions on CREW PRAMs. J. Comput.
System Sci. 48, 2 (1994), 231–254.

[6] Daniel D. Garcia and David Ginat. 2012. Demystifying Computing with Magic.
In SIGCSE ’12. Association for Computing Machinery, 83–84.

[7] Daniel D. Garcia and David Ginat. 2013. Demystifying Computing with Magic,
continued. In SIGCSE ’13. Association for Computing Machinery, 207–208.

[8] Daniel D. Garcia and David Ginat. 2016. Presentation associated with [9] of a
trick not described in the wri�en publication. (March 2016).

[9] Daniel D. Garcia and David Ginat. 2016. Demystifying Computing with Magic,
part III. In SIGCSE ’16. Association for Computing Machinery, 158–159.

[10] Ronald I. Greenberg. 2010. Activities (from high school presentation materials).
h�p://www.illinoiscomputes.org/hspresent/what/activities. (Jan. 2010).

[11] R. W. Hamming. 1950. Error Detecting and Error Correcting Codes. Bell System
Technical Journal 26, 2 (April 1950), 147–160.

[12] C. Heeren, T. Magliery, and L. Pi�. 1998. MATHmaniaCS Lesson 1: Binary
Numbers. h�p://www.mathmaniacs.org/lessons/01-binary. (1998). Accessed
3/10/16.

[13] Joseph JáJá. 1992. An Introduction to Parallel Algorithms. Addison-Wesley.
[14] Miroslaw Kutylowski and �omas Schwöppe. circa 1998. A lower bound for

PARITY on randomized CRCW PRAMs. h�p://citeseerx.ist.psu.edu/viewdoc/
versions?doi=10.1.1.46.5019 accessed 1/15/17. (circa 1998).

[15] Steven McGee, Ronald I. Greenberg, Dale F. Reed, and Jennifer Duck. 2013.
Evaluation of the IMPACTS Computer Science Presentations. �e Journal for
Computing Teachers (Summer 2013), 26–40. International Society for Technology
in Education, www.iste.org.

http://csunplugged.org/wp-content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf
http://csunplugged.org/wp-content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf
http://www.cs4fun.org/magic
http://www.illinoiscomputes.org/hspresent/what/activities
http://www.mathmaniacs.org/lessons/01-binary
http://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.46.5019
http://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.46.5019
www.iste.org

	Educational Magic Tricks Based on Error-Detection Schemes
	Recommended Citation

	Abstract
	1 Introduction
	2 Version 1: CS Unplugged
	3 Easily Performed Versions with Less Magician Intervention
	3.1 Version 2a
	3.2 Version 2b

	4 ``Cheating'' to Achieve Fewer Magician-Requested Flips
	4.1 Version 3
	4.2 Version 4

	5 Organizing Any Grid with One Flip
	5.1 Version 5

	6 Conclusion
	Acknowledgments
	A Probabilities for Number of Magician-Requested Flips
	A.1 Version 2a
	A.2 Version 2b

	B Version 5 Computational Efficiency
	B.1 Efficient Serial Computation
	B.2 Efficient Parallel Computation

	References

